Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hypothesis
2.2. Research Design
2.2.1. Operationalizing Allostatic Load
2.2.2. NHANES Data Collection Procedures
2.3. Data Analysis
3. Results
3.1. Study Variables among Individuals Exposed to Quartiles of Lead Exposure
3.2. Association of AL with Markers of Interest in Low Lead-Exposed Participants
4. Discussion
4.1. Stress and Liver Health among Those Differentially Exposed to Lead
4.2. Limitations
5. Conclusions
Funding
Conflicts of Interest
References
- Meyer, P.A.; Brown, M.J.; Falk, H. Global approach to reducing lead exposure and poisoning. Mutat. Res. Mutat. Res. 2008, 659, 166–175. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Hu, H.; Téllez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-García, A.; Hernández-Avila, M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect. 2006, 114, 1730–1735. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Lead Exposure and Cardiovascular Disease among Young and Middle-Aged Adults. Med. Sci. 2019, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Loghman-Adham, M. Renal effects of environmental and occupational lead exposure. Environ. Health Perspect. 1997, 105, 928–939. [Google Scholar] [CrossRef]
- Reuben, A.; Schaefer, J.D.; Moffitt, T.E.; Broadbent, J.; Harrington, H.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Caspi, A. Association of childhood lead exposure with adult personality traits and lifelong mental health. JAMA Psychiatry 2019, 76, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Telišman, S.; Čolak, B.; Pizent, A.; Jurasović, J.; Cvitković, P. Reproductive toxicity of low-level lead exposure in men. Environ. Res. 2007, 105, 256–266. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead exposure and cardiovascular disease: A systematic review. Environ. Health Perspect. 2007, 115, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.J.; Bhagwat, V.R.; Patil, J.A.; Dongre, N.N.; Ambekar, J.G.; Das, K.K. Occupational lead exposure in battery manufacturing workers, silver jewelry workers, and spray painters in western Maharashtra (India): Effect on liver and kidney function. J. Basic Clin. Physiol. Pharmacol. 2007, 18, 87–100. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Lead Exposure and Oxidative Stress—A Life Course Approach in US Adults. Toxics 2018, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. Jama 2017, 317, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894. [Google Scholar] [CrossRef] [PubMed]
- Ishizukal, M. Biological responses of xenobiotic metabolizing enzymes to lead exposure in cultured H4IIE rat cells. Jpn. J. Veter. Res. 2013, 61, S48–S53. [Google Scholar]
- Kim, Y.J. Interpretation of liver function tests. Korean J. Gastroenterol. Taehan Sohwagi Hakhoe chi 2008, 51, 219–224. [Google Scholar] [PubMed]
- Green, R.M.; Flamm, S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology 2002, 123, 1367–1384. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.M.; Filippelli, G.M.; Sayegh, M.A. Hepatobiliary-related outcomes in US adults exposed to lead. Environments 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Onyeneke, E.C.; Omokaro, E.U. Effect of occupational exposure to lead on liver function parameters. Int. J. Pharm. Med. Sci. 2016, 6, 15–19. [Google Scholar]
- Brady, K.T.; Sonne, S.C. The role of stress in alcohol use, alcoholism treatment, and relapse. Alcohol. Res. Health 1999, 23, 263. [Google Scholar]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Targher, G.; Bertolini, L.; Rodella, S.; Zoppini, G.; Zenari, L.; Falezza, G. Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin. Endocrinol. 2006, 64, 337–341. [Google Scholar] [CrossRef]
- McEwen, B.S. Protective and damaging effects of stress mediators. New Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S. Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. New York Acad. Sci. 2004, 1032, 1–7. [Google Scholar] [CrossRef]
- McEwen, B.S. The neurobiology of stress: From serendipity to clinical relevance. Brain Res. 2000, 886, 172–189. [Google Scholar] [CrossRef] [Green Version]
- Ganzel, B.L.; Morris, P.A.; Wethington, E. Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychol. Rev. 2010, 117, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbah, W.; Watt, R.; Sheiham, A.; Tsakos, G. Effects of allostatic load on the social gradient in ischaemic heart disease and periodontal disease: Evidence from the Third National Health and Nutrition Examination Survey. J. Epidemiology Community Health 2008, 62, 415–420. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Obeng-Gyasi, B. Chronic Stress and Cardiovascular Disease among Individuals Exposed to Lead: A Pilot Study. Diseases 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Goldbourt, U.; Yaari, S.; Medalie, J.H. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality: A 21-year follow-up of 8000 men. Arter. Thromb. Vasc. Boil. 1997, 17, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Mahon, N.G.; Blackstone, E.H.; Francis, G.S.; Starling, R.C.; Young, J.B.; Lauer, M.S. The prognostic value of estimated creatinine clearance alongside functional capacity in ambulatory patients with chronic congestive heart failure. J. Am. Coll. Cardiol. 2002, 40, 1106–1113. [Google Scholar] [CrossRef] [Green Version]
