Live Bacterial Vectors—A Promising DNA Vaccine Delivery System
Abstract
:1. Introduction
2. DNA Vaccine Components
3. Live Bacterial Vector as the DNA Vaccine Carrier
4. Lactic Acid Bacteria as the DNA Vaccine Carrier
5. Salmonella spp. as the DNA Vaccine Carrier
6. Other Bacterial Live Vectors as DNA Vaccine Carriers
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Li, L.; Saade, F.; Petrovsky, N. The future of human DNA vaccines. J. Biotechnol. 2012, 162, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Koyama, S.; Takeshita, F.; Akira, S.; Ishii, K.J. Molecular and cellular mechanisms of DNA vaccines. Hum. Vaccines 2008, 4, 453–457. [Google Scholar] [CrossRef]
- Ferraro, B.; Morrow, M.P.; Hutnick, N.A.; Shin, T.H.; Lucke, C.E.; Weiner, D.B. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 2011, 53, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Liang, A.; Riaz, H.; Dong, F.; Luo, X.; Yu, X.; Han, Y. Evaluation of efficacy, biodistribution and safety of antibiotic-free plasmid encoding somatostatin genes delivered by attenuated Salmonella enterica serovar Choleraesuis. Vaccine 2014, 32, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Sheets, R.L.; Stein, J.; Manetz, T.S.; Duffy, C.; Nason, M.; Andrews, C.; Kong, W.; Nabel, G.J.; Gomez, P.L. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile Virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol. Sci. 2017, 91, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.P.; van Deventer, S.J.H.; Neirynck, S.; Peppelenbosch, M.P.; Steidler, L. A Phase I Trial with Transgenic Bacteria Expressing Interleukin-10 in Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2006, 4, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Tavel, J.A.; Martin, J.E.; Kelly, G.G.; Enama, M.E.; Shen, J.M.; Gomez, P.L.; Andrews, C.A.; Koup, R.A.; Bailer, R.T.; Stein, J.A.; et al. Safety and Immunogenicity of a Gag-Pol Candidate HIV-1 DNA Vaccine Administered by a Needle-Free Device in HIV-1-Seronegative Subjects. J. Acquir. Immune Defic. Syndr. 2007, 44, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef]
- Yurina, V. DNA Vaccine: Mechanism of Action and factors which increase its efficacy. Vaccine 2018, 7, 92–100. [Google Scholar]
- Doria-Rose, N.A.; Haigwood, N.L. DNA vaccine strategies: Candidates for immune modulation and immunization regimens. Methods 2003, 31, 207–216. [Google Scholar] [CrossRef]
- Denis-Mize, K.S.; Dupuis, M.; Singh, M.; Woo, C.; Ugozzoli, M.; Hagan, D.T.; Donnelly, J.J.; Ott, G.; McDonald, D.M. Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell. Immunol. 2003, 225, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Obata, C.; Hisaeda, H.; Ishii, K.; Murata, S.; Chiba, T.; Tanaka, K.; Li, Y.; Furue, M.; Chou, B.; et al. A novel DNA vaccine based on ubiquitin-proteasome pathway targeting “self”-antigens expressed in melanoma/melanocyte. Gene Ther. 2005, 12, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, D.; Iurescia, S.; Rinaldi, M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat. Anticancer Drug Discov. 2014, 9, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.J.; Sagar, S.; Murphy, J.; Chartrain, M. Industrial scale production of plasmid DNA for vaccine and gene therapy: Plasmid design, production, and purification. Enzyme Microb. Technol. 2003, 33, 865–883. [Google Scholar] [CrossRef]
- Greenland, J.R.; Letvin, N.L. Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007, 25, 3731–3741. [Google Scholar] [CrossRef] [PubMed]
- De Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A.J.; Swartz, M. A; Hubbell, J. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA 2013, 110, 19902–19907. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yang, X.; Cai, D.; Mao, D.; Wu, J.; Zong, L.; Liu, J. Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of Atherosclerosis. Vaccine 2008, 26, 3727–3734. [Google Scholar] [CrossRef] [PubMed]
