Integrative Management of Metabolic Syndrome in Youth Prescribed Second-Generation Antipsychotics
Abstract
:1. Introduction
2. Epidemiology of Antipsychotic-Related Metabolic Syndrome
3. Mechanisms of Metabolic Syndrome
4. Managing Metabolic Syndrome in the Setting of SGA Prescription
- Prevention. Since obesity is difficult to treat in all populations, the axiom holds true that “an ounce of prevention is worth a pound of cure.” To that end, efforts have been made to reduce antipsychotic prescribing in youth and to clarify acceptable use of these medications, stressing trialing alternatives first, and to the development of guidelines around metabolic monitoring while on antipsychotics [7]. Some of these efforts have been successful, especially amongst patients of lower socioeconomic status—who perhaps are at the highest risk of obesity and MetS [38,39]. However, there are still situations in which the potential benefits of antipsychotic prescribing outweigh the potential risks, thus justifying ongoing SGA prescription. When possible, olanzapine and clozapine should be avoided due to these two agents having the greatest propensity to cause significant weight gain [22].
- Provide thorough informed consent to the parent/guardian and the patient about the SGA and the extent of the metabolic risks [17]. While there are not formal guidelines about risk stratification and SGA prescription in youth, the following suggestions can be extrapolated from existing studies about risk factors for pediatric obesity in general. As part of the consent process, obtain a thorough history, including personal and family history of MetS, hypertension, dyslipidemia, obesity, diabetes, and screen for food insecurity to help identify those who may be at higher risk of developing MetS. It is possible to help address some of the risk factors preventatively.
- Consider engaging the patient and family to make a weight management plan [26]. Utilize the tenets of motivational interviewing to discuss health goals and the plan to get there, including physical activity, food choices, screen time, and sleep.
- For patients with specific risk factors, consider addressing those risk factors in addition to a general weight management plan [39]. Screening for food insecurity and referral to appropriate community resources may be necessary, as food insecurity is correlated with higher risk of childhood obesity [40,41]. Children with high adverse childhood experience (ACE) scores or significant family dysfunction have higher rates of obesity [40]. Referral to family therapy or facilitating engagement in additional services may be helpful [26]. Families with higher intake of processed foods or children with extremely restricted diets may benefit from a referral to a nutritionist. Children who are physically inactive should be encouraged to be more active.
- Obtain the recommended baseline metabolic parameters, including baseline BMI, blood pressure, fasting glucose, and lipid panel. These are recommended by the American Diabetes Association (ADA), and the American Association of Child and Adolescent Psychiatry (AACAP) agrees with these recommendations [7,42]. Per American Psychiatric Society—American Diabetic Society consensus guidelines, weight should be checked every four weeks for the first three months of therapy; blood pressure and fasting lipids and blood glucose should again be checked after three months of therapy; fasting blood glucose should be obtained annually thereafter and fasting lipids every five years. Many clinicians check fasting blood glucose (or hemoglobin A1c %) and lipids yearly.
- “Start low and go slow” with dosing of the SGA [7].
- Monitor early weight gain carefully [26]. There are some data in adults suggesting that weight gain early in therapy is predictive of continued weight gain throughout treatment [43]. If significant early weight gain occurs, defined in the cited study as >1 kg in the first two weeks of therapy, forming a comprehensive weight management plan with the patient and family is especially important.
- Monitor and attempt to reduce co-prescription of mood stabilizers, antidepressants, antihistamines, and other medications known to cause weight gain [7].
- For patients requiring ongoing SGA therapy, continue to periodically review contributing lifestyle factors discussed in this paper and work on specific goals. Consider using the mnemonic “SMART” (specific, measurable, achievable, relevant, time-limited) to help the patient set and achieve their goals.
- Consider targeted, evidence-based supplementation for various aspects of MetS that may develop as a result of SGA therapy, the evidence for which is discussed below.
