Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs
Abstract
:1. Introduction
2. Aging-Related Morphological Changes in the Brains of Dogs
3. Aging-Related Metabolic Changes in the Brains
4. Aging-Related Cognitive and Behavioral Changes in Dogs
5. Risk Factors for Brain Aging and Cognitive Dysfunction Syndrome
6. Nutritional Solutions for Healthy Brain Aging and CDS Management
6.1. Ketone Bodies as an Alternative Energy Source for the Brain
6.2. Nutritional Interventions Targeting Oxidative Damage-Related Brain Aging
6.3. Nutritional Interventions Testing Blends of Nutrients and/or Bioactives
7. Conclusions
Funding
Conflicts of Interest
References
- Head, E. Brain aging in dogs: Parallels with human brain aging and Alzheimer’s disease. Vet. Therap. Res. App. Vet. Med. 2001, 2, 247–260. [Google Scholar]
- Borras, D.; Ferrer, I.; Pumarola, M. Age-related changes in the brain of the dog. Vet. Path. 1999, 36, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Dimakopoulos, A.C.; Mayer, R.J. Aspects of neurodegeneration in the canine brain. J. Nutr. 2002, 132, 1579S–1582S. [Google Scholar] [CrossRef] [Green Version]
- Su, M.Y.; Head, E.; Brooks, W.M.; Wang, Z.; Muggenburg, B.A.; Adam, G.E.; Sutherland, R.; Cotman, C.W.; Nalcioglu, O. Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol. Aging. 1998, 19, 479–485. [Google Scholar] [CrossRef]
- Su, M.Y.; Tapp, P.D.; Vu, L.; Chen, Y.F.; Chu, Y.; Muggenburg, B.; Chiou, J.Y.; Chen, C.; Wang, J.; Bracco, C.; et al. A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Prog Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 389–397. [Google Scholar] [CrossRef]
- Uchida, K.; Nakayama, H.; Goto, N. Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J. Vet. Med. Sci./Jap. Soc. Vet. Sci. 1991, 53, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Cummings, B.J.; Head, E.; Afagh, A.J.; Milgram, N.W.; Cotman, C.W. Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol. Learn. Mem. 1996, 66, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.H.; Song, G.S.; Yhee, J.Y.; Kim, J.H.; Im, K.S.; Nho, W.G.; Lee, J.H.; Sur, J.H. Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction. J. Comp. Pathol. 2011, 145, 45–58. [Google Scholar] [CrossRef]
- Adams, B.; Chan, A.; Callahan, H.; Siwak, C.; Tapp, D.; Ikeda-Douglas, C.; Atkinson, P.; Head, E.; Cotman, C.W.; Milgram, N.W. Use of a delayed non-matching to position task to model age-dependent cognitive decline in the dog. Behav. Brain Res. 2000, 108, 47–56. [Google Scholar] [CrossRef]
- Chan, A.D.; Nippak, P.M.; Murphey, H.; Ikeda-Douglas, C.J.; Muggenburg, B.; Head, E.; Carl, W.; Milgram, N.W. Visuospatial impairments in aged canines (Canis familiaris): The role of cognitive-behavioral flexibility. Behav. Neurosci. 2002, 116, 443–454. [Google Scholar] [CrossRef]
- Azkona, G.; Garcia-Belenguer, S.; Chacon, G.; Rosado, B.; Leon, M.; Palacio, J. Prevalence and risk factors of behavioural changes associated with age-related cognitive impairment in geriatric dogs. J. Small Ani. Pract. 2009, 50, 87–91. [Google Scholar] [CrossRef]
- Landsberg, G.M.; Hunthausen, W.; Ackerman, L. The effects of aging on the behavior of senior pets. In Handbook of Behavior Problems of the Dog and Cat, 2nd ed.; Landsberg, G.M., Hunthausen, W., Ackerman, L., Eds.; Saunders: Edinburgh, UK, 2003; pp. 269–304. [Google Scholar]
- Neilson, J.C.; Hart, B.L.; Cliff, K.D.; Ruehl, W.W. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 2001, 218, 1787–1791. [Google Scholar] [CrossRef]
- Rème, C.A.; Dramard, V.; Kern, L.; Hofmans, J.; Halsberghe, C.; Mombiela, D.V. Effect of S-adenosylmethionine tablets on the reduction of age-related mental decline in dogs: A double-blinded, placebo-controlled trial. Vet. Ther. 2008, 9, 69–82. [Google Scholar]