- Horwich, T.B.; Kalantar-Zadeh, K.; MacLellan, R.W.; Fonarow, G.C. Albumin levels predict survival in patients with systolic heart failure. Am. Hear. J. 2008, 155, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, R.T.; Cheng, Y.J.; Williamson, D.F.; Gregg, E.W. Identifying adults at high risk for diabetes and cardiovascular disease using hemoglobin A1c: National Health and Nutrition Examination Survey 2005–2006. Am. J. Prev. Med. 2011, 40, 11–17. [Google Scholar] [CrossRef]
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissen, M.; Taskinen, M.-R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001, 24, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weverling-Rijnsburger, A.W.; Blauw, G.J.; Lagaay, A.M.; Knock, D.L.; Meinders, A.E.; Westendorp, R.G. Total cholesterol and risk of mortality in the oldest old. Lancet 1997, 350, 1119–1123. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Singer, B.H.; McEwen, B.S.; Rowe, J.W.; Seeman, T.E. Allostatic load as a predictor of functional decline: MacArthur studies of successful aging. J. Clin. Epidemiol. 2002, 55, 696–710. [Google Scholar] [CrossRef]
- Becker, U.; Deis, A.; Sorensen, T.; Gronbaek, M.; Borch-Johnsen, K.; Muller, C.F.; Schnohr, P.; Jensen, G. Prediction of risk of liver disease by alcohol intake, sex, and age: A prospective population study. Hepatology 1996, 23, 1025–1029. [Google Scholar] [CrossRef]
- Whitehead, T.; Robinson, D.; Allaway, S. The effects of cigarette smoking and alcohol consumption on serum liver enzyme activities: A dose-related study in men. Ann. Clin. Biochem. 1996, 33, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Jang, E.S.; Jeong, S.-H.; Hwang, S.H.; Kim, H.Y.; Ahn, S.Y.; Lee, J.; Lee, S.H.; Park, Y.S.; Hwang, J.H.; Kim, J.-W. Effects of coffee, smoking, and alcohol on liver function tests: A comprehensive cross-sectional study. BMC Gastroenterol. 2012, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Ross, S.E.; Niebling, B.C.; Heckert, T.M. Sources of stress among college students. Soc. Psychol. 1999, 61, 841–846. [Google Scholar]
- Kyriacou, C.; Sutcliffe, J. Teacher stress: Prevalence, sources, and symptoms. Br. J. Educational Psychol. 1978, 48, 159–167. [Google Scholar] [CrossRef]
- Cooper, C.L.; . Marshall, J. Occupational sources of stress: A review of the literature relating to coronary heart disease and mental ill health. J. Occup. Psychol. 1976, 49, 11–28. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Obeng-Gyasi, B. Blood Pressure and Oxidative Stress among US Adults Exposed to Lead in Military Environments—A Preliminary Study. Diseases 2018, 6, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, C.; Wang, S.; Ding, L.; Zhang, M.; Wang, D.; Giesy, J.P. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 2018, 205, 244–252. [Google Scholar] [CrossRef]
- Da Rocha Silva, J.P.; Salles, F.J.; Leroux, I.N.; Ferreira, A.P.S.D.; Da Silva, A.S.; Assunção, N.A.; Nardocci, A.C.; Sato, A.P.S.; Borbasa, F., Jr.; Cardoso, M.R.A. High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children. Environ. Pollut. 2018, 239, 681–688. [Google Scholar] [CrossRef]
- Mishra, K. Lead exposure and its impact on immune system: A review. Toxicol. Vitr. 2009, 23, 969–972. [Google Scholar] [CrossRef]
- Shih, R.; Glass, T.; Bandeen-Roche, K.; Carlson, M.; Bolla, K.; Todd, A.; Schwartz, B. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology 2006, 67, 1556–1562. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.M.; Filippelli, G.M.; Sayegh, M.A. Cardiovascular-related outcomes in US adults exposed to lead. Int. J. Environ. Res. Public Health 2018, 15, 759. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Gyasi, E. Chronic cadmium exposure and cardiovascular disease in adults. J. Environ. Sci. Health A 2020, 55, 726–729. [Google Scholar] [CrossRef]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Fisher, S., Reason, J., Eds.; John Wiley & Sons: New York, NY, USA, 1988; pp. 629–649. [Google Scholar]
- Sterling, P. Principles of allostasis: Optimal design, predictive regulation, pathophysiology, and rational. In Allostasis, Homeostasis, and the Costs of Physiological Adaptation; Schulkin, J., Ed.; The press syndicate of the university of cambridge: Cambridge, UK, 2004; Volume 17. [Google Scholar]
- McEwen, B.S.; Stellar, E. Stress and the individual: Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef]
- Ahamed, M.; Siddiqui, M. Low level lead exposure and oxidative stress: Current opinions. Clin. Chim. Acta 2007, 383, 57–64. [Google Scholar] [CrossRef]
- Naoum, S.G.; Harris, J.; Rizzuto, J.; Egbu, C. Gender in the construction industry: Literature review and comparative survey of men’s and women’s perceptions in UK construction consultancies. J. Manag. Eng. 2020, 36, 04019042. [Google Scholar] [CrossRef]
- Reskin, B.F.; Hartmann, H.I. Women’s Work, Men’s Work: Sex Segregation on the Job; National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- Lead Toxicity-What Is the Biological Fate of Lead in the Body? Available online: https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=9 (accessed on 9 July 2020).
