Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Participants
2.3. Sample Size and Power of the Study
2.4. Data Collection
2.5. Ethics Approval and Consent to Participate and Publication
2.6. Determination of Extended-Spectrum β-Lactamases (ESBL)
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Patients
3.2. Prevalence of Common Uropathogens
3.3. Correlation between Different Uropathogens and Demographic Parameters
3.4. Distribution of ESBL-Producing Organisms among In- and Out-Patients
3.5. Laboratory Analysis Profile of the Three Different Studied Uropathogens
3.6. Comparison of Laboratory Analysis Profiles between ESBL and Non-ESBL Producing Organisms
3.7. Antibiotic Susceptibility Profiles of the Common Uropathogens
3.8. Prevalence of MDR Strains among UTI Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alanazi, M.Q.; Alqahtani, F.Y.; Aleanizy, F.S. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: Retrospective study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 3. [Google Scholar] [CrossRef]
- Hyun, M.; Lee, J.Y.; Kim, H.A.; Ryu, S.Y. Comparison of Escherichia coli and Klebsiella pneumoniae Acute Pyelonephritis in Korean Patients. Infect. Chemother. 2019, 51, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Al-Badr, A.; Al-Shaikh, G. Recurrent Urinary Tract Infections Management in Women: A review. Sultan Qaboos Univ. Med. J. 2013, 13, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.H.; Shapiro, E.D.; Andriole, V.T.; Davis, R.J.; Stamm, W.E. Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Infectious Diseases Society of America and the Food and Drug Administration. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. 1992, 15 (Suppl. 1), S216–S227. [Google Scholar] [CrossRef]
- Cortes-Penfield, N.W.; Trautner, B.W.; Jump, R.L.P. Urinary Tract Infection and Asymptomatic Bacteriuria in Older Adults. Infect. Dis. Clin. N. Am. 2017, 31, 673–688. [Google Scholar] [CrossRef] [Green Version]
- Stamm, W.E. Scientific and clinical challenges in the management of urinary tract infections. Am. J. Med. 2002, 113 (Suppl. 1A), 1s–4s. [Google Scholar] [CrossRef]
- Rizwan, M.; Akhtar, M.; Najmi, A.K.; Singh, K. Escherichia coli and Klebsiella pneumoniae Sensitivity/Resistance Pattern Towards Antimicrobial Agents in Primary and Simple Urinary Tract Infection Patients Visiting University Hospital of Jamia Hamdard New Delhi. Drug Res. 2018, 68, 415–420. [Google Scholar] [CrossRef]
- Zanichelli, V.; Huttner, A.; Harbarth, S.; Kronenberg, A.; Huttner, B.; Swiss Centre For Antibiotic Resistance Anresis. Antimicrobial resistance trends in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis urinary isolates from Switzerland: Retrospective analysis of data from a national surveillance network over an 8-year period (2009–2016). Swiss Med. Wkly. 2019, 149, w20110. [Google Scholar] [CrossRef] [Green Version]