- Ruehl, W.W.; Bruyette, D.S.; DePaoli, A.; Cotman, C.W.; Head, E.; Milgram, N.W.; Cummings, B.J. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer’s disease: Clinical presentation, cognitive testing, pathology and response to l-deprenyl therapy. In Progress in Brain Research; Yu, P.M., Boulton, A.A., Tipton, F., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1995; pp. 217–225. [Google Scholar]
- Ruehl, W.W.; Hart, B.L. Canine cognitive dysfunction. In Psychopharmacology of Animal Behavior Disorders; Dodman, N.H., Shuster, L., Eds.; Blackwell Scientific: Boston, MA, USA, 1998; pp. 283–304. [Google Scholar]
- Pan, Y.; Araujo, J.A.; Burrows, J.; de Rivera, C.; Gore, A.; Bhatnagar, S.; Milgram, N.W. Cognitive enhancement in middle-aged and old cats with dietary supplementation with a nutrient blend containing fish oil, B vitamins, antioxidants and arginine. Brit. J. Nutr. 2013, 110, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Kennedy, A.D.; Jӧnsson, T.J.; Milgram, N.W. Cognitive enhancement in old dogs from dietary supplementation with a nutrient blend containing arginine, antioxidants, B vitamins and fish oil. Brit. J. Nutr. 2018, 119, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Larson, B.; Araujo, J.A.; Lau, W.; de Rivera, C.; Santana, R.; Gore, A.; Milgram, N.W. Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs. Brit. J. Nutr. 2010, 103, 1746–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Landsberg, G.; Mougeot, I.; Kelly, S.; Xu, H.; Bhatnagar, S.; Gardner, C.L.; Milgram, N.W. Efficacy of a Therapeutic Diet on Dogs with Signs of Cognitive Dysfunction Syndrome (CDS): A Prospective Double Blinded Placebo Controlled Clinical Study. Front. Nutr. 2018, 5, 127. [Google Scholar] [CrossRef]
- Cotman, C.W.; Head, E. The Canine (Dog) Model of Human Aging and Disease: Dietary, Environmental and Immunotherapy Approaches. J. Alz. Dis. 2008, 15, 685–707. [Google Scholar] [CrossRef]
- Dickson, D.W. Neuropathology of Alzheimer’s disease and other dementias. Clin. Geriat. Med. 2001, 17, 209–228. [Google Scholar] [CrossRef]
- Ito, M.; Hatazawa, J.; Yamaura, H.; Matsuzawa, T. Age-related brain atrophy and mental deterioration--a study with computed tomography. Brit. J. Rad. 1981, 54, 384–390. [Google Scholar] [CrossRef]
- Tapp, P.D.; Siwak, C.T.; Gao, F.Q.; Chiou, J.Y.; Black, S.E.; Head, E.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W.; Su, M.Y. Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging. J. Neurosci. 2004, 24, 8205–8213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, J.K.; Uchida, K.; Nakayama, H. White matter myelin loss in the brains of aged dogs. Exp. Geront. 2012, 47, 263–269. [Google Scholar] [CrossRef]
- Lintl, P.; Braak, H. Loss of intracortical myelinated fibers: A distinctive age-related alteration in the human striate area. Acta Neuropathol. 1983, 61, 178–182. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc. Psy. Neurol. 2012, 2012, 1–15. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C.; Mussivand, T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurolog. Res. 1993, 15, 146–153. [Google Scholar] [CrossRef]
- Uchida, K.; Miyauchi, Y.; Nakayama, H.; Goto, N. Amyloid angiopathy with cerebral hemorrhage and senile plaque in aged dogs. Jap. J. Vet. Sci. 1990, 52, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, G.G.; Ranalli, P.J.; Micel, P.N. Amyloid angiopathy in Alzheimer’s disease. Can. J. Neurol. Sci. 1987, 14, 564–569. [Google Scholar]
- Pimentel-Coelho, P.M.; Rivest, S. The early contribution of cerebrovascular factors to the pathogenesis of Alzheimer’s disease. Eur. J. Neurosci. 2012, 35, 1917–1937. [Google Scholar] [CrossRef]