Variable | Quartile 1 * | Quartile 2 * | Quartile 3 * | Quartile 4 * | p-Value |
---|---|---|---|---|---|
BLL μg/dL (SE) | 0.584 (0.003) | 0.992 (0.003) | 1.52 (0.006) | 3.23 (0.054) | p < 0.0001 for all |
Age Years (SE) | 27.1 (0.337) | 35.6 (0.335) | 43.5 (0.545) | 50.6 (0.599) | p < 0.0001 for all |
Gender (percent) | Male: 33.9 Female: 66.1 | Male: 46.8 Female: 53.2 | Male: 55.3 Female: 44.7 | Male: 62.4 Female: 37.5 | p < 0.0001 for all |
BMI kg/m2 (SE) | 25.9 (0.159) | 25.3 (0.204) | 26.0 (0.218) | 25.9 (0.184) | p > 0.05 for all |
Allostatic Load (SE) | 1.93 (0.058) | 2.29 (0.040) | 2.59 (0.038) | 2.76 (0.046) | p < 0.01 for all |
AST U/L (SE) | 24.5 (0.343) | 25.5 (0.203) | 26.3 (0.250) | 27.2 (0.358) | p < 0.05 for all |
ALT U/L (SE) | 22.9 (0.381) | 25.7 (0.407) | 26.0 (0.325) | 26.2 (0.444) | p < 0.0001 for Q1 to Q2, Q3,and Q4 |
GGT U/L (SE) | 20.4 (0.555) | 25.2 (0.669) | 28.5 (0.537) | 33.4 0.829) | p < 0.001 for all |
Alkaline Phosphatase U/L (SE) | 76.9 (1.35) | 76.2 (0.775) | 73.1 (0.695) | 74.7 (0.695) | p < 0.05 for Q3 to Q2 and Q1 |
Variable | Quartile 1 Coef.lnAL Adjusted (SE) * | p-Value | Quartile 2 Coef.lnAL Adjusted (SE) * | p-Value | Quartile 3 Coef.lnAL Adjusted (SE) * | p-Value | Quartile 4 Coef.lnAL Adjusted (SE) * | p-Value |
---|---|---|---|---|---|---|---|---|
AST U/L | 0.178 (0.100) | 0.087 | 0.121 (0.074) | 0.111 | 0.173 (0.051) | 0.002 | −0.087 (0.044) | 0.056 |
ALT U/L | 0.195 (0.073) | 0.012 | 0.165 (0.063) | 0.014 | 0.236 (0.037) | 0.0001 | −0.007 (0.035) | 0.847 |
GGT U/L | 0.149 (0.056) | 0.012 | 0.151 (0.035) | 0.0001 | 0.166 (0.035) | 0.0001 | 0.049 (0.028) | 0.094 |
Alkaline Phosphatase U/L | 0.301 (0.102) | 0.006 | 0.167(0.069) | 0.021 | 0.236 (0.057) | 0.0001 | 0.137 (0.061) | 0.033 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeng-Gyasi, E. Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A Preliminary Study. Med. Sci. 2020, 8, 30. https://doi.org/10.3390/medsci8030030
Obeng-Gyasi E. Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A Preliminary Study. Medical Sciences. 2020; 8(3):30. https://doi.org/10.3390/medsci8030030
Chicago/Turabian StyleObeng-Gyasi, Emmanuel. 2020. "Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A Preliminary Study" Medical Sciences 8, no. 3: 30. https://doi.org/10.3390/medsci8030030
APA StyleObeng-Gyasi, E. (2020). Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A Preliminary Study. Medical Sciences, 8(3), 30. https://doi.org/10.3390/medsci8030030