- Gardlı, R. Bacteria in gene therapy: Bactofection versus alternative gene therapy. Gene Ther. 2006, 13, 101–105. [Google Scholar]
- Celec, P. Gene therapy using bacterial vectors. Front. Biosci. 2017, 22, 4473. [Google Scholar] [CrossRef]
- Gardlik, R.; Fruehauf, J.H. Bacterial vectors and delivery systems in cancer therapy. IDrugs 2010, 13, 701–706. [Google Scholar] [PubMed]
- Chamcha, V.; Jones, A.; Quigley, B.R.; Scott, J.R.; Amara, R.R. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus pilus Induces Strong Mucosal Immunity in the Gut. J. Immunol. 2015, 195, 5025–5034. [Google Scholar] [CrossRef] [PubMed]
- Liaw, Y.-W.; Lin, C.-Y.; Lai, Y.-S.; Yang, T.-C.; Wang, C.-J.; Whang-Peng, J.; Liu, L.F.; Lin, C.-P.; Nieh, S.; Lu, S.-C.; et al. A Vaccine Targeted at CETP Alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic Steatohepatitis in rabbit. PLoS ONE 2014, 9, e111529. [Google Scholar] [CrossRef] [PubMed]
- Hauer, A.D.; van Puijvelde, G.H.M.; Peterse, N.; de Vos, P.; van Weel, V.; van Wanrooij, E.J.A.; Biessen, E.A.L.; Quax, P.H.A.; Niethammer, A.G.; Reisfeld, R.; et al. Vaccination against VEGFR2 attenuates initiation and progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2050–2057. [Google Scholar] [CrossRef] [PubMed]
- Guimarâes, V.D.; Innocentin, S.; Lefèvre, F.; Azevedo, V.; Wal, J.M.; Langella, P.; Chatel, J.M. Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl. Environ. Microbiol. 2006, 72, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Becker, P.D.; Noerder, M.; Guzmán, C.A.; Becker, P.D.; Noerder, M.; Guzmán, C.A. Delivery vehicles Bacteria as DNA vaccine delivery vehicles ND ES RIB. Hum. Vaccines Immunother. 2008, 4, 189–202. [Google Scholar]
- Da Silva, A.J.; Zangirolami, T.C.; Novo-Mansur, M.T.M.; de Campos Giordano, R.; Martins, E.A.L. Live bacterial vaccine vectors: An overview. Braz. J. Microbiol. 2014, 45, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Williams, J. Vector Design for improved DNA Vaccine efficacy, safety and production. Vaccines 2013, 1, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Pringle, I.A.; Hyde, S.C. Progress and Prospects: The design and production of plasmid vectors. Gene Ther. 2009, 16, 165–171. [Google Scholar]
- Garmory, H.S.; Brown, K.A.; Titball, R.W. DNA vaccines: Improving expression of antigens. Genet. Vaccines Ther. 2003, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.A.; Carnes, A.E.; Hodgson, C.P. Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 2009, 27, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Darquet, M.; Rangara, R.; Kreiss, P.; Schwartz, B.; Naimi, S.; Delaère, P.; Crouzet, J.; Scherman, D. Minicircle: An improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 1999, 6, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.L.; Prather, K.J. Design of plasmid DNA constructs for vaccines. Methods Mol. Med. 2006, 127, 11–22. [Google Scholar] [PubMed]
- Williams, J.; Luke, J.; Johnson, L.; Hodgson, C. pDNAVACCultra vector family: High throughput intracellular targeting DNA vaccine plasmids. Vaccine 2006, 24, 4671–4676. [Google Scholar] [CrossRef] [PubMed]
- Glenting, J.; Wessels, S. Ensuring safety of DNA vaccines. Microb. Cell Fact. 2005, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Williams, J. Improving DNA Vaccine performance through vector design. Curr. Gene Ther. 2014, 14, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Vandermeulen, G.; Marie, C.; Scherman, D.; Préat, V. New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol. Ther. 2011, 19, 1942–1949. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.H.; Mairhofer, J. Marker-free plasmids for biotechnological applications—Implications and perspectives. Trends Biotechnol. 2013, 31, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Bringmann, P.; McClary, J.; Jones, P.P.; Manzana, W.; Zhu, Y.; Wang, S.; Liu, Y.; Harvey, S.; Madlansacay, M.R.; et al. High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr. Purif. 2006, 45, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.L.; Mizuguchi, H.; Ishii-Watabe, A.; Uchida, E.; Mayumi, T.; Hayakawa, T. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 2001, 272, 149–156. [Google Scholar] [CrossRef]
