The Mediation Effects of Social Media Usage and Sharing Fake News about Companies
Abstract
:1. Introduction
2. Literature Review: Hypothesis and Conceptual Model Development
3. Research Methodology
3.1. Research Design
3.2. Measurement Models Evaluation
3.3. Evaluation of the Structural Model
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DataReportal. Digital 2022 Global Overview Report. 2022. Available online: https://datareportal.com/reports/digital-2022-global-overview-report (accessed on 18 August 2022).
- Braojos, J.; Benitez, J.; Llorens, J. How do social commerce-IT capabilities influence firm performance? Theory and empirical evidence. Inf. Manag. 2019, 56, 155–171. [Google Scholar] [CrossRef]
- Civelek, M.; Gajdka, K.; Světlík, J.; Vavrečka, V. Differences in the usage of online marketing and social media tools: Evidence from Czech, Slovakian and Hungarian SMEs. Equilibrium 2020, 15, 537–563. [Google Scholar] [CrossRef]
- Siamagka, N.; Christodoulides, G.; Michaelidou, N.; Valvi, A. Determinants of social media adoption by B2B organizations. Ind. Mark. Manag. 2015, 51, 89–99. [Google Scholar] [CrossRef]
- Tajudeen, F.P.; Jaafar, N.I.; Ainin, S. Understanding the impact of social media usage among organizations. Inf. Manag. 2018, 55, 308–321. [Google Scholar] [CrossRef]
- Lim, W.M.; Rasul, T. Customer engagement and social media: Revisiting the past to inform the future. J. Bus. Res. 2022, 148, 325–342. [Google Scholar] [CrossRef]
- Zaušková, A.; Rezníčková, M. SoLoMo marketing as a global tool for enhancing awareness of eco-innovations in Slovak business environment. Equilibrium 2020, 15, 133–150. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Adams, C. Viral Panic and Contagious Fear in Scary Times: The Proliferation of COVID-19 Misinformation and Fake News. Anal. Metaphys. 2020, 19, 80–86. [Google Scholar] [CrossRef]
- Benitez, J.; Castillo, A.; Llorens, J.; Braojos, J. IT-enabled knowledge ambidexterity and innovation performance in small U.S. firms: The moderator role of social media capability. Inf. Manag. 2018, 55, 131–143. [Google Scholar] [CrossRef]
- Obadă, D.R.; Dabija, D.C. “In Flow”! Why Do Social-Media Users Share Fake News About Environmentally Friendly Brands on Social-Media? Int. J. Environ. Res. Public Health 2022, 19, 4861. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Y.; Chen, Y.; Benitez, J.; Hu, J. Impact of the usage of social media in the workplace on team and employee performance. Inf. Manag. 2019, 56, 1–20. [Google Scholar] [CrossRef]
- Lin, J.; Li, L.; Luo, X.R.; Benitez, J. How do agribusinesses thrive through complexity? The pivotal role of e-commerce capability and business agility. Decis. Support Syst. 2020, 135, 113342. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Feng, H.; Li, D.; Li, M. Online media coverage, consumer engagement and movie sales: A PVAR approach. Decis. Support Syst. 2020, 131, 1–11. [Google Scholar] [CrossRef]
- Górska, A.; Mazurek, G. The effect of the CEO media coverage on corporate brand equity: Evidence from Poland. Oeconomia Copernic. 2021, 12, 499–523. [Google Scholar] [CrossRef]
- Simon, F.; Tossan, V. Does brand-consumer social sharing matter? A relational framework of customer engagement to brand-hosted social media. J. Bus. Res. 2018, 85, 175–184. [Google Scholar] [CrossRef]
- Pew Research Center. News Use Across Social Media Platforms in 2020. 2022. Available online: https://www.pewresearch.org/journalism/2021/01/12/news-use-across-social-media (accessed on 18 August 2022).