4.1. Recommendations for Making Better Food Choices
4.1.1. Mediterranean Diet
4.1.2. Dietary Fiber Consumption
4.1.3. Low-Glycemic Foods
4.1.4. Reduce Intake of Sugar-Sweetened Beverages
4.1.5. Breakfast and Food Timing
4.1.6. Mindfulness at Meals
4.2. Recommendations for Increasing Physical Activity
4.3. Recommendations for Healthy Sleep
4.4. Recommendations for Stress Management
4.5. Evidence-Based Supplementation for Metabolic Syndrome
4.5.1. Vitamin D
4.5.2. Omega 3 Fatty Acids for Hypertriglyceridemia
4.5.3. Alpha-Lipoic Acid (ALA) for Weight Loss
4.5.4. Other Supplements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016. NCHS Data Briefs 2017. [Google Scholar]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic Syndrome in Childhood Predicts Adult Metabolic Syndrome and Type 2 Diabetes Mellitus 25 to 30 Years Later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Ballestri, S.; Marchesini, G.; Angulo, P.; Loria, P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Dig. Liver Dis. 2015, 47, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Clemente, M.G.; Mandato, C.; Poeta, M.; Vajro, P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J. Gastroenterol. 2016, 22, 8078–8093. [Google Scholar] [CrossRef]
- Halfon, N.; Larson, K.; Slusser, W. Associations Between Obesity and Comorbid Mental Health, Developmental, and Physical Health Conditions in a Nationally Representative Sample of US Children Aged 10 to 17. Acad. Pediatr. 2013, 13, 6–13. [Google Scholar] [CrossRef]
- Barthel, R.P. The American Academy of Child and Adolescent Psychiatry. Acad. Psychiatry 2007, 31, 119–121. [Google Scholar] [CrossRef]
- Fornari, E.; Maffeis, C. Treatment of Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 702. [Google Scholar] [CrossRef] [Green Version]
- Raub, R.M.; Goldberg, S.J. Assessment of Metformin as an Additional Treatment to Therapeutic Lifestyle Changes in Pediatric Patients with Metabolic Syndrome. Cholesterol 2012, 2012, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Anagnostou, E.; Aman, M.G.; Handen, B.L.; Sanders, K.B.; Shui, A.; Hollway, J.A.; Brian, J.; Arnold, L.E.; Capano, L.; Hellings, J.A.; et al. Metformin for Treatment of Overweight Induced by Atypical Antipsychotic Medication in Young People with Autism Spectrum Disorder. JAMA Psychiatry 2016, 73, 928–937. [Google Scholar] [CrossRef]
- Andrade, C. Metformin as a Possible Intervention for Cardiometabolic Risks in Pediatric Subjects Exposed to Antipsychotic Drugs. J. Clin. Psychiatry 2016, 77, 1362–1364. [Google Scholar] [CrossRef] [Green Version]
- Barlow, S.E. The Expert Committee Expert Committee Recommendations Regarding the Prevention, Assessment, and Treatment of Child and Adolescent Overweight and Obesity: Summary Report. Pediatrics 2007, 120, 164–192. [Google Scholar] [CrossRef] [Green Version]
- Sohn, M.; Moga, D.C.; Blumenschein, K.; Talbert, J. National trends in off-label use of atypical antipsychotics in children and adolescents in the United States. Medicine 2016, 95, e3784. [Google Scholar] [CrossRef]
- Menard, M.-L.; Thümmler, S.; Giannitelli, M.; Cruzel, C.; Bonnot, O.; Cohen, D.; Askenazy, F.; Boublil, M.; Chambry, J.; Charvet, D.; et al. Incidence of adverse events in antipsychotic-naïve children and adolescents treated with antipsychotic drugs: Results of a multicenter naturalistic study (ETAPE). Eur. Neuropsychopharmacol. 