Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Collection
2.3. Hormonal Assay and Toxic Metals Estimation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Acknowledgments
Conflict of Interest
References
- Onitilo, A.; Engel, J.M.; Greenlee, T.R.; Mukesh, B.N. Breast cancer subtypes based on estrogen receptor, progesterone receptor and human epithelial receptor 2 expression. Comparison of clinicopathologic features and survival. Clin. Med. Res. 2009, 7, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.S.; Baehner, F.L.; Gray, R.P.; Childs, B.H.; Maddala, T.; Liu, M.L.; Rowley, S.C.; Shak, S.; Perez, E.A.; Shulman, L.J.; et al. Estrogen and progesterone receptors status in ECOG 2197; Comparison of immunohistochemical by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central Laboratory. J. Clin. Oncol. 2008, 26, 2473–2481. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Tsodikov, A.; Bauer, K.R.; Parise, C.A.; Caggiano, V. The role of human epithelial growth factor receptor 2 in the survival of women with estrogen and progesterone receptor negative, invasive breast cancer. The California cancer registry 1999–2004. Cancer 2008, 112, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Umayahara, Y.; Kawamori, R.; Watada, H.; Imano, E.; Iwama, N.; Morishima, T.; Yamasaki, Y.; Kajimoto, Y.; Kamada, T. Estrogen regulation of the insulin-like growth factor 1 gene transcription involves and AP-1 enhancer. J. Biol. Chem. 1994, 269, 16433–16442. [Google Scholar] [PubMed]
- Horwitz, K.B.; Jackson, T.A.; Bain, D.L.; Richer, J.K.; Takimoto, G.S.; Tung, L. Nuclear receptor co-activators and co-repressors. Mol. Endocrinol. 1996, 10, 1167–1177. [Google Scholar] [PubMed]
- Ho, C.C.K.; Rohaizak, M.; Zulkifli, S.Z.; Siti-Aishah, M.A.; Nor-Aini, U.; Sharifah-Noor-Akmal, S.H. Serum sex hormone levels in pre and postmenopausal breast cancer patients. Singap. Med. J. 2009, 50, 513–518. [Google Scholar]
- Russo, I.H.; Russo, J. Role of hormones in mammary cancer initiation and progression. J. Mammary Gland Biol. Neoplast. 1998, 3, 349–361. [Google Scholar]
- Brisken, C. Endocrine disruptors and breast cancer. Chimia 2008, 62, 406–409. [Google Scholar] [CrossRef]
- Yager, J.D.; Davidson, N.E. Mechanisms of disease: Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mi, M.; Wang, J.; Wei, N.; Zhang, Q.; Zhu, J.; Yang, S.; Guo, B.; Xu, J.; Yang, X. Does the increase of endogenous steroid hormone levels also affect breast cancer risk in Chinese women? A case-control study in Chongqing, China. Int. J. Cancer 2009, 124, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.; Charles-Davies, M.; Anetor, J.; Adeyinka, A. Sex hormones, oestrogen receptor, progesterone receptor and human epithelial receptor 2 expressions in pre and postmenopausal sub-Saharan African women with breast cancer. J. Cancer Tumour Int. 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Tunizicker-Dun, M.; Maizels, E.T. FSH signaling pathways in immature granulose cells that regulate target gene expression; branching out from protein kinase A. Cell Signal. 2006, 18, 1351–1359. [Google Scholar]