- Zhang, X.; Ghorbani, A.A. An overview of online fake news: Characterization, detection, and discussion. Inf. Process. Manag. 2019, 57, 102025. [Google Scholar] [CrossRef]
- Chayko, M. Superconnected: The Internet, Digital Media, and Tecno-Social Life; SAGE Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Rapp, D.N.; Salovich, N.A. Can’t We Just Disregard Fake News? The Consequences of Exposure to Inaccurate Information. Policy Insights Behav. Brain Sci. 2018, 5, 232–239. [Google Scholar] [CrossRef]
- Obadă, D.R. Sharing Fake News about Brands on Social-Media: A New Conceptual Model Based on Flow Theory. Argumentum 2019, 17, 144–166. [Google Scholar]
- Bastick, Z. Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation. Comput. Hum. Behav. 2021, 116, 106633. [Google Scholar] [CrossRef]
- Domenico, G.D.; Sit, J.; Ishizaka, A.; Nunan, D. Fake news, social media and marketing: A systematic review. J. Bus. Res. 2021, 124, 329–341. [Google Scholar] [CrossRef]
- Talwar, S.; Dhir, A.; Kaur, P.; Zafar, N.; Alrasheedy, M. Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. J. Retail. Consum. Serv. 2019, 51, 72–82. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety: Experiencing Flow in Work and Play; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 2008. [Google Scholar]
- Celik, Z.; Uslu, A. Bibliometric Analysis of Flow Theory from Past to Present with Visual Mapping Technique: A Marketing-Sided Approach. Öneri Derg. 2022, 17, 243–267. [Google Scholar]
- Burger, J.M. Negative responses to increases in perceived personal control. J. Personal. Soc. Psychol. 1989, 56, 246–256. [Google Scholar] [CrossRef]
- Infurna, F.J.; Infurna, C.J. The development of perceived control. In Personality Development Across the Lifespan; Specht, J., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 243–256. [Google Scholar]
- Wallston, K.A.; Wallston, B.S.; Smith, S.; Dobbins, C.J. Perceived control and health. Curr. Psychol. 1987, 6, 5–25. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- López-Mosquera, N.; García, T.; Barrena, R. An extension of the theory of planned behavior to predict willingness to pay for the conservation of an urban park. J. Environ. Manag. 2014, 135, 91–99. [Google Scholar] [CrossRef]
- Dabija, D.C.; Csorba, L.M.; Isac, F.L.; Rusu, S. Building trust towards sharing economy platforms beyond the COVID-19 pandemic. Electronics 2022, 11, 2916. [Google Scholar] [CrossRef]
- Ghani, J.A.; Deshpande, S.P. Task characteristics and the experience of optimal flow in human—Computer interaction. J. Psychol. 1994, 128, 381–391. [Google Scholar] [CrossRef]
- Ghani, J. Flow in Human Computer Interactions: Test of a Model. In Human Factors in Information Systems: Emerging Theoretical Bases; Carey, J., Ed.; Ablex Publishing Corporation: New York, NY, USA, 1995; pp. 291–311. [Google Scholar]
- Boehm, N.T. Stuck on social media: Predicting young adults’ intentions to limit social media use. J. Soc. Media Soc. 2019, 8, 143–166. [Google Scholar]
- Webster, J.; Trevino, L.K.; Ryan, L. The dimensionality and correlates of flow in human-computer interactions. Comput. Hum. Behav. 1993, 9, 411–426. [Google Scholar] [CrossRef]
- Bartók, O.; Kozák, V.; Bauerová, R. Online grocery shopping: The customers´ perspective in the Czech Republic. Equilibrium 2021, 16, 679–695. [Google Scholar] [CrossRef]
- Pelet, J.É.; Ettis, S.; Cowart, K. Optimal experience of flow enhanced by telepresence: Evidence from social media use. Inf. Manag. 2017, 54, 115–128. [Google Scholar] [CrossRef]
- Novak, T.P.; Hoffman, D.L.; Yung, Y.-F. Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Mark. Sci. 2000, 19, 22–42. [Google Scholar] [CrossRef]