- Daoud, Z.; Afif, C. Escherichia coli Isolated from Urinary Tract Infections of Lebanese Patients between 2000 and 2009: Epidemiology and Profiles of Resistance. Chemother. Res. Pract. 2011, 2011, 218431. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.J.; Tan, M.X.; Chen, M.I.; Tan, T.Y.; Koo, S.H.; Koong, A.Y.L.; Ng, L.P.; Hu, P.L.; Tan, K.T.; Moey, P.K.S.; et al. Interaction between Antibiotic Resistance, Resistance Genes, and Treatment Response for Urinary Tract Infections in Primary Care. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, I.M.; Manecksha, R.P.; McCullagh, E.; Ahmad, S.; O’Kelly, F.; Flynn, R.; McDermott, T.E.; Murphy, P.; Grainger, R.; Fennell, J.P.; et al. An 11-year analysis of the prevalent uropathogens and the changing pattern of Escherichia coli antibiotic resistance in 38,530 community urinary tract infections, Dublin 1999–2009. Ir. J. Med. Sci. 2013, 182, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Agus, N.; Bayram, A.; Samlioglu, P.; Sirin, M.C.; Derici, Y.K.; Hanci, S.Y. Antimicrobial susceptibilities of Escherichia coli isolates as agents of community-acquired urinary tract infection (2008–2014). Turk. J. Urol. 2016, 42, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.E.; Dahdouh, E.; Daoud, Z. Resistance of Gram-Negative Bacilli in Lebanon. ISRN Infect. Dis. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yazdansetad, S.; Alkhudhairy, M.K.; Najafpour, R.; Farajtabrizi, E.; Al-Mosawi, R.M.; Saki, M.; Jafarzadeh, E.; Izadpour, F.; Ameri, A. Preliminary survey of extended-spectrum b-lactamases (ESBLs) in nosocomial uropathogen Klebsiella pneumoniae in north-central Iran. Heliyon 2019, 5, e02349. [Google Scholar] [CrossRef] [Green Version]
- Chamoun, K.; Farah, M.; Araj, G.; Daoud, Z.; Moghnieh, R.; Salameh, P.; Saade, D.; Mokhbat, J.; Abboud, E.; Hamze, M.; et al. Surveillance of antimicrobial resistance in Lebanese hospitals: Retrospective nationwide compiled data. Int. J. Infect. Dis. 2016, 46, 64–70. [Google Scholar] [CrossRef] [Green Version]
- McNulty, C.A.; Richards, J.; Livermore, D.M.; Little, P.; Charlett, A.; Freeman, E.; Harvey, I.; Thomas, M. Clinical relevance of laboratory-reported antibiotic resistance in acute uncomplicated urinary tract infection in primary care. J. Antimicrob. Chemother. 2006, 58, 1000–1008. [Google Scholar] [CrossRef]
- Vranic, S.M.; Uzunovic, A. Antimicrobial Resistance of Escherichia Coli Strains Isolated from Urine at Outpatient Population: A Single Laboratory Experience. Mater. Socio Med. 2016, 28, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Wang, J.T.; Chen, P.C.; Chang, S.C.; Shiau, Y.R.; Wang, H.Y.; Lai, J.F.; Huang, I.W.; Tan, M.C.; Lauderdale, T.L.; Hospitals, T. Antimicrobial susceptibilities of Proteus mirabilis: A longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. BMC Infect. Dis 2014, 14, 486. [Google Scholar] [CrossRef] [Green Version]
- Montso, K.P.; Dlamini, S.B.; Ateba, C.N.; Kumar, A.; Garcia-Perdomo, H.A. Antimicrobial Resistance Factors of Extended-Spectrum Beta-Lactamases Producing Escherichia coli and Klebsiella pneumoniae Isolated from Cattle Farms and Raw Beef in North-West Province, South Africa. BioMed. Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Tamimi, M.; Abu-Raideh, J.; Albalawi, H.; Shalabi, M.; Saleh, S. Effective Oral Combination Treatment for Extended-Spectrum Beta-Lactamase-Producing Escherichia coli. Microb. Drug Resist. 2019, 25, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Grabe, M.; Bjerklund-Johansen, T.E.; Botto, H.; Çek, M.; Naber, K.G.; Tenke, P.; Wagenlehner, F. Guidelines on Urological Infections. Eur. Assoc. Urol. 2010, 1–112. [Google Scholar]