- Fan, H.Y.; Cheng, X.; Richards, J.S. FSH induces multiple signaling cascades; evidence that activation of Rous sarcoma oncogene RAS and epidermal growth factor receptor are critical for differentiation. Mol. Endocrinol. 2007, 21, 1940–1957. [Google Scholar]
- Tosovic, A.; Bondesson, A.G.; Bonseson, L.; Ericsson, U.B.; Malm, J.; Manjer, J. Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women. Breast Cancer Res. 2010, 12, R33. [Google Scholar] [CrossRef] [PubMed]
- Tosovic, A.; Becker, C.; Bondeson, A.G.; Ericsson, U.B.; Malm, J.; Manjer, J. Prospectively measured thyroid hormone and thyroid peroxidase antibodies in relation to breast cancer risk. Int. J. Cancer 2012, 131, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P., Jr.; Gammon, M.D.; Terry, M.B.; Agrawal, M.; Zhang, F.F.; Teitelbaum, S.L.; Eng, S.M.; Gaudet, M.M.; Neugut, A.I.; Santella, R.M. Relationship between urinary 15-F2t- Isoprostane and 8-Oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol. Biomark. Prev. 2006, 15, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Parise, C.A.; Caggiano, V. Breast cancer survival defined by estrogen receptor, progesterone receptor and human epithelial receptor 2 subtypes and a surrogate classification according to tumour grade and immunohistochemical biomarkers. J. Cancer Epidemiol. 2014, 2014, 469251. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumors. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Costa, A.; Senkus, E.; Aapro, M.; Andre, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.; Biganzoli, L.; Cardoso, M.J.; et al. 3rd ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 3). Ann. Oncol. 2017, 28, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Assi, H.A.; Khoury, K.E.; Dbouk, H.; Khalil, L.E.; Mouhieddine, T.H.; El Saghir, N.S. Epidemiology and prognosis of breast cancer in young women. J. Thorac. Dis. 2013, 5, S2–S8. [Google Scholar] [PubMed]
- Makanjuola, S.B.L.; Ayodele, S.D.; Javid, F.A.; Obafunwa, J.O.; Oludara, M.A.; Popoola, A.O. Breast cancer receptor status assessment and clinicopathological association in Nigerian women: A retrospective analysis. J. Cancer Res. Therapy 2014, 2, 122–127. [Google Scholar]
- Farhat, G.N.; Cummings, S.R.; Chlebowski, R.T.; Parimi, N.; Cauley, J.A.; Rohan, T.E.; Huang, A.J.; Vitolins, M.; Hubbell, F.A.; Manson, J.E.; et al. Sex hormone levels and risk of estrogen receptor negative and estrogen positive breast cancer. J. Natl. Cancer Inst. 2011, 103, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Han, W.; Moon, H.G.; Ahn, S.K.; Kim, J.; Lee, J.W.; Kim, M.K.; Kim, T.; Noh, D.Y. Prognostic effects of preoperative serum estradiol level in postmenopausal breast cancer. BMC Cancer 2013, 13, 503. