The Association of Triiodothyronine-to-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents
Abstract
:1. Introduction
2. Patients and Methods
2.1. Sample Collection and Preparation
2.1.1. Analytical Methods
2.1.2. Statistical Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Witkowska-Sedek, E.; Kucharska, A.; Ruminska, M.; Pyzak, B. Thyroid dysfunction in obese and overweight children. Endokrynol. Pol. 2017, 68, 54–60. [Google Scholar] [PubMed]
- Pacifico, L.; Anania, C.; Ferraro, F.; Andreoli, G.M.; Chiesa, C. Thyroid function in childhood obesity and metabolic comorbidity. Clin. Chim. Acta 2012, 413, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Sorisky, A.; Bell, A.; Gagnon, A. TSH receptor in adipose cells. Horm. Metab. Res. 2000, 32, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Valyasevi, R.W.; Harteneck, D.A.; Dutton, C.M.; Bahn, R.S. Stimulation of adipogenesis, peroxisome proliferator-activated receptor-gamma (PPARgamma), and thyrotropin receptor by PPARgamma agonist in human orbital preadipocyte fibroblasts. J. Clin. Endocrinol. Metab. 2002, 87, 2352–2358. [Google Scholar] [PubMed]
- Sari, R.; Balci, M.K.; Altunbas, H.; Karayalcin, U. The effect of body weight and weight loss on thyroid volume and function in obese women. Clin. Endocrinol. 2003, 59, 258–262. [Google Scholar] [CrossRef]
- Michalaki, M.A.; Vagenakis, A.G.; Leonardou, A.S.; Argentou, M.N.; Habeos, I.G.; Makri, M.G.; Psyrogiannis, A.I.; Kalfarentzos, F.E.; Kyriazopoulou, V.E. Thyroid function in humans with morbid obesity. Thyroid 2006, 16, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Bastemir, M.; Akin, F.; Alkis, E.; Kaptanoglu, B. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med. Wkly. 2007, 137, 431–434. [Google Scholar] [PubMed]
- De Pergola, G.; Ciampolillo, A.; Paolotti, S.; Trerotoli, P.; Giorgino, R. Free triiodothyronine and thyroid stimulating hormone are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure in overweight and obese women. Clin. Endocrinol. 2007, 67, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.; Laurberg, P.; Rasmussen, L.B.; Bülow, I.; Perrild, H.; Ovesen, L.; Jørgensen, T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J. Clin. Endocrinol. Metab. 2005, 90, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Leporati, P.; La Manna, A.; Pirali, B.; Mondello, T.; Fonte, R.; Magri, F.; Chiovato, L. Raised serum TSH levels in patients with morbid obesity: Is it enough to diagnose subclinical hypothyroidism? Eur. J. Endocrinol. 2009, 160, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Cappelli, C.; Leporati, P.; Chytiris, S.; Zerbini, R.; Fonte, R.; Magri, F.; Castellano, M.; Chiovato, L. A hypoechoic pattern of the thyroid at ultrasound does not indicate autoimmune thyroid diseases in patients with morbid obesity. Eur. J. Endocrinol. 2010, 163, 105–109. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fact Sheet N°311. Updated January 2015. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 18 November 2017).
