Feasibility of Antimicrobial Stewardship (AMS) in Critical Care Settings: A Multidisciplinary Approach Strategy
Abstract
:1. Introduction
2. Methods
2.1. Patient Recruitment and Data Collection
2.2. Primary Objective
2.3. Secondary Objectives
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Microbiological Results
3.3. Antibacterial Consumption and Duration of Treatment
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; Jose, A.S.; Torres, A. Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Torres, A.; Rinaudo, M.; Terraneo, S.; de Rosa, F.; Ramirez, P.; Diaz, E.; Fernández-Barat, L.; Li bassi, G.L.G.L.; Ferrer, M. Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organi. J. Infect. 2015, 70, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Zilahi, G.; Artigas, A.; Martin-Loeches, I. What’s new in multidrug-resistant pathogens in the ICU? Ann. Intensive Care 2016, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Kluger, Y.; Ansaloni, L.; Carlet, J.; Brink, A.; Hardcastle, T.C.; Khanna, A.; Chicom-Mefire, A.; Rodríguez-Baño, J.; Nathwani, D.; et al. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway. Surg. Infect. (Larchmt) 2017, 18. [Google Scholar] [CrossRef]
- Gutiérrez-Pizarraya, A.; Leone, M.; Garnacho-Montero, J.; Martin, C.; Martin-Loeches, I. Collaborative approach of individual participant data of prospective studies of de-escalation in non-immunosuppressed critically ill patients with sepsis. Expert Rev. Clin. Pharmacol. 2017, 10, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Augustin, P.; Grall, N.; Desmard, M.; Allou, N.; Marmuse, J.-P.; Guglielminotti, J. Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit. Care 2016, 20. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Poulakou, G.; Timsit, J.-F. Focus on antimicrobial use in the era of increasing antimicrobial resistance in ICU. Intensive Care Med. 2016, 42, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ecdc.europa.eu/sites/portal/files/documents/EADD%20EARS-net%20summary.pdf (accessed on 20 March 2018).
- Zilahi, G.; McMahon, M.A.; Povoa, P.; Martin-Loeches, I. Duration of antibiotic therapy in the intensive care unit. J. Thorac. Dis. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J.; Chowdhry, T.K.; Hecker, M.T.; Hoyen, C.K.; Hanrahan, J.A.; Hujer, A.M.; Hutton-Thomas, R.A.; Whalen, C.C.; Bonomo, R.A.; Rice, L.B. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 2000, 343, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Wilke, M.; Grube, R. Update on management options in the treatment of nosocomial and ventilator assisted pneumonia: Review of actual guidelines and economic aspects of therapy. Infect. Drug Resist. 2013, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Diaz, E.; Valles, J. Risks for multidrug-resistant pathogens in the ICU. Curr. Opin. Crit. Care 2014, 20, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Nora, D.; Salluh, J.; Martin-Loeches, I.; Póvoa, P. Biomarker-guided antibiotic therapy-Strengths and limitations. Ann. Transl. Med. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