- Siwak-Tapp, C.T.; Head, E.; Muggenburg, B.A.; Milgram, N.W.; Cotman, C.W. Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol. Aging 2008, 29, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, M.; Gangitano, C.; Ceccariglia, S.; Carrasco, J.L.; Del Fà, A.; Rodríguez, M.J.; Michetti, F.; Mascort, J.; Mahy, N. Canine cognitive dysfunction and the cerebellum: Acetylcholinesterase reduction, neuronal and glial changes. Brain Res. 2007, 1139, 85–94. [Google Scholar] [CrossRef]
- Kiatipattanasakul, W.; Nakamura, S.; Hossain, M.M.; Nakayama, H.; Uchino, T.; Shumiya, S.; Goto, N.; Doi, K. Apoptosis in the aged dog brain. Acta Neuropathol. 1996, 92, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Czasch, S.; Paul, S.; Baumgärtner, W. A comparison of immunohistochemical and silver staining methods for the detection of diffuse plaques in the aged canine brain. Neurobiol. Aging. 2006, 27, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Head, E.; Rofina, J.; Zicker, S. Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging. Vet. Clin. North. Am. Small. Anim. Pract. 2008, 38, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Rohn, T.T.; Head, E. Caspase activation in Alzheimer’s disease: Early to rise and late to bed. Rev. Neurosci. 2008, 10, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Vester, B.M.; Apanavicius, C.J.; Kirby, N.A.; Schook, L.B. Implications of age and diet on canine cerebral cortex transcription. Neurobiol. Aging 2009, 30, 1314–1326. [Google Scholar] [CrossRef]
- Siwak-Tapp, C.T.; Head, E.; Muggenburg, B.A.; Milgram, N.W.; Cotman, C.W. Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol. Learn Mem. 2007, 88, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Pekcec, A.; Baumgärtner, W.; Bankstahl, J.P.; Stein, V.M.; Potschka, H. Effect of aging on neurogenesis in the canine brain. Aging Cell. 2008, 7, 368–374. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011, 3, 0137–0159. [Google Scholar] [CrossRef]
- Head, E.; Pop, V.; Sarsoza, F.; Kayed, R.; Beckett, T.L.; Studzinski, C.M.; Tomic, J.L.; Glabe, C.G.; Murphy, M.P. Amyloid-beta peptide and oligomers in the brain and cerebrospinal fluid of aged canines. J. Alz. Dis. 2010, 20, 637–646. [Google Scholar]
- Hoyer, S. The young-adult and normally aged brain. Its blood flow and oxidative metabolism. A review--part I. Arch Gerontol. Geriatr. 1982, 1, 101–116. [Google Scholar] [CrossRef]
- Magistretti, P.J. Role of glutamate in neuron-glia metabolic coupling. Am. J. Clin. Nutr. 2009, 90, 875S–880S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentourkia, M.; Bol, A.; Ivanoiu, A.; Labar, D.; Sibomana, M.; Coppens, A.; Michel, C.; Cosnard, G.; De Volder, A.G. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: Effect of aging. J. Neurol. Sci. 2000, 181, 19–28. [Google Scholar] [CrossRef]
- Rapoport, S.I.; London, E.D.; Takei, H. Brain metabolism and blood flow during development and aging of the Fischer-344 rat. Exp. Brain Res. 1982, 5, 86–101. [Google Scholar] [PubMed]
- London, E.D.; Ohata, M.; Takei, H.; French, A.W.; Rapoport, S.I. Regional cerebral metabolic rate for glucose in beagle dogs of different ages. Neurobiol. Aging. 1983, 4, 121–126. [Google Scholar] [CrossRef]
- Noda, A.; Ohba, H.; Kakiuchi, T.; Futatsubashi, M.; Tsukada, H.; Nishimura, S. Age-related changes in cerebral blood flow and glucose metabolism in conscious rhesus monkeys. Brain Res. 2002, 936, 76–81. [Google Scholar] [CrossRef]
- Alexander, G.E.; Chen, K.; Pietrini, P.; Rapoport, S.I.; Reiman, E.M. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies. Am. J. Psych. 2002, 159, 738–745. [Google Scholar] [CrossRef]
- Hunt, A.; Schonknecht, P.; Henze, M.; Seidl, U.; Haberkorn, U.; Schroder, J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psy. Res.: Neuroimaging 2007, 155, 147–154. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell Endocrinol. 2001, 177, 125–134. [Google Scholar] [CrossRef]