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Sun, P.; Zhang, Y.; You, X.; Li, P.; Wang, T. Estrogen stimulated migration and invasion of estrogen receptor negative breast cancer cells involves ezrin-dependent cross talk between G protein-coupled receptor 30 and estrogen receptor beta signaling. Steroids 2016, 111, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.B.; Proia, D.; Cingoz, O.; Weremowics, J.; Naber, S.P.; Weinberg, R.A.; Kuperwasser, C. Systemic stromal effects of estrogen promote the growth of estrogen receptor negative cancers. Cancer Res. 2007, 67, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.A.; Yee, D. Progesterone and breast cancer. Women’s Health 2008, 4, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Rossmanith, W.G.; Scherbaum, W.A.; Lauritzen, C. Gonadotropin secretion during aging in postmenopausal women. Neuroendocrinology 1991, 54, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Siraj, A.; Desestret, V.; Antoine, M.; Fromont, G.; Huerre, M.; Sanson, M. Expression of FSHR by the vascular endothelium in tumour metastasis. BMC Cancer 2013, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.V.; Nieves, K.; Suarez, E.; Ortiz, A.P.; Rivera, A.; Romaguera, J. Thyroid-stimulating hormone and follicle-stimulating hormone status in Hispanic women during the menopause transition. Ethn. Dis. 2008, 18, S2-230-4. [Google Scholar] [PubMed]
- Tanaka, Y.; Kuwabara, K.; Okazaki, T.; Fujita, T.; Oizumi, I.; Kaiho, S.; Ogata, E. Gonadotropins stimulate growth of MCF-7 human breast cancer cells by promoting intracellular conversion of adrenal androgen to estrogens. Oncology 2000, 59, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, Y.; Huang, Y.; Long, J.; Wan, F.; Zhan, S. Serum follicle stimulating hormone level is associated with human epidermal growth factor receptor type 2 and Ki67 expression in postmenopausal females with breast cancer. Oncol. Lett. 2013, 6, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Arvold, N.D.; Taghian, A.G.; Niemierko, A.; Abi Raad, R.F.; Sreedhara, M.; Nguyen, P.L.; Bellon, J.R.; Wong, J.S.; Smith, B.L.; Harris, J.R. Age, Breast Cancer Subtype Approximation, and Local Recurrence After Breast-Conserving Therapy. J. Clin. Oncol. 2011, 29, 3885–3891. [Google Scholar] [CrossRef] [PubMed]
- Voduc, K.D.; Cheang, M.C.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol. 2010, 28, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.M. Endocrine Resistance in Breast Cancer. New J. Sci. 2014, 2014, 390618. [Google Scholar] [CrossRef]
- Mourouzis, I.; Tzovaras, A.; Armonis, B.; Ardavanis, A.; Skondra, M.; Misitzis, J.; Pectasides, D.; Pantos, C. Are thyroid hormone and tumor cell proliferation in human breast cancers positive for HER2 associated? Int. J. Endocrinol. 2015, 2015, 765406. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mir, M.; Bashir, S.; Hassan, T. Impact of serum thyroid hormones and estrogen status on the risk of breast cancer in Kashmiri women. J. Cell Sci. Ther. 2011, 2, 113. [Google Scholar] [CrossRef]