Gram-positive bacteria | |||||
Staphylococcus aureus | Audit 1 (n = 36) | Audit 2 (n = 1) | p-value | ||
Total number | 36 | 2.96% | 1 | 0.08% | 0.0001 |
Respiratory culture | 26 | 9.67% | 0 | 0.00% | 0.0001 |
Blood cultures | 6 | 0.84% | 1 | 0.12% | 0.0538 |
Fluid samples * | 4 | 3.57% | 0 | 0.00% | 0.0075 |
Enterococcus faecium | Audit 1 (n = 38) | Audit 2 (n = 32) | p-value | ||
Total number | 38 | 3.13% | 32 | 2.54% | 0.398 |
Respiratory culture | 1 | 0.37% | 0 | 0.00% | 1 |
Blood cultures | 10 | 1.40% | 4 | 0.48% | 0.0644 |
Fluid samples * | 8 | 7.14% | 9 | 4.89% | 0.4472 |
Faeces | 23 | 20.54% | 21 | 11.41% | 0.0426 |
Gram-negative bacteria | |||||
Escherichia coli | Audit 1 (n = 25) | Audit 2 (n = 9) | p-value | ||
Total number | 25 | 2.06% | 9 | 0.71% | 0.0051 |
Respiratory culture | 11 | 4.09% | 0 | 0.00% | 0.0213 |
Blood cultures | 3 | 0.42% | 4 | 0.48% | 0.3642 |
Fluid samples * | 11 | 9.82% | 5 | 2.72% | 0.0146 |
Pseudomonas sp. | Audit 1 (n = 17) | Audit 2 (n = 2) | p-value | ||
Total number | 17 | 1.40% | 2 | 0.16% | 0.001 |
Respiratory culture | 17 | 6.32% | 0 | 0.00% | n.s. |
Blood cultures | 0 | 0.00% | 0 | 0.00% | n.s. |
Fluid samples * | 0 | 0.00% | 2 | 1.09% | n.s. |
Klebsiella pneumoniae | Audit 1 (n = 12) | Audit 2 (n = 1) | p-value | ||
Total number | 12 | 0.99% | 1 | 0.08% | 0.001 |
Respiratory culture | 10 | 3.72% | 0 | 0.00% | n.s. |
Blood cultures | 0 | 0.00% | 0 | 0.00% | n.s. |
Fluid samples * | 2 | 1.79% | 1 | 0.54% | n.s. |
Klebsiella oxytoca | Audit 1 (n = 11) | Audit 2 (n = 0) | p-value | ||
Total number | 11 | 0.91% | N/A | N/A | |
Respiratory culture | 11 | 4.09% | N/A | N/A | n.s. |
Blood cultures | 0 | 0.00% | N/A | N/A | n.s. |
Fluid samples * | 0 | 0.00% | N/A | N/A | n.s. |
Enterobacter cloacae | Audit 1 (n = 13) | Audit 2 (n = 2) | p-value | ||
Total number | 10 | 0.82% | 2 | 0.16% | 0.001 |
Respiratory culture | 7 | 2.60% | 0 | 0.00% | n.s. |
Blood cultures | 0 | 0.00% | 1 | 0.12% | n.s. |
Fluid samples * | 3 | 2.68% | 1 | 0.54% | n.s. |
Fungal pathogens | |||||
Candida sp. | Audit 1 (n = 158) | Audit 2 (n = 19) | p-value | ||
Total number | 158 | 13.00% | 19 | 1.51% | 0.0001 |
Respiratory culture | 139 | 51.67% | 2 | 1.71% | 0.0001 |
Blood cultures | 3 | 0.42% | 5 | 0.60% | 0.732 |
Fluid samples * | 13 | 11.61% | 12 | 6.52% | 0.1365 |
Aspergillus sp. | Audit 1 (n = 12) | Audit 2 (n = 12) | p-value | ||
Total number | 12 | 0.99% | 12 | 0.95% | 1 |
Respiratory culture | 12 | 4.46% | 12 | 10.26% | 0.0387 |
Antibacterial Consumption | |||||
---|---|---|---|---|---|
Audit 1 (n = 426) | Audit 2 (n = 424) | ||||
Antibiotic (in >10% of cases) | Number (No.) of cases | Percentage | No. of cases | Percentage | p-value |
Piperacillin/tazobactam | 218 | 51.17% | 219 | 51.65% | 0.891 |