- Chiu, S.L.; Chen, C.M.; Cline, H.T. Insulin receptor signalling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008, 58, 708–719. [Google Scholar] [CrossRef] [Green Version]
- Frölich, L.; Blum-Degen, D.; Bernstein, H.G.; Engelsberger, S.; Humrich, J.; Laufer, S.; Muschner, D.; Thalheimer, A.; Türk, A.; Hoyer, S.; et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural. Transm. 1998, 105, 423–438. [Google Scholar] [CrossRef]
- Hoyer, S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur. J. Pharm. 2004, 490, 115–125. [Google Scholar] [CrossRef]
- Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.; Hofman, A.; Breteler, M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999, 53, 1937–1942. [Google Scholar] [CrossRef]
- Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern. Med. Rev. 2009, 14, 373–379. [Google Scholar]
- Han, W.; Li, C. Linking type 2 diabetes and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2010, 107, 6557–6558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blass, J.P.; Gibson, G.E.; Hoyer, S. The role of the metabolic lesion in Alzheimer’s disease. J. Alzheimers Dis. 2002, 4, 225–232. [Google Scholar] [CrossRef]
- Reger, M.A.; Henderson, S.T.; Hale, C.; Cholerton, B.; Baker, L.D.; Watson, G.S.; Hyde, K.; Chapman, D.; Craft, S. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 2004, 25, 311–314. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Dangelo, K.; Couch, S.C.; Benoit, S.C.; Clegg, D.J. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 2012, 33, e19–e425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avgerinos, K.I.; Egan, J.M.; Mattson, M.P.; Kapogiannis, D. Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies. Age. Res. Rev. 2020, 58, 101001. [Google Scholar] [CrossRef]
- Milgram, N.W. Cognitive experience and its effect on age-dependent cognitive decline in beagle dogs. Neurochem. Res. 2003, 28, 1677–1682. [Google Scholar] [CrossRef]
- Studzinski, C.M.; Christie, L.A.; Araujo, J.A.; Burnham, W.M.; Head, E.; Cotman, C.W.; Milgram, N.W. Visuospatial function in the beagle dog: An early marker of cognitive decline in a model of human aging and dementia. Neurobiol. Learn. Mem. 2006, 86, 197–204. [Google Scholar] [CrossRef]
- Milgram, N.W.; Head, E.; Weiner, E.; Thomas, E. Cognitive functions and aging in the dog: Acquisition of non spatial visual tasks. Behav. Neurosci. 1994, 108, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Snigdha, S.; Christie, L.A.; De Rivera, C.; Araujo, J.A.; Milgram, N.W.; Cotman, C.W. Age and distraction are determinants of performance on a novel visual search task in aged Beagle dogs. Age 2012, 34, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Tapp, P.D.; Siwak, C.T.; Estrada, J.; Head, E.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W. Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging. Learn. Mem. 2003, 10, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osella, M.C.; Re, G.; Odore, R.; Girardi, C.; Badino, P.; Barbero, R.; Bergamasco, L. Canine cognitive dysfunction syndrome: Prevalence, clinical signs and treatment with a neuroprotective nutraceutical. App. Anim. Behav. Sci. 2007, 105, 297–310. [Google Scholar] [CrossRef]
- Amaducci, L.; Lippi, A. Risk factors for Alzheimer’s disease. Int. J. Geriat. Psych. 1992, 7, 383–388. [Google Scholar] [CrossRef]