- Garg, S.; Oran, A.E.; Hon, H.; Jacob, J. The hybrid cytomegalovirus enhancer/chicken beta-actin promoter along with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protective efficacy of DNA vaccines. J. Immunol. 2004, 173, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Kos, S.; Tesic, N.; Kamensek, U.; Blagus, T.; Cemazar, M.; Kranjc, S.; Lavrencak, J.; Sersa, G. Improved Specificity of gene electrotransfer to skin using pDNA Under the control of collagen tissue-specific promoter. J. Membr. Biol. 2015, 248, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Itai, K.; Sawamura, D.; Meng, X.; Hashimoto, I. Keratinocyte gene therapy: Inducible promoters and in vivo control of transgene expression. Clin. Exp. Dermatol. 2001, 26, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Vanniasinkam, T.; Reddy, S.T.; Ertl, H.C.J. DNA immunization using a non-viral promoter. Virology 2006, 344, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.F.; Thomsen, L.L. Technical issues in construction of nucleic acid vaccines. Methods 2003, 31, 199–206. [Google Scholar] [CrossRef]
- Barouch, D.H.; Yang, Z.; Kong, W.; Korioth-Schmitz, B.; Sumida, S.M.; Truitt, D.M.; Kishko, M.G.; Arthur, J.C.; Miura, A.; Mascola, J.R.; et al. A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J. Virol. 2005, 79, 8828. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Guzmán, C.A. Use of live bacterial vaccine vectors for antigen delivery: Potential and limitations. Vaccine 2001, 19, 1573–1580. [Google Scholar] [CrossRef]
- Cong, H.; Yuan, Q.; Zhao, Q.; Zhao, L.; Yin, H.; Zhou, H.; He, S.; Wang, Z. Comparative efficacy of a multi-epitope DNA vaccine via intranasal, peroral, and intramuscular delivery against lethal Toxoplasma gondii infection in mice. Parasites Vectors 2014, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.B.; Santiago, M.; Azevedo, P.; Diniz, T.; Saraiva, L. Use of bacteria in DNA vaccine delivery. Vaccine 2013, 12, 1993–2003. [Google Scholar]
- Locht, C. Live bacterial vectors for intranasal delivery of protective antigens. Pharm. Sci. Technol. Today 2000, 3, 121–128. [Google Scholar] [CrossRef]
- Bermúdez-Humarán, L.G. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum. Vaccines 2009, 5, 264–267. [Google Scholar] [CrossRef]
- Shata, M.T.; Stevceva, L.; Agwale, S.; Lewis, G.K.; Hone, D.M. Recent advances with recombinant bacterial vaccine vectors. Mol. Med. Today 2000, 6, 66–71. [Google Scholar] [CrossRef]
- De Azevedo, M.; Meijerink, M.; Taverne, N.; Pereira, V.B.; LeBlanc, J.G.; Azevedo, V.; Miyoshi, A.; Langella, P.; Wells, J.M.; Chatel, J.M. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. Vaccine 2015, 33, 4807–4812. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.; Van, T.; Smooker, P. Live-attenuated Bacterial vectors: Tools for Vaccine and therapeutic agent delivery. Vaccines 2015, 3, 940–972. [Google Scholar] [CrossRef] [PubMed]
- Al-mariri, A.; Tibor, A.; Lestrate, P.; Bolle, X.; Letesson, J.; Mertens, P. Yersinia enterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortus Bacterioferritin or P39 Antigen Yersinia enterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortus Bacterioferritin or P39 Antigen. Infect. Immun. 2002, 70, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Shata, M.T.; Hone, D.M. Vaccination with a Shigella DNA Vaccine Vector Induces Antigen-Specific CD8 + T Cells and Antiviral Protective Immunity Vaccination with a Shigella DNA Vaccine Vector Induces Antigen-Specific CD8+ T Cells and Antiviral Protective Immunity. J. Virol. 2001, 75, 9665–9670. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Hong, M.; Ulmer, J.B. Immunogenicity of an HIV-1 gag DNA vaccine carried by attenuated Shigella. Vaccine 2003, 21, 644–648. [Google Scholar] [CrossRef]