2019, 29, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Kalverdijk, L.J.; Bachmann, C.J.; Aagaard, L.; Burcu, M.; Glaeske, G.; Hoffmann, F.; Petersen, I.; Schuiling-Veninga, C.C.; Wijlaars, L.; Zito, J.M. A multi-national comparison of antipsychotic drug use in children and adolescents, 2005–2012. Child Adolesc. Psychiatry Ment. Health 2017, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronsley, R.; Scott, D.; Warburton, W.P.; Hamdi, R.D.; Louie, D.C.; Davidson, J.; Panagiotopoulos, C. A population-based study of antipsychotic prescription trends in children and adolescents in British Columbia, from 1996 to 2011. Can. J. Psychiatry 2013, 58, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correll, C.U.; Manu, P.; Olshanskiy, V.; Napolitano, B.; Kane, J.M.; Malhotra, A.K. Cardiometabolic Risk of Second-Generation Antipsychotic Medications During First-Time Use in Children and Adolescents. JAMA 2009, 302, 1765–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrato, E.H.; Nicol, G.E.; Maahs, D.; Druss, B.G.; Hartung, D.M.; Valuck, R.J.; Campagna, E.; Newcomer, J.W. Metabolic Screening in Children Receiving Antipsychotic Drug Treatment. Arch. Pediatr. Adolesc. Med. 2010, 164, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Castanon, N.; Luheshi, G.; Laye, S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front. Mol. Neurosci. 2015, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, C.; Halfon, O.; Boutrel, B. Controversies about a common etiology for eating and mood disorders. Front. Psychol. 2014, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hryhorczuk, C.; Sharma, S.; Fulton, S.E. Metabolic disturbances connecting obesity and depression. Front. Mol. Neurosci. 2013, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Bansal, Y.; Medhi, B.; Kuhad, A. Antipsychotics-induced metabolic alterations: Recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur. J. Pharmacol. 2019, 844, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Teff, K.L.; Kim, S.F. Atypical antipsychotics and the neural regulation of food intake and peripheral metabolism. Physiol. Behav. 2011, 104, 590–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagami, K.; Kashiwase, Y.; Yokoyama, A.; Nishimura, H.; Miyano, K.; Suzuki, M.; Shiraishi, S.; Matoba, M.; Ohe, Y.; Uezono, Y. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor. Neuropeptides 2016, 58, 93–101. [Google Scholar] [CrossRef]
- Yan, H.; Chen, J.-D.; Zheng, X.-Y. Potential mechanisms of atypical antipsychotic-induced hypertriglyceridemia. Psychopharmacology 2013, 229, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kowalchuk, C.; Castellani, L.N.; Chintoh, A.; Remington, G.; Giacca, A.; Hahn, M.K. Antipsychotics and glucose metabolism: How brain and body collide. Am. J. Physiol.-Endocrinol. Metab. 2019, 316, E1–E15. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.K.; Wolever, T.M.; Arenovich, T.; Teo, C.; Giacca, A.; Powell, V.; Clarke, L.; Fletcher, P.; Cohn, T.; McIntyre, R.S.; et al. Acute Effects of Single-Dose Olanzapine on Metabolic, Endocrine, and Inflammatory Markers in Healthy Controls. J. Clin. Psychopharmacol. 2013, 33, 740–746. [Google Scholar] [CrossRef]
- Castellani, L.N.; Peppler, W.T.; Miotto, P.M.; Bush, N.; Wright, D.C. Exercise Protects Against Olanzapine-Induced Hyperglycemia in Male C57BL/6J Mice. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Boyda, H.N.; Ramos-Miguel, A.; Procyshyn, R.M.; Töpfer, E.; Lant, N.; Choy, H.H.T.; Wong, R.; Li, L.; Pang, C.C.Y.; Honer, W.G.; et al. Routine exercise ameliorates the metabolic side-effects of treatment with the atypical antipsychotic drug olanzapine in rats. Int. J. Neuropsychopharmacol. 2013, 17, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Townsend, L.K.; Peppler, W.T.; Bush, N.D.; Wright, D.C. Obesity exacerbates the acute metabolic side effects of olanzapine. Psychoneuroendocrinology 2018, 88, 121–128. [Google Scholar] [CrossRef]