- Haslam, D.; James, W. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Pujanek, M.; Bronisz, A.; Małecki, P.; Junik, R. Pathomechanisms of the development of obesity in some endocrinopathies—An overview. Endokrynol. Pol. 2013, 64, 150–155. [Google Scholar] [PubMed]
- Emokpae, M.A.; Adeleke, S.I.; Uwumarongie, H.O. Subclinical hypothyroidism in childhood obesity and its correlation with lipoproteins. Afr. J. Med. Med. Sci. 2011, 40, 361–365. [Google Scholar] [PubMed]
- Minami, Y.; Takaya, R.; Takitani, K.; Ishiro, M.; Okasora, K.; Niegawa, T.; Tamai, H. Association of Thyroid hormones with obesity in Japanese children. J. Clin. Biochem. Nutr. 2015, 57, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Nagila, A.; Bhatt, M.; Poudel, B.; Mahato, P.; Gurung, D.; Prajapati, S. Thyroid stimulating hormone and its correlation with lipid profile in the obese Nepalese population. J. Clin. Diagn. Res. 2008, 2, 932–937. [Google Scholar]
- Kok, P.; Roelfsema, F.; Langendonk, J.G.; Frolich, M.; Burggraaf, J.; Meinders, A.E.; Pijl, H. High circulating thyrotropin levels in obese women are reduced after body weight loss induced by caloric restriction. J. Clin. Endocrinol. Metab. 2005, 90, 4659–4663. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Strombotne, K.L. The economics of obesity. Am. J. Clin. Nutr. 2010, 91, 1520S–1524S. [Google Scholar] [CrossRef] [PubMed]
- Procter, K.L. The aetiology of childhood obesity: A review. Nutr. Res. Rev. 2007, 20, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Ishiro, M.; Takaya, R.; Mori, Y.; Takitani, K.; Kono, Y.; Okasora, K.; Kasahara, T.; Tamai, H. Association of uric acid with obesity and endothelial dysfunction in children and early adolescents. Ann. Nutr. Metab. 2013, 62, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.J. How medications affect thyroid function. West. J. Med. 2000, 172, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, J.; Kuma, K.; Mozai, T. Serum triiodothyronine to thyroxine ratio: A newly recognized predictor of the outcome of hyperthyroidism due to Graves’disease. J. Clin. Endocrinol. Metab. 1986, 62, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Amino, N.; Yabu, Y.; Miki, T.; Morimoto, S.; Kumahara, Y.; Mori, H.; Iwatani, Y.; Nishi, K.; Nakatani, K.; Miyai, K. Serum ratio of triiodothyronine to thyroxine, and thyroxine-binding globulin and calcitonin concentrations in Graves’ disease and destruction-induced thyrotoxicosis. J. Clin. Endocrinol. Metab. 1981, 53, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Rotondi, M.; Magri, F.; Chiovato, L. Thyroid and obesity: Not a one-way interaction. J. Clin. Endocrinol. Metab. 2011, 96, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T. Obesity and thyroid function. Mol. Cell. Endocrinol. 2010, 316, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Stichel, H.; l’Allemand, D.; Gruters, A. Thyroid function and obesity in children and adolescents. Horm. Res. 2000, 54, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Andler, W. Thyroid hormones before and after weight loss in obesity. Arch. Dis. Child. 2002, 87, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; de Sousa, G.; Andler, W. Hyperthyrotropinemia in obese children is reversible after weight loss and is not related to lipids. J. Clin. Endocrinol. Metab. 2006, 91, 3088–3091. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.K.; Dasari, G.; Levens, K.L.; Rettig, K.R. The prevalence of elevated serum thyroid-stimulating hormone in childhood/adolescent obesity and of autoimmune thyroid diseases in a subgroup. J. Natl. Med. Assoc. 2007, 99, 773–776. [Google Scholar] [PubMed]