- Nesher, L.; Novack, V.; Riesenberg, K.; Schlaeffer, F. Regional community-acquired urinary tract infections in Israel: Diagnosis, pathogens, and antibiotic guidelines adherence: A prospective study. Int. J. Infect. Dis. 2007, 11, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32, pp. 70–71. [Google Scholar]
- Lai, H.-C.; Chang, S.-N.; Lin, H.-C.; Hsu, Y.-L.; Wei, H.-M.; Kuo, C.-C.; Hwang, K.-P.; Chiang, H.-Y. Association between urine pH and common uropathogens in children with urinary tract infections. J. Microbiol. Immunol. Infect. 2019. [Google Scholar] [CrossRef]
- Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Simerville, J.A.; Maxted, W.C.; Pahira, J.J. Urinalysis: A comprehensive review. Am. Fam. Physician 2005, 71, 1153–1162. [Google Scholar]
- Chen, C.Y.; Chen, Y.H.; Lu, P.L.; Lin, W.R.; Chen, T.C.; Lin, C.Y. Proteus mirabilis urinary tract infection and bacteremia: Risk factors, clinical presentation, and outcomes. J. Microbiol. Immunol. Infect. 2012, 45, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Wang, B.; Zhang, L.; Tang, H.; Li, J.; Wang, Y. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS ONE 2012, 7, e51060. [Google Scholar] [CrossRef] [Green Version]
- Tambyah, P.A.; Maki, D.G. The relationship between pyuria and infection in patients with indwelling urinary catheters: A prospective study of 761 patients. Arch. Intern. Med. 2000, 160, 673–677. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.T.; Shirtliff, M.E. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqasim, A.; Abu Jaffal, A.; Alyousef, A.A. Prevalence of Multidrug Resistance and Extended-Spectrum beta-Lactamase Carriage of Clinical Uropathogenic Escherichia coli Isolates in Riyadh, Saudi Arabia. Int. J. Microbiol. 2018, 2018, 3026851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elo, J.; Sarna, S.; Tallgren, L.G. Seasonal variations in the occurrence of urinary tract infections among children in an urban area in Finland. Ann. Clin. Res. 1979, 11, 101–106. [Google Scholar] [PubMed]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The diagnosis of urinary tract infection: A systematic review. Dtsch. Arztebl. Int. 2010, 107, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Soubra, L.; Kabbani, S.; Anwar, M.F.; Dbouk, R. Spectrum and patterns of antimicrobial resistance of uropathogens isolated from a sample of hospitalised Lebanese patients with urinary tract infections. J. Glob. Antimicrob. Resist. 