- Bahra, S.M.; Weidemann, B.J.; Castro, A.N.; Walsh, J.W.; DeLeon, O.; Burnett, C.M.; Pearson, N.A.; Murry, D.J.; Grobe, J.L.; Kirby, J.R.; et al. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine 2015, 2, 1725–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaliwal, N.; Dhaliwal, J.; Singh, D.P.; Kondepudi, K.K.; Bishnoi, M.; Chopra, K. The Probiotic Mixture VSL#3 Reverses Olanzapine-Induced Metabolic Dysfunction in Mice. Methods Mol. Biol. 2019, 2011, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Kao, A.C.-C.; Spitzer, S.; Anthony, D.C.; Lennox, B.R.; Burnet, P. Prebiotic attenuation of olanzapine-induced weight gain in rats: Analysis of central and peripheral biomarkers and gut microbiota. Transl. Psychiatry 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skonieczna-Żydecka, K.; Łoniewski, I.; Misera, A.; Stachowska, E.; Maciejewska, D.; Marlicz, W.; Galling, B. Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome. Psychopharmacology 2018, 236, 1491–1512. [Google Scholar] [CrossRef] [Green Version]
- Calarge, C.A.; Ziegler, E.E. Iron Deficiency in Pediatric Patients in Long-Term Risperidone Treatment. J. Child Adolesc. Psychopharmacol. 2013, 23, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Calarge, C.A.; Ziegler, E.E.; Del Castillo, N.; Aman, M.; McDougle, C.J.; Scahill, L.; McCracken, J.T.; Arnold, L.E. Iron homeostasis during risperidone treatment in children and adolescents. J. Clin. Psychiatry 2015, 76, 1500–1505. [Google Scholar] [CrossRef]
- Calarge, C.A.; Murry, D.J.; Ziegler, E.E.; Arnold, L.E. Serum Ferritin, Weight Gain, Disruptive Behavior, and Extrapyramidal Symptoms in Risperidone-Treated Youth. J. Child Adolesc. Psychopharmacol. 2016, 26, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Cervesi, C.; Galling, B.; Molteni, S.; Walyzada, F.; Ameis, S.H.; Gerhard, T.M.; Olfson, M.; Correll, C.U. Antipsychotic Use Trends in Youth with Autism Spectrum Disorder and/or Intellectual Disability: A Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 456–468. [Google Scholar] [CrossRef]
- SAMHSA. Guidance on Strategies to Promote Best Practice in Antipsychotic Prescribing for Children and Adolescents; SAMHSA: Rockville, MD, USA, 2019. [Google Scholar]
- Hemmingsson, E. Early Childhood Obesity Risk Factors: Socioeconomic Adversity, Family Dysfunction, Offspring Distress, and Junk Food Self-Medication. Curr. Obes. Rep. 2018, 7, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Nagata, J.M.; Palar, K.; Gooding, H.C.; Garber, A.K.; Bibbins-Domingo, K.; Weiser, S.D. Food Insecurity and Chronic Disease in US Young Adults: Findings from the National Longitudinal Study of Adolescent to Adult Health. J. Gen. Intern. Med. 2019, 34, 2756–2762. [Google Scholar] [CrossRef]
- American Diabetes Association; American Psychiatric Association; American Association of Clinical Endocrinologists; North American Association for the Study of Obesity. Consensus Development Conference on Antipsychotic Drugs and Obesity and Diabetes. Diabetes Care 2004, 27, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Lin, S.-C.; Huang, Y.-H.; Wang, F.-C.; Huang, C.-J. Early prediction of olanzapine-induced weight gain for schizophrenia patients. Psychiatry Res. 2018, 263, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Gidding, S.S.; Dennison, B.A.; Birch, L.L.; Daniels, S.R.; Gilman, M.W.; Lichtenstein, A.H.; Rattay, K.T.; Steinberger, J.; Stettler, N.; Van Horn, L. Dietary Recommendations for Children and Adolescents. Circulation 2005, 112, 2061–2075. [Google Scholar] [CrossRef]
- Katsagoni, C.N.; Psarra, G.; Georgoulis, M.; Tambalis, K.D.; Panagiotakos, D.B.; Sidossis, L.S.; ΕΥΖΗΝ Study Group. High and moderate adherence to Mediterranean lifestyle is inversely associated with overweight, general and abdominal obesity in children and adolescents: The MediLIFE-index. Nutr. Res. 2020, 73, 38–47. [Google Scholar] [CrossRef]