- Sinha, S.; Kuo, C.Y.; Ho, J.K.; White, P.J.; Jazayeri, J.A.; Pouton, C.W. A suicidal strain of Listeria monocytogenes is effective as a DNA vaccine delivery system for oral administration. Vaccine 2017, 35, 5115–5122. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-humarán, L.G.; Kharrat, P.; Chatel, J.-M.; Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 2011, 10, S4. [Google Scholar] [CrossRef] [PubMed]
- Pontes, D.S.; de Azevedo, M.S.P.; Chatel, J.-M.; Langella, P.; Azevedo, V.; Miyoshi, A. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expr. Purif. 2011, 79, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Wyszyńska, A.; Kobierecka, P.; Bardowski, J.; Jagusztyn-Krynicka, E.K. Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl. Microbiol. Biotechnol. 2015, 99, 2967–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, D.; Azevedo, M.; Innocentin, S.; Blugeon, S.; Lefévre, F.; Azevedo, V.; Miyoshi, A.; Courtin, P.; Chapot-Chartier, M.P.; Langella, P.; et al. Immune response elicited by DNA vaccination using Lactococcus lactis is modified by the production of surface exposed pathogenic protein. PLoS ONE 2014, 9, e84509. [Google Scholar] [CrossRef] [PubMed]
- Innocentin, S.; Guimarães, V.; Miyoshi, A.; Azevedo, V.; Langella, P.; Chatel, J.M.; Lefèvre, F. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Appl. Environ. Microbiol. 2009, 75, 4870–4878. [Google Scholar] [CrossRef] [PubMed]
- Yagnik, B.; Sharma, D.; Padh, H.; Desai, P. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY. Microbiol. Immunol. 2017, 61, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, W.A.H.; Hensel, M. Salmonella enterica as a vaccine carrier. Future Microbiol. 2012, 7, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, V.; Maciag, P.C.; Rivera, S.; Wallecha, A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng. Bugs 2010, 1, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Cheminay, C.; Hensel, M. Rational design of Salmonella recombinant vaccines. Int. J. Med. Microbiol. 2008, 298, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kong, Q.; Curtiss, R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 2013, 58, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, K.W.; Craft, N.; Miller, J.F. Listeria as a vaccine vector. Microbes Infect. 2007, 9, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Shigemori, S.; Watanabe, T.; Kudoh, K.; Ihara, M.; Nigar, S.; Yamamoto, Y.; Suda, Y.; Sato, T.; Kitazawa, H.; Shimosato, T. Oral delivery of Lactococcus lactis that secretes bioactive HEME oxygenase-1 alleviates development of acute colitis in mice. Microb. Cell Fact. 2015, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Vesa, T.; Pochart, P.; Marteau, P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 2000, 14, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.D.O.; Foureaux, R.D.C.; Araujo, T.S.; Peconick, P.; Zangeronimo, M.G.; Pereira, L.J. Effect of Probiotic administration on the immune response: A Systematic review of experimental models in rats. Braz. Arch. Biol. Technol. 2012, 55, 685–694. [Google Scholar] [CrossRef]
- Yagnik, B.; Padh, H.; Desai, P. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microbes Infect. 2016, 18, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Mancha-Agresti, P.; Drumond, M.M.; Carmo, F.L.R.; Santos, M.M.; Santos, J.S.C.; Venanzi, F.; Chatel, J.-M.; Leclercq, S.Y.; Azevedo, V. A New broad range plasmid for DNA Delivery in Eukaryotic Cells using lactic acid Bacteria: In Vitro and in vivo assays. Mol. Ther. 2017, 4, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Pavlovaa, S.I.; Ji, X.; Jin, L.; Spear, G. A novel plasmid for delivering genes into mammalian cells with noninvasive food and commensal lactic acid bacteria. Plasmid 2011, 65, 8–14. [Google Scholar]