- Chiang, H.S. Continuous usage of social networking sites: The effect of innovation and gratification attributes. Online Inf. Rev. 2013, 37, 851–871. [Google Scholar] [CrossRef]
- Gironda, J.T.; Korgaonkar, P.K. Understanding consumers’ social networking site usage. J. Mark. Manag. 2014, 30, 571–605. [Google Scholar] [CrossRef]
- Yuan, D.; Rahman, M.K.; Gazi, I.M.A.; Rahaman, M.A.; Hossain, M.M.; Akter, S. Analyzing of User Attitudes Toward Intention to Use Social-Media for Learning. SAGE Open 2021, 11, 21582440211060784. [Google Scholar] [CrossRef]
- Koufaris, M. Applying the technology acceptance model and flow theory to online consumer behaviour. Inf. Syst. Res. 2002, 13, 205–223. [Google Scholar] [CrossRef]
- Esteban-Millat, I.; Martínez-López, F.J.; Luna, D.; Rodríguez-Ardura, I. The concept of flow in online consumer behaviour. In Handbook of Strategic E-Business Management; Martínez-López, F.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 371–402. [Google Scholar]
- Zhou, T.; Li, H.; Liu, Y. The effect of flow experience on mobile SNS users’ loyalty. Ind. Manag. Data Syst. 2010, 110, 930–946. [Google Scholar] [CrossRef]
- Lin, J.C.C. Online stickiness: Its antecedents and effect on purchasing intention. Behav. Inf. Technol. 2007, 26, 507–516. [Google Scholar] [CrossRef]
- Sheares, G.; Miklencicova, R.; Grupac, M. The Viral Power of Fake News: Subjective Social Insecurity, COVID-19 Damaging Misinformation, and Baseless Conspiracy Theories. Linguist. Philos. Investig. 2020, 19, 121–127. [Google Scholar] [CrossRef]
- Turel, O.; Brevers, D.; Bechara, A. Time distortion when users at-risk for social media addiction engage in non-social media tasks. J. Psychiatr. Res. 2018, 97, 84–88. [Google Scholar] [CrossRef]
- Dong, G.; Potenza, M.N. A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. J. Psychiatr. Res. 2014, 58, 7–11. [Google Scholar] [CrossRef]
- Bratu, S. The Fake News Sociology of COVID-19 Pandemic Fear: Dangerously Inaccurate Beliefs, Emotional Contagion, and Conspiracy Ideation. Linguist. Philos. Investig. 2020, 19, 128–134. [Google Scholar] [CrossRef]
- Papacharissi, Z. We Have Always Been Social. Soc. Media Soc. 2015, 1, 1–2. [Google Scholar] [CrossRef]
- Quinn, K.; Papacharissi, Z. Our Networked Selves: Personal Connection and Relational Maintenance in Social Media Use. In The SAGE Handbook of Social-Media; Burgess, J., Marwick, A., Poell, T., Eds.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2018; pp. 353–371. [Google Scholar]
- Edwards, S.M. A social media mindset. J. Interact. Advert. 2011, 12, 1–3. [Google Scholar] [CrossRef]
- Khan, M.L. Social media engagement: What motivates user participation and consumption on YouTube? Comput. Hum. Behav. 2017, 66, 236–247. [Google Scholar] [CrossRef]
- Verduyn, P.; Ybarra, O.; Résibois, M.; Jonides, J.; Kross, E. Do social network sites enhance or undermine subjective well-being? A critical review. Soc. Issues Policy Rev. 2017, 11, 274–302. [Google Scholar] [CrossRef]
- Trifiro, B.M.; Gerson, J. Social Media Usage Patterns: Research Note Regarding the Lack of Universal Validated Measures for Active and Passive Use. Soc. Media Soc. 2019, 5, 1–4. [Google Scholar] [CrossRef]
- Allcott, H.A.; Gentzkow, M. social media and Fake News in the 2016 Election. J. Econ. Perspect. 2017, 31, 211–236. [Google Scholar] [CrossRef]
- Karnowski, V.; Leonhard, L.; Kümpel, A.S. Why Users Share the News: A Theory of Reasoned Action-Based Study on the Antecedents of News-Sharing Behavior. Commun. Res. Rep. 2018, 35, 91–100. [Google Scholar] [CrossRef]