- Velázquez-López, L.; Santiago-Díaz, G.; Nava-Hernández, J.; Muñoz-Torres, A.V.; Medina-Bravo, P.; Torres-Tamayo, M. Mediterranean-style diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC Pediatr. 2014, 14, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. 2019, 35, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Spear, B.A.; Barlow, S.E.; Ervin, C.; Ludwig, D.S.; Saelens, B.E.; Schetzina, K.E.; Taveras, E.M. Recommendations for Treatment of Child and Adolescent Overweight and Obesity. Pediatrics 2007, 120, S254–S288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Toro, M.; Vicens-Pons, E.; Gili, M.; Roca, M.; Serrano-Ripoll, M.J.; Vives, M.; Leiva, A.; Yañez, A.M.; Bennasar-Veny, M.; Oliván-Blázquez, B. Obesity, metabolic syndrome and Mediterranean diet: Impact on depression outcome. J. Affect. Disord. 2016, 194, 105–108. [Google Scholar] [CrossRef]
- Kim, T.-H.; Choi, J.-Y.; Lee, H.-H.; Park, Y.S. Associations between Dietary Pattern and Depression in Korean Adolescent Girls. J. Pediatr. Adolesc. Gynecol. 2015, 28, 533–537. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.; Zheng, J.; Regmi, A.; Hu, S.Q.; Gou, L.; Chen, L.-L. Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 110, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J. Exp. Biol. 2018, 221, jeb164202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basaranoglu, M.; Basaranoglu, G.; Sabuncu, T.; Senturk, H. Fructose as a key player in the development of fatty liver disease. World J. Gastroenterol. 2013, 19, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front. Biosci. 2019, 24, 186–211. [Google Scholar] [CrossRef]
- von Philipsborn, P.; Stratil, J.M.; Burns, J.; Busert, L.K.; Pfadenhauer, L.M.; Polus, S.; Holzapfel, C.; Hauner, H.; Rehfuess, E. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 2019, 6. [Google Scholar] [CrossRef]
- Ha, K.; Song, Y. Associations of Meal Timing and Frequency with Obesity and Metabolic Syndrome among Korean Adults. Nutrients 2019, 11, 2437. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Cornelissen, G.; Mojto, V.; Fatima, G.; Wichansawakun, S.; Singh, M.; Kartikey, K.; Sharma, J.P.; Torshin, V.I.; Chibisov, S.; et al. Effects of circadian restricted feeding on parameters of metabolic syndrome among healthy subjects. Chronobiol. Int. 2020, 37, 395–402. [Google Scholar] [CrossRef]
- Pot, G.K.; Almoosawi, S.; Stephen, A.M. Meal Irregularity and Cardiometabolic Consequences: Results from Observational and Intervention Studies. Proc. Nutr. Soc. 2016, 75, 475–486. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Kervezee, L.; Boudreau, P.; Gonzales-Aste, F.; Vujovic, N.; Scheer, F.A.J.L.; Boivin, D.B. Effects of Shift Work on the Eating Behavior of Police Officers on Patrol. Nutrients 2020, 12, 999. [Google Scholar] [CrossRef] [Green Version]
- Sofer, S.; Eliraz, A.; Madar, Z.; Froy, O. Concentrating carbohydrates before sleep improves feeding regulation and metabolic and inflammatory parameters in mice. Mol. Cell. Endocrinol. 2015, 414, 29–41. [Google Scholar] [CrossRef]
- Schnepper, R.; Richard, A.; Wilhelm, F.; Blechert, J. A combined mindfulness–prolonged chewing intervention reduces body weight, food craving, and emotional eating. J. Consult. Clin. Psychol. 2019, 87, 106–111. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; Ramírez-Campillo, R.; Peterson, M.D.; Solera-Martínez, M. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: A systematic review and meta-analysis. Br. J. Sports Med. 2016, 52, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Child & Adolescent Health Measurement Initiative (CAHMI). 2016 National Survey of Childrens’ Health; Data Resource Center for Child and Adolescent Health: Baltimore, MD, USA, 2016. [Google Scholar]