- Salvin, H.E.; McGreevy, P.D.; Sachdev, P.S.; Valenzuela, M.J. Under diagnosis of canine cognitive dysfunction: A cross-sectional survey of older companion dogs. Vet. J. 2010, 184, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Brookmeyer, R.S.; Gray, S.C.; Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Pub. Health 1998, 88, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Grimm, A.; Lim, Y.A.; Mensah-Nyagan, A.G.; Götz, J.; Eckert, A. Alzheimer’s disease, oestrogen and mitochondria: An ambiguous relationship. Mol. Neurobiol. 2012, 46, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Pike, C.J.; Carroll, J.C.; Rosario, E.R.; Barron, A.M. Protective actions of sex steroid hormones in Alzheimer’s disease. Front. Neuroendocrinol. 2009, 30, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Hart, B.L. Effect of gonadectomy on subsequent development of age-related cognitive impairment in dogs. J. Am.Vet. Med. Assoc. 2001, 219, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Brown, C.M.; Wise, P.M. Mechanisms of neuroprotection by estrogen. Endocrine 2006, 29, 209–215. [Google Scholar] [CrossRef]
- Cole, G.M.; Ma, Q.L.; Frautschy, S.A. Omega-3 fatty acids and dementia. Prostaglan. Leukot. Essent. Fatty Acids 2009, 81, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.W.; Green, R.; Ramos, M.I.; Allen, L.H.; Mungas, D.M.; Jagust, W.J.; Haan, M.N. Homocysteine and cognitive function in the Sacramento Area, Latino Study on Aging. Am. J. Clin. Nutr. 2003, 78, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Selhub, J.; Bagley, L.C.; Miller, J.; Rosenberg, I.H. B vitamins, homocysteine, and neurocognitive function in the elderly. Am. J. Clin. Nutr. 2000, 71, 614S–620S. [Google Scholar] [CrossRef]
- Selhub, J.; Troen, A.; Rosenberg, I.H. B vitamins and the aging brain. Nutr. Rev. 2010, 68, S112–S118. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R. Oxidative Stress Hypothesis in Alzheimer’s Disease. Free Radic. Biol. Med. 1997, 23, 134–147. [Google Scholar] [CrossRef]
- Taupin, P. A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2010, 10, 16–21. [Google Scholar] [CrossRef]
- Weninger, S.C.; Yankner, B.A. Inflammation and Alzheimer disease: The good, the bad, and the ugly. Nat. Med. 2001, 7, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Onyango, I.G.; Jauregui, G.V.; Čarná, M.; Bennett, J.P.; Stokin, G.B. Neuroinflammation in Alzheimer’s Disease. Biomedicines 2021, 9, 524. [Google Scholar] [CrossRef]
- Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005, 4, 487–499. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Attems, J. Prevalence and impact of cerebrovascular pathology in Alzheimer’s disease and Parkinsonism. Acta. Neurol. Scan. 2006, 114, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.T.; Degnan, A.J.; Levy, L.M. Genetics of Alzheimer Disease. Am. J. Neuroradiol. 2014, 35, 457–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Businaro, R.; Ippoliti, F.; Ricci, S.; Canitano, N.; Fuso, A. Alzheimer’s disease promotion by obesity: Induced mechanisms-molecular links and perspectives. Curr. Geront. Geriat. Res. 2012, 2012, 986823. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Amek, M.U. Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer’s disease. Neuropsych. Dis. Treat. 2008, 4, 855–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluta, R.; Ułamek-Kozioł, M.; Januszewski, S.; Czuczwar, S. Amyloid pathology in the brain after ischemia. Folia Neuropathol. 2019, 57, 220–226. [Google Scholar] [CrossRef]
- Pluta, R.; Januszewski, S.; Czuczwar, S.J. Brain Ischemia as a Prelude to Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 636–653. [Google Scholar] [CrossRef] [PubMed]
- Head, E.; Liu, J.; Hagen, T.M.; Muggenburg, B.A.; Milgram, N.W.; Ames, B.N.; Cotman, C.W. Oxidative damage increases with age in a canine model of human brain aging. J. Neurochem. 2002, 82, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, T.R.; Kjekshus, J.; Berk, K.; Haghfelt, T.; Færgeman, O.; Thorgeirsson, G.; Pyörälä, K.; Miettinen, T.; Wilhelmsen, L.; Olsson, A.G.; et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Pan, Y. Enhancing Brain Functions in Senior Dogs: A New Nutritional Approach. Top. Companion Anim. Med. 2011, 26, 10–16. [Google Scholar] [CrossRef]