- Ying, S.; Myers, K.; Bottomley, S.; Helleday, T.; Bryant, H.E. BRCA2- dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells. Nucleic Acid Res. 2009, 37, 5103–5113. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tokar, E.J.; Waalkes, M.P. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation. Arch. Toxicol. 2014, 88, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Davey, J.C.; Nomikos, A.P.; Wungjiranirun, M.; Sherman, J.R.; Ingram, L.; Batki, C.; Lariviere, J.P.; Hamilton, J.W. Arsenic as an endocrine disruptor: Arsenic disrupts retinoic acid receptor and thyroid hormone receptor-mediated gene regulation and thyroid hormone mediated amphibian tail metamorphosis. Environ. Health Perspect. 2008, 116, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.J.; Xiang, P.; Luo, J.; Hong, H.; Lin, H.; Li, H.B.; Ma, L.Q. Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. Environ. Int. 2016, 95, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Wan, Y.J.; Kamyab, S.; Okuda, H.; Sokol, R.Z. Effects of toxic levels of lead on gene regulation in the male axis: Increase in mRNA and intracellular stores of gonadotrophs within the central nervous system. Biol. Reprod. 1994, 50, 802–811. [Google Scholar] [CrossRef] [PubMed]
Parameter | ER− (n = 69) | ER+ (n = 10) | Postmeno ER− (n = 17) | Postmeno ER+ (n = 10) | p1-value | p2-value |
---|---|---|---|---|---|---|
E2 (pmol/L) | 295.70 (170.71–480.33) | 98.66 (82.29–220.79) | 140.68 (120.60–236.79) | 95.42 (81.16–193.97) | 0.001 * | 0.038 * |
Prog (nmol/L) | 2.08 (1.33–7.33) | 1.29 (0.83–1.74) | 1.54 (1.11–2.50) | 1.19 (0.82–1.63) | 0.010 * | 0.153 |
LH (IU/L) | 8.70 (4.30–16.40) | 24.75 (19.60–33.20) | 19.20 (15.60–34.80) | 26.10 (18.60–34.20) | 0.000 * | 0.225 |
FSH (IU/L) | 8.20 (5.18–18.26) | 77.77 (53.55–98.85) | 43.70 (29.75–58.30) | 78.14 (54.20–103.50) | 0.000 * | 0.038 * |
FT3 (pmol/L) | 3.18 (2.75–3.53) | 3.30 (2.81–3.60) | 3.12 (2.50–3.54) | 3.31 (2.79–3.65) | 0.585 | 0.666 |
FT4 (pmol/L) | 16.96 (14.94–20.36) | 16.38 (15.35–20.26) | 17.95 (15.83–20.28) | 15.84 (15.17–20.48) | 0.863 | 0.535 |
TSH (mIU/L) | 1.43 (0.86–2.37) | 1.12 (0.83–1.45) | 1.54 (1.07–1.88) | 1.16 (0.79–1.70) | 0.381 | 0.269 |
Pb (µg/dL) | 5.22 (4.13–6.46) | 5.75 (5.54–6.88) | 5.22 (4.21–6.32) | 5.82 (5.40–7.07) | 0.143 | 0.112 |
Cd (µg/dL) | 0.04 (0.03–0.05) | 0.04(0.04–0.05) | 0.04 (0.03–0.05) | 0.05 (0.04–0.06) | 0.284 | 0.222 |
As (µg/dL) | 0.27 (0.24–0.36) | 0.36(0.22–0.42) | 0.30 (0.25–0.35) | 0.40 (0.20–0.44) | 0.416 | 0.808 |
Parameter | PR− (n = 71) | PR+ (n = 8) | Postmeno PR− (n = 19) | Postmeno PR+ (n = 8) | p1-value1 | p2-value |
---|---|---|---|---|---|---|
E2 (pmol/L) | 290.53 (169.77–477.70) | 95.42 (81.16–193.97) | 140.68 (120.60–236.79) | 95.42 (81.16–193.97) | 0.000 * | 0.038 * |
Prog (nmol/L) | 2.06 (1.31–5.91) | 1.19 (0.82–1.63) | 1.54 (1.11–2.50) | 1.19 (0.82–1.63) | 0.010 * | 0.153 |
LH (IU/L) | 8.70 (4.20–15.90) | 26.10 (18.60–34.20) | 19.20 (15.60–34.80) | 26.10 (18.60–34.20) | 0.000 * | 0.225 |
FSH (IU/L) | 8.30 (5.24–19.08) | 78.14 (54.20–103.50) | 43.70 (29.75–58.30) | 78.14 (54.20–103.50) | 0.000 * | 0.038 * |
FT3 (pmol/L) | 3.14 (2.74–3.49) | 3.31 (2.79–3.65) | 3.12 (2.50–3.54) | 3.31 (2.79–3.65) | 0.506 | 0.666 |
FT4 (pmol/L) | 16.96 (14.87–20.01) | 15.84 (15.17–20.48) | 17.95 (15.83–20.28) | 15.84 (15.17–20.48) | 0.808 | 0.535 |
TSH (mIU/L) | 1.47 (0.88–2.39) | 1.16 (0.77–1.70) | 1.54 (1.07–1.88) | 1.16 (0.79–1.70) | 0.385 | 0.269 |
Pb (µg/dL) | 5.22 (4.13–6.54) | 5.82 (5.40–7.07) | 5.22 (4.21–6.33) | 5.82 (5.40–7.07) | 0.152 | 0.112 |