- Rideout, V.J.; Foehr, U.G.; Roberts, D.F. Generation M2: Media in the Lives of 8- to 18-Year-Olds; Henry J. Kaiser Family Foundation: Menlo Park, CA, USA, 2010. [Google Scholar]
- Korczak, D.J.; Madigan, S.; Colasanto, M. Children’s Physical Activity and Depression: A Meta-analysis. Pediatrics 2017, 139, e20162266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberste, M.; Medele, M.; Javelle, F.; Wunram, H.L.; Walter, D.; Bloch, W.; Bender, S.; Fricke, O.; Joisten, N.; Walzik, D.; et al. Physical Activity for the Treatment of Adolescent Depression: A Systematic Review and Meta-Analysis. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Ramtekkar, U.; Ivanenko, A. Sleep in Children with Psychiatric Disorders. Semin. Pediatr. Neurol. 2015, 22, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef]
- Nedeltcheva, A.V.; Scheer, F.A.J.L. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Beydoun, M.A.; Wang, Y. Is Sleep Duration Associated with Childhood Obesity? A Systematic Review and Meta-analysis. Obesity 2008, 16, 265–274. [Google Scholar] [CrossRef]
- Spaeth, A.M.; Hawley, N.L.; Raynor, H.A.; Jelalian, E.; Greer, A.; Crouter, S.E.; Coffman, D.L.; Carskadon, M.A.; Owens, J.A.; Wing, R.R.; et al. Sleep, energy balance, and meal timing in school-aged children. Sleep Med. 2019, 60, 139–144. [Google Scholar] [CrossRef]
- Thellman, K.E.; Dmitrieva, J.; Miller, A.L.; Harsh, J.R.; LeBourgeois, M.K. Sleep timing is associated with self-reported dietary patterns in 9- to 15-year-olds. Sleep Health 2017, 3, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Asarnow, L.D.; Greer, S.M.; Walker, M.P.; Harvey, A.G. The impact of sleep improvement on food choices in Adolescents with Late Bedtimes. J. Adolesc. Health 2018, 60, 570–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HealthyChildren.org. Sleep Tips for Your Family’s Mental Health. Available online: https://www.healthychildren.org/English/healthy-living/sleep/Pages/Sleep-and-Mental-Health.aspx (accessed on 11 August 2020).
- Siriwat, R.; Wang, M.L.; Shah, V.; Mehra, R.; Ibrahim, S. Obstructive Sleep Apnea and Insulin Resistance in Obese Children. J. Clin. Sleep Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Baran, R.T.; Atar, M.; Pirgon, Ö.; Filiz, S.; Filiz, M.B. Restless Legs Syndrome and Poor Sleep Quality in Obese Children and Adolescents. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Shomaker, L.B.; Berman, Z.; Burke, M.; Annameier, S.K.; Pivarunas, B.; Sanchez, N.; Smith, A.D.; Hendrich, S.; Riggs, N.R.; Legget, K.T.; et al. Mindfulness-based group intervention in adolescents at-risk for excess weight gain: A randomized controlled pilot study. Appetite 2019, 140, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Omiwole, M.; Richardson, C.; Huniewicz, P.; Dettmer, E.; Paslakis, G. Review of Mindfulness-Related Interventions to Modify Eating Behaviors in Adolescents. Nutrients 2019, 11, 2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelishadi, R.; Farajzadegan, Z.; Bahreynian, M. Association between vitamin D status and lipid profile in children and adolescents: A systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2014, 65, 404–410. [Google Scholar] [CrossRef]