- Buchanan, T.; Benson, V. Spreading Disinformation on Facebook: Do Trust in Message Source, Risk Propensity, or Personality Affect the Organic Reach of “Fake News”? Soc. Media Soc. 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Tandoc, E.C.J.; Lim, Z.W.; Ling, R. Defining “Fake News”: A typology of scholarly definitions. Digit. Journal. 2018, 6, 137–153. [Google Scholar] [CrossRef]
- Rauniar, R.; Rawski, G.; Yang, J.; Johnson, B. Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. J. Enterp. Inf. Manag. 2014, 27, 6–30. [Google Scholar] [CrossRef]
- Kim, A.; Dennis, A.R. Says Who? The Effects of Presentation Format and Source Rating on Fake News in Social-Media. MIS Q. 2019, 43, 1025–1039. [Google Scholar] [CrossRef]
- Vicario, M.D.; Quattrociocchi, W.; Scala, A.; Zollo, F. Polarization and fake news: Early warning of potential misinformation targets. ACM Trans. Web 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Herrero-Diz, P.; Conde-Jiménez, J.; De Cózar, S.R. Teens’ Motivations to Spread Fake News on WhatsApp. Soc. Media Soc. 2020, 6, 2056305120942879. [Google Scholar] [CrossRef]
- Figueira, Á.; Oliveira, L. The current state of fake news: Challenges and opportunities. Procedia Comput. Sci. 2017, 121, 817–825. [Google Scholar] [CrossRef]
- Martens, B.; Aguiar, L.; Gomez-Herrera, E.; Mueller-Langer, F. The Digital Transformation of News Media and the Rise of Disinformation and Fake News—An Economic Perspective. Digital Economy Working Paper; JRC Technical Reports; Joint Research Centre: Brussels, Belgium, 2018. [Google Scholar]
- Wardle, C.; Derakhshan, H. Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking. Council of Europe. 2017. Available online: https://www.disinfo.eu/academic-source/wardle-and-herakhshan-2017 (accessed on 18 August 2022).
- Fârte, G.I.; Obadă, D.R. Reactive Public Relations Strategies for Managing Fake News in the Online Environment. Postmod. Open. 2018, 9, 26–44. [Google Scholar] [CrossRef]
- Fârte, G.I. Public Relations Strategies to Counter Fake News About Vaccines. Cah. De Psychol. Polit. 2020, 37, 1237. [Google Scholar] [CrossRef]
- Tellis, G.J.; MacInnis, D.J.; Tirunillai, S.; Zhang, Y. What Drives Virality (Sharing) of Online Digital Content? The Critical Role of Information, Emotion, and Brand Prominence. J. Mark. 2019, 83, 1–20. [Google Scholar] [CrossRef]
- Oh, S.; Syn, S.Y. Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, You Tube, and Flickr. J. Assoc. Inf. Sci. Technol. 2015, 66, 2045–2060. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Hofacker, C.F.; Bloching, B. Marketing the pinball way: Understanding how social media change the generation of value for consumers and companies. J. Interact. Mark. 2013, 27, 237–241. [Google Scholar] [CrossRef]
- Lovett, M.J.; Peres, R.; Shachar, R. On brands and word of mouth. J. Mark. Res. 2013, 50, 427–444. [Google Scholar] [CrossRef]
- Berthon, P.; Treen, E.; Pitt, L. How Truthiness, Fake News and Post-Fact Endanger Brands and What to Do About It. GfK Mark. Intell. Rev. 2018, 10, 18–23. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Ecker, U.K.H.; Cook, J. Beyond misinformation: Understanding and coping with the “posttruth” era. J. Appl. Res. Mem. Cogn. 2017, 6, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Ball, P.; Maxmen, A. The epic battle against coronavirus misinformation and conspiracy theories. Nature 2020, 581, 371–374. [Google Scholar] [CrossRef]
- Swire-Thompson, B.; Lazer, D. Public health and online misinformation: Challenges and recommendations. Annu. Rev. Public Health 2020, 41, 433–451. [Google Scholar] [CrossRef]
- Patterson, D. The Pfizer-BioNTech Vaccine Is a Top Target of Conspiracy Theories. CBS NEWS. 2021. Available online: https://www.cbsnews.com/news/covid-vaccine-pfizer-conspiracy-theories/ (accessed on 18 August 2022).