- Reinehr, T.; Isa, A.; de Sousa, G.; Dieffenbach, R.; Andler, W. Thyroid hormones and their relation to weight status. Horm. Res. 2008, 70, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Solanki, A.; Bansal, S.; Jindal, S.; Saxena Shukla, V. Relationship of serum thyroid stimulating hormone with body mass index in healthy adults. Indian J. Endocrinol. Metab. 2013, 17 (Suppl. 1), S167–S169. [Google Scholar] [CrossRef] [PubMed]
- De Moura Souza, A.; Sichieri, R. Association between serum TSH concentration within the normal range and adiposity. Eur. J. Endocrinol. 2011, 165, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Al-Musa, H.M. Impact of obesity on serum levels of thyroid hormones among euthyroid Saudi adults. J. Thyroid Res. 2017, 2017, 5739806. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Ohrt, J.D.; Fonvig, C.E.; Kloppenborg, J.T.; Pedersen, O.; Hansen, T.; Holm, J.C. Subclinical hypothyroidism in Danish lean and obese children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Marwaha, R.K.; Tandon, N.; Desai, A.K.; Kanwar, R.; Aggarwal, R.; Sastry, A.; Singh, S.; Narang, A.; Ganguly, S.K.; Mani, K. Reference range of thyroid hormones in healthy school-age children: Country-wide data from India. Clin. Biochem. 2010, 43, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Djemli, A.; Van Vliet, G.; Belgoudi, J.; Lambert, M.; Delvin, E.E. Reference intervals for free thyroxine, total triiodothyronine, thyrotropin and thyroglobulin for Quebec newborns, children and teenagers. Clin. Biochem. 2004, 37, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Soldin, S.J.; Cheng, L.L.; Lam, L.Y.; Werner, A.; Le, A.D.; Soldin, O.P. Comparison of fT4 with log TSH on the Abbott Architect ci8200: Pediatric reference intervals for free thyroxine and thyroid-stimulating hormone. Clin. Chim. Acta 2010, 411, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Lem, A.J.; de Rijke, Y.B.; van Toor, H.; de Ridder, M.A.; Visser, T.J.; Hokken-Koelega, A.C. Serum thyroid hormone levels in healthy children from birth to adulthood and in short children born small for gestational age. J. Clin. Endocrinol. Metab. 2012, 97, 3170–3178. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S.; Radetti, G. Thyroid function and obesity. J. Clin. Res. Pediatr. Endocrinol. 2013, 5 (Suppl. 1), 40–44. [Google Scholar] [PubMed]
- Feldt-Rasmussen, U. Thyroid and leptin. Thyroid 2007, 17, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann-Belsing, T.; Brabant, G.; Holst, J.J.; Feldt-Rasmussen, U. Circulating leptin and thyroid dysfunction. Eur. J. Endocrinol. 2003, 149, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Ribaudo, M.C.; Zappaterreno, A.; Valeria Iannucci, C.; Leonetti, F. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin. Endocrinol. (Oxf.) 2005, 62, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Aeberli, I.; Jung, A.; Murer, S.B.; Wildhaber, J.; Wildhaber-Brooks, J.; Knöpfli, B.H.; Zimmermann, M.B. During rapid weight loss in obese children, reductions in TSH predict improvements in insulin sensitivity independent of changes in body weight or fat. J. Clin. Endocrinol. Metab. 2010, 95, 5412–5418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gertig, A.M.; Niechciał, E.; Skowrońska, B. Thyroid axis alterations in childhood obesity. Pediatr. Endocrinol. Diabetes Metab. 2012, 18, 116–119. [Google Scholar] [PubMed]