- Tavakoli, F.; Namakin, K.; Zardast, M. Vitamin D Supplementation and High-Density Lipoprotein Cholesterol: A Study in Healthy School Children. Iran. J. Pediatr. 2016, 26. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Del-Río-Navarro, B.E.; Miranda-Lora, A.L.; Huang, F.; Hall-Mondragon, M.S.; Leija-Martínez, J.J. Effect of supplementation with omega-3 fatty acids on hypertriglyceridemia in pediatric patients with obesity. J. Pediatr. Endocrinol. Metab. 2019, 32, 811–819. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Su, K.-P.; Mondelli, V.; Pariante, C.M. Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Clinical Trials and Biological Studies. Neuropsychopharmacology 2017, 43, 534–545. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. The effect of omega-3 polyunsaturated fatty acid supplementation on emotional dysregulation, oppositional behaviour and conduct problems in ADHD: A systematic review and meta-analysis. J. Affect. Disord. 2016, 190, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Sarris, J.; Mischoulon, D.; Schweitzer, I. Omega-3 for Bipolar Disorder. J. Clin. Psychiatry 2011, 73, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramaniapillai, M.; Fan, B.; Lu, C.-Y.; Mclntyer, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry 2019, 9, 190–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, J.G. EPA but Not DHA Appears to Be Responsible for the Efficacy of Omega-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Depression: Evidence from a Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Nutr. 2009, 28, 525–542. [Google Scholar] [CrossRef] [PubMed]
- El Amrousy, D.; El-Afify, D. Effects of alpha lipoic acid as a supplement in obese children and adolescents. Cytokine 2020, 130, 155084. [Google Scholar] [CrossRef]
- Huerta, M.G.; Roemmich, J.N.; Kington, M.L.; Bovbjerg, M.L.; Weltman, A.; Holmes, V.F.; Patrie, J.T.; Rogol, A.D.; Nadler, J.L. Magnesium Deficiency Is Associated with Insulin Resistance in Obese Children. Diabetes Care 2005, 28, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Balk, E.; Tatsioni, A.; Lichtenstein, A.; Lau, J.; Pittas, A. Effect of Chromium Supplementation on Glucose Metabolism and Lipids. Diabetes Care 2007, 30, 2154–2163. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cao, J.C.; Medina, M.W.; Moran, V.H.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Rizvi, S.W. New Therapeutic Approaches in Obesity and Metabolic Syndrome Associated with Polycystic Ovary Syndrome. Cureus 2017, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Xu, X.; Yin, M.; Zhang, Y.; Huang, L.; Chen, R.; Ni, J. Effects of berberine on blood glucose in patients with type 2 diabetes mellitus: A systematic literature review and a meta-analysis. Endocr. J. 2019, 66, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Gui, Q.-F.; Xu, Z.-R.; Xu, K.-Y.; Yang, Y.-M. The Efficacy of Ginseng-Related Therapies in Type 2 Diabetes Mellitus. Medicine 2016, 95, e2584. [Google Scholar] [CrossRef] [PubMed]
- Jebeile, H.; Gow, M.L.; Baur, L.A.; Garnett, S.P.; Paxton, S.J.; Lister, N.B. Association of Pediatric Obesity Treatment, Including a Dietary Component, with Change in Depression and Anxiety. JAMA Pediatr. 2019, 173, e192841. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rice, J.; Ramtekkar, U. Integrative Management of Metabolic Syndrome in Youth Prescribed Second-Generation Antipsychotics. Med. Sci. 2020, 8, 34. https://doi.org/10.3390/medsci8030034
Rice J, Ramtekkar U. Integrative Management of Metabolic Syndrome in Youth Prescribed Second-Generation Antipsychotics. Medical Sciences. 2020; 8(3):34. https://doi.org/10.3390/medsci8030034
Chicago/Turabian StyleRice, Jessie, and Ujjwal Ramtekkar. 2020. "Integrative Management of Metabolic Syndrome in Youth Prescribed Second-Generation Antipsychotics" Medical Sciences 8, no. 3: 34. https://doi.org/10.3390/medsci8030034
APA StyleRice, J., & Ramtekkar, U. (2020). Integrative Management of Metabolic Syndrome in Youth Prescribed Second-Generation Antipsychotics. Medical Sciences, 8(3), 34. https://doi.org/10.3390/medsci8030034