- Chatel, J.-M.; Pothelune, L.; Ah-Leung, S.; Corthier, G.; Wal, J.-M.; Langella, P. In vivo transfer of plasmid from food-grade transiting Lactococci to murine epithelial cells. Gene Ther. 2008, 15, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, V.; Innocentin, S.; Chatel, J.-M.; Lefèvre, F.; Langella, P.; Azevedo, V.; Miyoshi, A. A new plasmid vector for DNA delivery using Lactococci. Genet. Vaccines Ther. 2009, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Brovold, M.; Koeneman, B.A.; Clark-Curtiss, J.; Curtiss, R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc. Natl. Acad. Sci. USA 2012, 109, 19414–19419. [Google Scholar] [CrossRef] [PubMed]
- Petrovan, R.J.; Kaplan, C.D.; Reisfeld, R.; Curtiss, L.K. DNA vaccination against VEGF receptor 2 reduces atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Hauer, A.D.; Habets, K.L.L.; van Wanrooij, E.J.; de Vos, P.; Krueger, J.; Reisfeld, R.; van Berkel, T.J.C.; Kuiper, J. Vaccination against TIE2 reduces atherosclerosis. Atherosclerosis 2009, 204, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Wanrooij, E.J.A.; Van Vos, P.; De Bixel, M.G.; Vestweber, D.; Berkel, T.J.C.; Van Kuiper, J. Vaccination against CD99 inhibits Atherogenesis in low-density lipoprotein receptor-deficient mice. Cardiovasc. Res. 2008, 78, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Im, E.-J.; Borducchi, E.N.; Provine, N.M.; McNally, A.G.; Li, S.; Frankel, F.R.; Barouch, D.H. An attenuated Listeria monocytogenes Vector primes more potent simian immunodeficiency virus-specific mucosal immunity than DNA Vaccines in mice. J. Virol. 2013, 87, 4751–4755. [Google Scholar] [CrossRef] [PubMed]
- Pasetti, M.F.; Barry, E.M.; Losonsky, G.; Singh, M.; Medina-Moreno, S.M. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J. Virol. 2003, 77, 5209–5217. [Google Scholar] [CrossRef] [PubMed]
- Dowd, G.C.; Bahey-el-din, M.; Casey, P.G.; Joyce, S.A.; Hill, C.; Gahan, C.G.M. Listeria monocytogenes mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Hum. Vaccines Immunother. 2016, 12, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Nagata, T.; Tanaka, T.; Kim, Y.H.; Uchijima, M.; Ohara, N.; Nakamura, S.; Okada, M.; Koide, Y. Induction of Protective cellular immunity against Mycobacterium tuberculosis by Recombinant attenuated self-destructing Listeria monocytogenes Strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect. Immun. 2004, 72, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, D.I.M.; Schoen, C.U.; Goebel, W.; Pilgrim, S. Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect. Immun. 2006, 74, 3946–3957. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Advantages | Limitations | Strategies | Ref. |
---|---|---|---|---|
Lactococcus lactis |
|
|
| [50,60,61,62,63] |
Salmonella spp. |
|
|
| [64,65,66,67] |
Listeria monocytogenes |
|
|
| [25,68] |
Shigella spp. |
|
| [55,56] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurina, V. Live Bacterial Vectors—A Promising DNA Vaccine Delivery System. Med. Sci. 2018, 6, 27. https://doi.org/10.3390/medsci6020027
Yurina V. Live Bacterial Vectors—A Promising DNA Vaccine Delivery System. Medical Sciences. 2018; 6(2):27. https://doi.org/10.3390/medsci6020027
Chicago/Turabian StyleYurina, Valentina. 2018. "Live Bacterial Vectors—A Promising DNA Vaccine Delivery System" Medical Sciences 6, no. 2: 27. https://doi.org/10.3390/medsci6020027
APA StyleYurina, V. (2018). Live Bacterial Vectors—A Promising DNA Vaccine Delivery System. Medical Sciences, 6(2), 27. https://doi.org/10.3390/medsci6020027