- Shalitin, S.; Yackobovitch-Gavan, M.; Phillip, M. Prevalence of thyroid dysfunction in obese children and adolescents before and after weight reduction and its relation to other metabolic parameters. Horm. Res. 2009, 71, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Pontikides, N.; Krassas, G.E. Basic endocrine products of adipose tissue in states of thyroid dysfunction. Thyroid 2007, 17, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Menendez, C.; Baldelli, R.; Camiña, J.P.; Escudero, B.; Peino, R.; Dieguez, C.; Casanueva, F.F. TSH stimulates leptin secretion by a direct effect on adipocytes. J. Endocrinol. 2003, 176, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Fontenelle, L.C.; Feitosa, M.M.; Severo, J.S.; Freitas, T.E.C.; Morais, J.B.S.; Torres-Leal, F.L.; Henriques, G.S.; do Nascimento Marreiro, D. Thyroid function in Human obesity: Underlying mechanisms. Horm. Metab. Res. 2016, 48, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Roef, G.L.; Rietzschel, E.R.; Van Daele, C.M.; Taes, Y.E.; De Buyzere, M.L.; Gillebert, T.C.; Kaufman, J.M. Triiodothyronine and free thyroid levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 2014, 24, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhanga, H.; Tang, W.; Xi, Q.; Liu, X.; Duan, Y.; Liu, C. Thyroid function and morphology in overweight and obese children and adolescents in a Chinese population. J. Pediatr. Endocrinol. Metab. 2013, 26, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Jakobs, T.C.; Mentrup, B.; Schmutzler, C.; Dreher, I.; Kohrle, J. Proinflammatory cytokines inhibit the expression and function of human type I 5′-deiodinase in HepG2 hepatocarcinoma cells. Eur. J. Endocrinol. 2002, 146, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Boelen, A.; Kwakkel, J.; Alkemade, A.; Renckens, R.; Kaptein, E.; Kuiper, G.; Wiersinga, W.M.; Visser, T.J. Induction of type e deiodinase activity in inflammatory cells of mice with chronic local inflammation. Endocrinology 2005, 146, 5128–5134. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, J.; Surovtseva, O.V.; Vries, E.M.; Strap, J.; Fliers, E.; Boelen, A. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 2014, 155, 2725–2734. [Google Scholar] [CrossRef] [PubMed]
- Chatzitomaris, A.; Hoermann, R.; Midgley, J.E.; Hering, S.; Urban, A.; Dietrich, B.; Abood, A.; Klein, H.H.; Dietrich, J.W. Thyroid Allostasis-adaptive responses ofthyrotropic feedback control to conditions of strain, stress and developmental programming. Front. Endocrinol. 2017, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Hoermann, R.; Midgley, J.E.; Giacobino, A.; Eckl, W.A.; Wahl, H.G.; Dietrich, J.W.; Lansch, R. Homeostatic equilibra between free thyroid hormones and pituitary thyrotropin are modulated by various influences including age, body mass index and treatment. Clin. Endocrinol. (Oxf.) 2014, 81, 907–915. [Google Scholar] [CrossRef] [PubMed]
Measured Variables | Obese Children | Non-Obese Children | p-Value |
---|---|---|---|
Number of subjects | 76 | 20 | |
Age (years) | 10.7 ± 0.3 (5.5–15.9) | 11.0 ± 0.47 (6.8–15.2) | >0.05 |
Blood pressure (mmHg) | |||
Systolic | 110.3 ± 1.1 (91–129) | 108 ± 1.2 (97–118) | >0.05 |
Diastolic | 68.4 ± 0.9 (53–83) | 67.6 ± 0.8 (59–74) | >0.05 |
Body mass index (kg/m2) | 31.7 ± 0.10 (30.2–33.6) | 20.2 ± 0.20 (18.4–21.0) | <0.001 |