2014, 2, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Daoud, Z.; Salem Sokhn, E.; Masri, K.; Matar, G.M.; Doron, S. Escherichia coli Isolated from Urinary Tract Infections of Lebanese Patients between 2005 and 2012: Epidemiology and Profiles of Resistance. Front. Med. 2015, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Hayajneh, W.A.; Hajj, A.; Hulliel, F.; Sarkis, D.K.; Irani-Hakimeh, N.; Kazan, L.; Badal, R.E. Susceptibility trends and molecular characterization of Gram-negative bacilli associated with urinary tract and intra-abdominal infections in Jordan and Lebanon: SMART 2011–2013. Int. J. Infect. Dis. 2015, 35, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Vranic, S.M.; Zatric, N.; Rebic, V.; Aljicevic, M.; Abdulzaimovic, A. The Most Frequent Isolates from Outpatients with Urinary Tract Infection. Mater. Socio Med. 2017, 29, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Ouchar Mahamat, O.; Lounnas, M.; Hide, M.; Dumont, Y.; Tidjani, A.; Kamougam, K.; Abderrahmane, M.; Benavides, J.; Solassol, J.; Bañuls, A.L.; et al. High prevalence and characterization of extended-spectrum ß-lactamase producing Enterobacteriaceae in Chadian hospitals. BMC Infect. Dis. 2019, 19, 205. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Peltola, V.; Mertsola, J.; Ruuskanen, O. Comparison of total white blood cell count and serum C-reactive protein levels in confirmed bacterial and viral infections. J. Pediatrics 2006, 149, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, J.H. Clinical Significance of Extended-spectrum b-lactamase-producing Bacteria in First Pediatric Febrile Urinary Tract Infections and Differences between Age Groups. Child. Kidney Dis. 2017, 21, 128–135. [Google Scholar] [CrossRef]
- Ramirez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-Gonzalez, F.J.; Marquez-Diaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed]
Total (n = 538) | Non-ESBL (n = 361) | ESBL (n = 177) | |
---|---|---|---|
Agent | n (%) | n (%) | n (%) |
E. coli | 449 (100%) | 291 (64.8%) | 158 (35.2%) |
K. pneumoniae | 65 (100%) | 47 (72.3%) | 18 (27.7%) |
P. mirabilis | 24 (100%) | 23 (95.8%) | 1 (4.2%) |
Total | 538 (100%) | 361 (67.1%) | 177 (32.9%) |
Demographic Factors | Categories | E. coli n (%) | K. pneumoniae n (%) | P. mirabilis n (%) | p-Value |
---|---|---|---|---|---|
Age group | Children (<12) | 103 (22.5%) | 7 (10.3%) | 9 (36.0%) | 0.099 |
Adolescent (12–18) | 17 (3.7%) | 4 (5.9%) | 0 (0.0%) | ||
Adult (19–64) | 194 (42.4%) | 29 (42.6%) | 8 (32.0%) | ||
Elderly (≥65) | 144 (31.4%) | 28 (41.2%) | 8 (32.0%) | ||
Total | 458 (100%) | 68 (100%) | 25 (100%) | ||
Gender | Male | 83 (18.1%) | 16 (23.5%) | 2 (8.0%) | 0.221 |
Female | 375 (81.9%) | 52 (76.5%) | 23 (92.0%) | ||
Total | 458 (100%) | 68 (100%) | 25 (100%) | ||
In- or out-patient | In-patient | 187 (41.1%) | 27 (39.7%) | 7 (29.2%) | 0.506 |
Out-patient | 268 (58.9%) | 41 (60.3%) | 17 (70.8%) | ||
Total | 458 (100%) | 68 (100%) | 25 (100%) |
Non-ESBL n (%) | ESBL n (%) | p-Value | |
---|---|---|---|
In-patient (n = 214) | 124 (34.6%) | 90 (51.1%) | |
Out-patient (n = 320) | 234 (65.4%) | 86 (48.9%) | <0.001 |
Total (n = 534) | 358 (100%) | 176 (100%) |
E. coli Median (Q1–Q3) | K. pneumoniae Median (Q1–Q3) | P. mirabilis Median (Q1–Q3) | p-Value | |
---|---|---|---|---|
WBCs (×103 per mm3) | 10.81 (8.25–16.27) | 10.39 (7.57–16.13) | 8.37 (6.04–13.36) | 0.020 |
CRP (in mg/dL) | 30.40 (7.35–99.95) | 22.95 (6.85–54.80) | 16.15 (7.20–35.30) | 0.055 |