Vancomycin | 174 | 40.85% | 127 | 29.95% | 0.001 |
Co-amoxiclavulanate | 146 | 34.27% | 124 | 29.25% | 0.122 |
Metronidazole | 137 | 32.16% | 115 | 27.12% | 0.115 |
Meropenem | 131 | 30.75% | 115 | 27.12% | 0.257 |
Gentamicin | 106 | 24.88% | 108 | 25.47% | 0.875 |
Ciprofloxacin | 75 | 17.61% | 47 | 11.08% | 0.008 |
Clarithromycin | 62 | 14.55% | 57 | 13.44% | 0.693 |
Linezolid | 53 | 12.44% | 78 | 18.40% | 0.018 |
Duration of treatment | |||||
Audit 1 (n = 426) | Audit 2 (n = 424) | ||||
Antibiotic (in > 10% of cases) | Median (days) | Interquartile range (IQR) (days) | Median (days) | IQR (days) | p-value |
Piperacillin/tazobactam | 3.67 | (2–6.67) | 3.33 | (2–6) | 0.249 |
Vancomycin | 4 | (2.22–7.02) | 2.50 | (1.5–5.13) | 0.001 |
Co-amoxiclavulanate | 2.33 | (1.33–3) | 1.67 | (1.33–2.67) | 0.071 |
Metronidazole | 3.33 | (1.96–7.51) | 2.67 | (1.67–4.33) | 0.107 |
Meropenem | 5 | (2.67–8.03) | 6.04 | (2.83–10.32) | 0.348 |
Gentamicin | 1 | (1–3) | 1.95 | (1–3) | 0.395 |
Ciprofloxacin | 3.5 | (2–6.66) | 3.00 | (2–6.42) | 0.670 |
Clarithromycin | 3.5 | (2.5–5.5) | 3.00 | (2–4.5) | 0.127 |
Linezolid | 3.5 | (2–6.5) | 3.50 | (2–7.38) | 0.875 |
Antifungal consumption | |||||
Audit 1 (n = 426) | Audit 2 (n = 424) | ||||
Antifungal | No. of cases | Percentage | No. of cases | Percentage | p-value |
Anidulafungin | 72 | 16.90% | 51 | 12.03% | 0.051 |
Fluconazole | 42 | 9.86% | 42 | 9.91% | 1 |
Amphotericin B (Liposomal) | 27 | 6.34% | 16 | 3.77% | 0.117 |
Caspofungin | 9 | 2.11% | 10 | 2.36% | 0.821 |
Voriconazole | 7 | 1.64% | 8 | 1.89% | 0.802 |
Duration of treatment | |||||
Audit 1 (n = 426) | Audit 2 (n = 424) | ||||
Antifungal | Median (days) | IQR (days) | Median (days) | IQR (days) | p-value |
Anidulafungin | 4.00 | (2–9) | 4.00 | (2.27–6) | 0.79 |
Fluconazole | 3.00 | (2–6.75) | 4.95 | (2.5–6) | 0.25 |
Amphotericin B (Liposomal) | 5.00 | (2–12.08) | 5.46 | (2.25–9.56) | 0.93 |
Caspofungin | 3.00 | (1.92–4.17) | 4.00 | (2–5) | 0.84 |
Voriconazole | 5.92 | (2.75–12.52) | 6.00 | (3.88–9.70) | 0.95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiszai-Szucs, T.; Mac Sweeney, C.; Keaveny, J.; Bozza, F.A.; O. Hagan, Z.; Martin-Loeches, I. Feasibility of Antimicrobial Stewardship (AMS) in Critical Care Settings: A Multidisciplinary Approach Strategy. Med. Sci. 2018, 6, 40. https://doi.org/10.3390/medsci6020040
Tiszai-Szucs T, Mac Sweeney C, Keaveny J, Bozza FA, O. Hagan Z, Martin-Loeches I. Feasibility of Antimicrobial Stewardship (AMS) in Critical Care Settings: A Multidisciplinary Approach Strategy. Medical Sciences. 2018; 6(2):40. https://doi.org/10.3390/medsci6020040
Chicago/Turabian StyleTiszai-Szucs, Tamas, Claire Mac Sweeney, Joseph Keaveny, Fernando A. Bozza, Zieta O. Hagan, and Ignacio Martin-Loeches. 2018. "Feasibility of Antimicrobial Stewardship (AMS) in Critical Care Settings: A Multidisciplinary Approach Strategy" Medical Sciences 6, no. 2: 40. https://doi.org/10.3390/medsci6020040