Cd (µg/dL) | 0.04 (0.03–0.05) | 0.05 (0.04–0.06) | 0.04 (0.03–0.05) | 0.05 (0.04–0.06) | 0.280 | 0.222 |
As (µg/dL) | 0.27 (0.24–0.36) | 0.4 (0.20–0.44) | 0.30 (0.25–0.35) | 0.36 (0.20–0.44) | 0.583 | 0.808 |
Parameter | HER-2− (n = 64) | HER-2+ (n = 15) | p-value |
---|---|---|---|
E2 (pmol/L) | 251.80 (147.30–463.05) | 219.64 (136.42–376.33) | 0.803 |
Prog (nmol/L) | 1.80 (1.33–6.06) | 1.45 (0.83–2.69) | 0.049* |
LH (IU/L) | 9.33 (4.60–16.78) | 16.60 (7.20–22.00) | 0.179 |
FSH (IU/L) | 8.35 (5.35–22.85) | 35.20 (10.03–77.40) | 0.010* |
FT3 (pmol/L) | 3.19 (2.80–3.53) | 2.75 (2.44–3.45) | 0.171 |
FT4 (pmol/L) | 17.05 (14.96–20.85) | 16.64 (14.79–17.77) | 0.255 |
TSH (mIU/L) | 1.50 (0.88–2.35) | 1.16 (0.85–1.63) | 0.446 |
Pb (µg/dL) | 5.53 (4.21–6.62) | 5.62 (3.70–5.99) | 0.465 |
Cd (µg/dL) | 0.04 (0.03–0.05) | 0.04 (0.03–0.05) | 0.335 |
As (µg/dL) | 0.30 (0.24–0.36) | 0.24 (0.24–0.34) | 0.384 |
Group | Dependent | Predictors | β | p-Value |
---|---|---|---|---|
Premenopausal ER− | ||||
R2 = 0.611, F = 7.686, p = 0.000 | E2 | Prog | 0.724 | 0.000 |
TSH | 0.260 | 0.017 | ||
R2 = 0.639, F = 8.645, p = 0.000 | Prog | FT3 | 0.246 | 0.013 |
TSH | −0.272 | 0.009 | ||
E2 | 0.673 | 0.000 | ||
As | −0.216 | 0.033 | ||
R2 = 0.138, F = 0.781, p = 0.635 | FT4 | As | −0.330 | 0.035 |
R2 = 0.296, F = 2.058, p = 0.055 | TSH | As | −0.305 | 0.030 |
FSH | 0.281 | 0.037 | ||
Postmenopausal ER− | ||||
R2 = 0.894, F = 6.589, p = 0.011 | LH | Pb | −4.843 | 0.003 |
Cd | 5.045 | 0.004 | ||
Premenopausal PR− | ||||
R2 = 0.693, F = 10.547, p = 0.000 | E2 | TSH | 0.320 | 0.002 |
Prog | 0.843 | 0.000 | ||
R2 = 0.227, F = 1.374, p = 0.231 | FT3 | Prog | 0.655 | 0.010 |
R2 = 0.354, F = 2.558, p = 0.019 | TSH | As | −0.304 | 0.028 |
Prog | −0.728 | 0.001 | ||
E2 | 0.673 | 0.002 | ||
R2 = 0.730, F = 12.637, p = 0.000 | Prog | As | −0.188 | 0.036 |
E2 | 0.741 | 0.000 | ||
FT3 | 0.229 | 0.010 | ||
TSH | −0.301 | 0.001 | ||
Postmenopausal PR− | ||||
LH | Pb | −4.843 | 0.003 | |
Cd | 5.045 | 0.004 | ||
Premenopausal HER-2− | ||||
R2 = 0.284, F = 1.498, p = 0.188 | FT3 | Prog | 0.650 | 0.009 |
R2 = 0.329, F = 1.848, p = 0.095 | TSH | Prog | −0.677 | 0.005 |
E2 | 0.685 | 0.003 | ||
Postmenopausal HER-2− | ||||
R2 = 0.839, F = 5.777, p = 0.006 | LH | Pb | −6.995 | 0.000 |
Cd | 6.803 | 0.000 | ||
FSH | 0.483 | 0.015 | ||
R2 = 0.883, F = 8.418, p = 0.001 | Prog | E2 | 0.896 | 0.000 |
R2 = 0.679, F = 2.346, p = 0.100 | FSH | LH | 0.963 | 0.015 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajayi, O.; Charles-Davies, M.; Anetor, J.; Ademola, A. Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers. Med. Sci. 2018, 6, 37. https://doi.org/10.3390/medsci6020037
Ajayi O, Charles-Davies M, Anetor J, Ademola A. Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers. Medical Sciences. 2018; 6(2):37. https://doi.org/10.3390/medsci6020037
Chicago/Turabian StyleAjayi, Olulope, Mabel Charles-Davies, John Anetor, and Adeyinka Ademola. 2018. "Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers" Medical Sciences 6, no. 2: 37. https://doi.org/10.3390/medsci6020037