BUN (in mg/dL) | 18.00 (12.00–28.50) | 19.00 (14.50–26.50) | 49.00 (13.00–84.50) | 0.298 |
Creatinine (in mg/dL) | 0.76 (0.48–1.32) | 0.74 (0.59–1.10) | 1.25 (0.54–3.23) | 0.235 |
pH | 5.00 (5.00–6.00) | 5.00 (5.00–6.00) | 6.50 (5.50–7.50) | 0.480 |
Non-ESBL Median (Q1–Q3) | ESBL Median (Q1–Q3) | p-Value | |
---|---|---|---|
WBCs (×103 per mm3) | 10.59 (7.80–16.01) | 12.59 (8.65–17.06) | 0.015 |
CRP (in mg/dL) | 23.75 (6.70–85.50) | 43.45 (7.10–88.40) | 0.288 |
BUN (in mg/dL) | 18.00 (12.00–30.00) | 24.50 (13.00–40.00) | 0.269 |
Creatinine (in mg/dL) | 0.75 (0.51–1.26) | 1.06 (0.73–1.69) | 0.063 |
pH | 5.50 (5.00–6.00) | 5.00 (5.00–6.00) | 0.548 |
Antibiotics | E. coli n (%) | K. pneumoniae n (%) | P. mirabilis n (%) | |
---|---|---|---|---|
Amikacin | N | 438 | 63 | 25 |
Sensitive | 340 (77.6%) | 49 (77.8%) | 18 (72.0%) | |
Amoxicillin/Clavulanic acid | N | 448 | 67 | 35 |
Sensitive | 190 (42.4%) | 24 (35.8%) | 22 (88.0%) | |
Aztreonam | N | 449 | 67 | 25 |
Sensitive | 314 (69.9%) | 50 (74.6%) | 23 (92.0%) | |
Trimethoprim/Sulfamethoxazole | N | 427 | 57 | 22 |
Sensitive | 235 (55.0%) | 35 (61.4%) | 16 (72.7%) | |
Cefdinir | N | 418 | 65 | 23 |
Sensitive | 218 (52.2%) | 41 (63.1%) | 21 (91.3%) | |
Cefepime | N | 445 | 65 | 25 |
Sensitive | 336 (75.5%) | 51 (78.5%) | 24 (96.0%) | |
Ceftazidime | N | 447 | 67 | 25 |
Sensitive | 326 (72.9%) | 50 (74.6%) | 24 (96.0%) | |
Ceftriaxone | N | 449 | 65 | 24 |
Sensitive | 291 (64.8%) | 47 (72.3%) | 23 (95.8%) | |
Cefuroxime | N | 446 | 66 | 25 |
Sensitive | 203 (45.5%) | 37 (56.1%) | 24 (96.0%) | |
Cephalothin | N | 437 | 67 | 25 |
Sensitive | 108 (24.7%) | 30 (44.8%) | 20 (80.0%) | |
Cefoxitin | N | 446 | 67 | 24 |
Sensitive | 380 (85.2%) | 57 (85.1%) | 23 (95.8%) | |
Ciprofloxacin | N | 447 | 67 | 25 |
Sensitive | 310 (69.4%) | 44 (65.7%) | 24 (96.0%) | |
Fosfomycin | N | 436 | 64 | 23 |
Sensitive | 418 (95.9%) | 62 (96.9%) | 21 (91.3%) | |
Gentamicin | N | 447 | 67 | 25 |
Sensitive | 369 (82.6%) | 55 (82.1%) | 23 (92.0%) | |
Imipenem | N | 450 | 67 | 25 |
Sensitive | 450 (100.0%) | 67 (100.0%) | 25 (100.0%) | |
Meropenem | N | 400 | 56 | 21 |
Sensitive | 400 (100.0%) | 56 (100.0%) | 21 (100.0%) | |
Norfloxacin | N | 442 | 67 | 24 |
Sensitive | 308 (69.7%) | 43 (64.2%) | 23 (95.8%) | |
Piperacillin/Tazobactam | N | 445 | 63 | 25 |
Sensitive | 383 (86.1%) | 50 (79.4%) | 25 (100.0%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. https://doi.org/10.3390/medsci8030032
Sokhn ES, Salami A, El Roz A, Salloum L, Bahmad HF, Ghssein G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Medical Sciences. 2020; 8(3):32. https://doi.org/10.3390/medsci8030032
Chicago/Turabian StyleSokhn, Elie S., Ali Salami, Ali El Roz, Lamis Salloum, Hisham F. Bahmad, and Ghassan Ghssein. 2020. "Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics" Medical Sciences 8, no. 3: 32. https://doi.org/10.3390/medsci8030032
APA StyleSokhn, E. S., Salami, A., El Roz, A., Salloum, L., Bahmad, H. F., & Ghssein, G. (2020). Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Medical Sciences, 8(3), 32. https://doi.org/10.3390/medsci8030032