- Gu, Y.; Scarmeas, N. Dietary patterns in Alzheimer’s disease and cognitive aging. Cur. Alz. Res. 2011, 8, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.F., Jr. Brain metabolism during fasting. J. Clin. Invest. 1967, 46, 1589–1595. [Google Scholar] [CrossRef]
- Gjedde, A.; Crone, C. Induction processes in blood-brain transfer of ketone bodies during starvation. Am. J. Physiol. 1975, 229, 1165–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, I.A.; Carruthers, A.; Vannucci, S.J. Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J. Cereb. Blood Flow Metab. 2007, 27, 1766–1791. [Google Scholar] [CrossRef]
- Saggerson, D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 2008, 28, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.M.; Kelley, B.; Wang, J.; Strauss, D.; Eagles, D.A.; Bondy, C.A. A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 2003, 144, 2676–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheless, J.W. The ketogenic diet: An effective medical therapy with side effects. J. Child Neurol. 2001, 16, 633–635. [Google Scholar] [CrossRef] [Green Version]
- Papamandjaris, A.A.; MacDougall, D.E.; Jones, P.J. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sci. 1998, 62, 1203–1215. [Google Scholar] [CrossRef]
- de Bruijne, J.J.; Altszuler, N.; Hampshire, J.; Visser, T.J.; Hackeng, W.H.L. Fat mobilization and plasma hormone levels in fasted dogs. Metabolism 1981, 30, 190–194. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Zhang, X.S.; Liu, L.; Zhou, B.; Mo, R.; Li, Y.; Li, H.Z.; Li, F.; Tao, Y.; et al. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4−/−: A double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr. 2020, 39, 2092–2105. [Google Scholar] [CrossRef]
- Harman, D. Aging and oxidative stress. J. Int. Fed. Clin. Chem. 1998, 10, 24–27. [Google Scholar]
- Cotman, C.W.; Head, E.; Muggenburg, B.A.; Zicker, S.; Milgram, N.W. Brain aging in the canine-a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol. Aging 2002, 23, 809–818. [Google Scholar] [CrossRef]
- Fahnestock, M.; Marchese, M.; Head, E.; Pop, V.; Michalski, B.; Milgram, W.N.; Cotman, C.W. BDNF increases with behavioral enrichment and an antioxidant diet in the aged dog. Neurobiol. Aging 2012, 33, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Milgram, N.W.; Landsberg, G.; Merrick, D.; Underwood, M.Y. A novel mechanism for cognitive enhancement in aged dogs with the use of a calcium-buffering protein. J. Vet. Behav. 2015, 10, 217–222. [Google Scholar] [CrossRef]
- Araujo, J.A.; Landsberg, G.; Miolo, A. Assessment of the effects of a phosphatidylserine-containing nutraceutical on visuospatial memory of aged dogs: Neuropsychological testing. J. Vet. Pharm. Therap. 2006, 29, 205–206. [Google Scholar] [CrossRef]
- Head, E.; Murphey, H.L.; Dowling, A.L.S.; McCarty, K.L.; Bethel, S.R.; Nitz, J.A.; Pleiss, M.; Vanrooyen, J.; Grossheim, M.; Smiley, J.R.; et al. Combination Cocktail Improves Spatial Attention in a Canine Model of Human Aging and Alzheimer’s Disease. J. Alz. Dis. 2012, 32, 1029–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, S.E.; Barabas, S.; Craze, P.G. Nutritional supplementation in cases of canine cognitive dysfunction-A clinical trial. App. Anim. Behav. Sci. 2007, 105, 284–296. [Google Scholar] [CrossRef]
- Pan, Y.; Dobson, H.; Yang, S.; Gati, J.; Szekeres, T.; Heimann, J.; Paradis, A.; Xu, H.; Bhatnagar, S.; Milgram, N.W. A nutrient-enhanced diet reduced the atrophy of interthalamic adhesion thickness in cats. 2021; manuscript in preparation. [Google Scholar]
- Noh, D.; Choi, S.; Choi, H.; Lee, H.; Lee, K. Evaluation of interthalamic adhesion size as an indicator of brain atrophy in dogs with and without cognitive dysfunction. Vet. Radiol. Ultrasound 2017, 58, 581–587. [Google Scholar] [CrossRef]
- Babicsak, V.R.; Klein, A.V.; Tsunemi, M.H.; Vulcano, L.C. Brain parenchymal changes during normal aging in domestic cats. Brazil. J. Vet. Res. 2018, 38, 1196–1202. [Google Scholar] [CrossRef]