Triiodothyronine (T3) nmol/L | 2.28 ± 0.02 (1.93–2.63) | 1.88 ± 0.04 (1.52–2.23) | <0.01 |
Thyroxine (T4) nmol/L | 94.9 ± 0.42 (87–102.2) | 98.5 ± 1.07 (88.9–108) | >0.05 |
Thyroid stimulating hormone (TSH) µIU/mL | 3.30 ± 0.02 (2.95–3.65) | 2.11 ± 0.06 (1.57–2.64) | <0.001 |
T3/T4 ratio | 0.024 ± 0.001 (0.007–0.041) | 0.019 ± 0.001 (0.010–0.028) | <0.001 |
Parameters | r-Value | p-Value |
---|---|---|
Triiodothyronine vs. body mass index | 0.230 | <0.05 |
Triiodothyronine vs. systolic blood pressure | 0.216 | =0.09 |
Triiodothyronine vs. diastolic blood pressure | 0.235 | <0.05 |
Thyroxine vs. body mass index | 0.192 | >0.1 |
Thyroxine vs. systolic blood pressure | 0.217 | =0.09 |
Thyroxine vs. diastolic blood pressure | 0.194 | >0.1 |
Thyroid stimulating hormone vs. body mass index | 0.272 | <0.02 |
Thyroid stimulating hormone vs. systolic blood pressure | 0.220 | =0.08 |
Thyroid stimulating hormone vs. diastolic blood pressure | 0.218 | =0.09 |
T3/T4 ratio vs. body mass index | 0.232 | <0.05 |
T3/T4 ratio vs. systolic blood pressure | 0.225 | =0.07 |
T3/T4 ratio vs. diastolic blood pressure | 0.231 | <0.05 |
Measured Parameters | Boys (n = 26) | Girls (n = 50) | Total (N = 76) |
---|---|---|---|
Age (years) | 10.9 ± 0.35 (7.3–14.5) | 10.8 ± 0.4 (5.2–15.9) | 10.7 ± 0.3 (5.5–15.9) |
Blood pressure (mmHg) | |||
Systolic | 111.8 ± 1.2 (99–123) | 108.5 ± 1.2 (91–125) | 110.3 ± 1.1 (91–129) |
Diastolic | 69.6 ± 0.93 (60–78) | 67.2 ± 1.1 (52–82) | 68.4 ± 0.9 (53–83) |
Body mass index (kg/m2) | 32.5 ± 0.2 (32–33) | 31.4 ± 0.25 (30–32) | 31.7 ± 0.1 (30–33) |
T3 (nmol/L) | 2.42 ± 0.08 (1.6–3.23) | 2.21 ± 0.11 (0.65–3.76) | 2.28 ± 0.02 (1.93–2.63) |
T4 (nmol/L) | 95.2 ± 1.33 (81–109) | 94.8 ± 1.56 (72–117) | 94.4 ± 0.42 (87–117) |
TSH (µIU/mL) | 3.9 ± 0.16 (2.27–5.53) | 3.0 ± 0.17 (0.6–5.5) | 3.30 ± 0.02 (2.9–3.65) |
T3/T4 ratio | 0.028 ± 0.002 (0.0076–0.048) | 0.022 ± 0.002 (0.0063–0.050) | 0.024 ± 0.001 (0.007–0.050) |
Parameters | TSH < 4.1 µIU/mL | TSH > 4.1 µIU/mL | p-Value |
---|---|---|---|
Numbers of subjects | 69 | 7 | |
Body mass index (kg/m2) | 31.6 ± 0.06 (30–33) | 31.9 ± 0.08 (31–32) | >0.05 |
T3 (nmol/L) | 2.28 ± 0.04 (1.6–2.9) | 2.27 ± 0.08 (1.8–2.7) | >0.05 |
T4 (nmol/L) | 94.4 ± 0.72 (82–106) | 95.7 ± 3.4 (77–114) | >0.05 |
TSH (µIU/mL) | 3.15 ± 0.01 (2.9–3.3) | 4.77 ± 0.04 (4.5–4.9) | 0.001 |
T3/T4 ratio | 0.024 ± 0.001 (0.007–0.04) | 0.024 ± 0.01 (0.007–0.04) | 1.0 |
Parameters | r | p-Values |
---|---|---|
Obese children | ||
TSH/triiodothyronine | 0.241 | <0.05 |
TSH/thyroxine | 0.216 | =0.08 |
TSH/T3/T4 ratio | 0.274 | <0.002 |
Non-obese children | ||
TSH/triiodothyronine | 0.198 | =0.08 |
TSH/thyroxine | 0.190 | =1.0 |
TSH/T3/T4 ratio | 0.196 | =0.09 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpae, M.A.; Obazelu, P.A. The Association of Triiodothyronine-to-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents. Med. Sci. 2017, 5, 36. https://doi.org/10.3390/medsci5040036
Emokpae MA, Obazelu PA. The Association of Triiodothyronine-to-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents. Medical Sciences. 2017; 5(4):36. https://doi.org/10.3390/medsci5040036
Chicago/Turabian StyleEmokpae, Mathias Abiodun, and Progress Arhenrhen Obazelu. 2017. "The Association of Triiodothyronine-to-Thyroxine Ratio with Body Mass Index in Obese Nigerian Children and Adolescents" Medical Sciences 5, no. 4: 36. https://doi.org/10.3390/medsci5040036