- McDonald, C.R.; McEvoy, L.K.; Gharapetian, L.; Fennema-Notestine, C.; Hagler, D.J.; Holland, D.; Koyama, A.; Brewer, J.B.; Dale, A.M. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 2009, 73, 457–465. [Google Scholar] [CrossRef]
Aging-Related Changes | Human Brains | Dog Brains | Reference |
---|---|---|---|
Cortical atrophy | Total brain volumes started to decline in the forties significantly and continued to decline through fifties and seventies. Cortical atrophy is not linear and uniform across brain regions. Increased atrophy rates across all neocortical regions were observed in subjects with clinical signs of cognitive impairment. Medial temporal cortex had greater atrophy rates in subjects with early diseases while greater atrophy rates occurred in prefrontal, parietal, posterior temporal, and cingulate cortex in subjects at later stages of mild cognitive impairment and AD. | Significant decrease in total brain volume was observed only in senior dogs aged 12 years and older. Frontal lobe atrophy developed in the old dogs aged 8–11 years. Hippocampal volume also decreased with age, but occipital lobe did not decline with age. The neuron density was significantly reduced in the brains of dogs with CDS compared with age-matched control dogs. | [1,4,8,21,22,23,24,113] |
Cerebral amyloid angiopathy | Amyloid (Aβ1-40) deposits in blood vessel walls. | Amyloid (Aβ1-40) deposits in blood vessel walls. | [1,8] |
Ventricular enlargement | Ventricle volume was constant between 20 and 39 years of age, but increased drastically after 40 years of age. | Rapid increase in the ventricle volume was observed in beagle dogs after age of 11. | [3,4,5,23] |
Senile Plaques (SP) | The longer, more toxic Aβ1-42 initially accumulated in the brain, followed by the shorter and more soluble Aβ1-40 deposition in SP and blood vessel walls. SPs were widely present in the cortex and hippocampus of AD patients. | Dogs naturally develop SP of the diffuse (non-β-sheet) subtype. Aβ1-42 initially builds up in the brain, followed by Aβ1-40 deposition in diffuse SP and blood vessel walls. In the brains of dogs with CDS, three types of amyloid deposits were detected: diffuse, focal, and vascular deposits. | [1,3,7,8,42] |
Neurofibrillary Tangles (NFTs) | NFTs are the consequence of intracellular aggregation of hyperphosphorylated tau protein (p-tau) in neurons and glial cells. NTFs were widespread in the cortex and hippocampus of AD patients. | NFTs have not been detected in dogs. However, p-tau was detected in neurons and astrocytes in dogs with CDS. The number of p-tau-positive cells in the brains were much higher in dogs with CDS than in the normal aged dogs. In addition, the levels of p-tau increased with the ages of dogs with CDS and were significantly associated with the Aβ deposition in dogs with CDS. | [1,3,7,8] |
Cerebral glucose metabolism | Cerebral glucose metabolism was reduced in old people, and was further compromised in AD subjects compared with the age-matched controls. | Cerebral glucose metabolism was reduced in middle aged, and further reduced in senior dogs. | [45,47,49,50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y. Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med. Sci. 2021, 9, 72. https://doi.org/10.3390/medsci9040072
Pan Y. Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Medical Sciences. 2021; 9(4):72. https://doi.org/10.3390/medsci9040072
Chicago/Turabian StylePan, Yuanlong. 2021. "Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs" Medical Sciences 9, no. 4: 72. https://doi.org/10.3390/medsci9040072
APA StylePan, Y. (2021). Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Medical Sciences, 9(4), 72. https://doi.org/10.3390/medsci9040072