- Lăzăroiu, G.; Horak, J.; Valaskova, K. Scaring Ourselves to Death in the Time of COVID-19: Pandemic Awareness, Virus Anxiety, and Contagious Fear. Linguist. Philos. Investig. 2020, 19, 114–120. [Google Scholar] [CrossRef]
- Vafeiadis, M.; Bortree, D.S.; Buckley, C.; Diddi, P.; Xiao, A. Refuting fake news on social media: Nonprofits, crisis response strategies and issue involvement. J. Prod. Brand Manag. 2020, 29, 209–222. [Google Scholar] [CrossRef]
- Fârte, G.I.; Obadă, D.R. The Effects of Fake News on Consumers’ Brand Trust. Rom. J. Commun. Public Relat. 2021, 23, 47–61. [Google Scholar] [CrossRef]
- Dubois, E.; Minaeian, S.; Paquet-Labelle, A.; Beaudry, S. Who to Trust on Social Media: How Opinion Leaders and Seekers Avoid Disinformation and Echo Chambers. Soc. Media Soc. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Cramarenco, R. The migration crisis in the press. Framing the news on the voiceless in the UK. In Crisis Communication and Conflict Resolution; Pop-Flanja, D., Ed.; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2021; pp. 76–91. [Google Scholar]
- Tajpour, M.; Hosseini, E.; Mohammadi, M.; Bahman-Zangi, B. The Effect of Knowledge Management on the Sustainability of Technology-Driven Businesses in Emerging Markets: The Mediating Role of Social Media. Sustainability 2022, 14, 8602. [Google Scholar] [CrossRef]
- Van Duyn, E.; Collier, J. Priming and Fake News: The Effects of Elite Discourse on Evaluations of News Media. Mass Commun. Soc. 2019, 22, 29–48. [Google Scholar] [CrossRef]
- Vaccari, C.; Chadwick, A. Deepfakes and Disinformation: Exploring the Impact of Synthetic Political Video on Deception, Uncertainty, and Trust in News. Soc. Media Soc. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Oláh, J.; Hidayat, Y.A.; Gavurova, B.; Khan, M.A.; Popp, J. Trust level within categories of information and communication technology companies. PLoS ONE 2021, 16, e0252773. [Google Scholar] [CrossRef] [PubMed]
- Oláh, J.; Hidayat, Y.A.; Popp, J.; Lakner, Z.; Kovács, S. Integrative trust and innovation on financial performance in disruptive era. Econ. Sociol. 2021, 14, 111–136. [Google Scholar] [CrossRef]
- Cotter, K.; DeCook, J.R.; Kanthawala, S. Fact-Checking the Crisis: COVID-19, Infodemics, and the Platformization of Truth. Soc. Media Soc. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Humprecht, E.; Esser, F.; Van Aelst, P. Resilience to online disinformation: A framework for cross-national comparative research. Int. J. Press Politics 2020, 25, 493–516. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Nguyen, L.T.; Van Doan, K.N.V.; Tran, H.Q. Enhancing emotional engagement through relational contracts, management receptiveness, and employee commitment as a stimulus for job satisfaction and job performance in the public sector. Equilibrium 2021, 16, 203–224. [Google Scholar] [CrossRef]
- Mărcău, F.-C.; Purec, S.; Niculescu, G. Study on the Refusal of Vaccination against COVID-19 in Romania. Vaccines 2022, 10, 261. [Google Scholar] [CrossRef]
- Dascălu, S.; Geambașu, O.; Covaciu, O.; Cherecheș, R.M.; Diaconu, G.; Dumitra, G.; Gheorghiță, V.; Popovici, E.D. Prospects of COVID-19 Vaccination in Romania: Challenges and Potential Solutions. Front. Public Health 2021, 9, 644538. [Google Scholar] [CrossRef]
- Obreja, D.M. Narrative communication regarding the COVID-19 vaccine: A thematic analysis of comments on Romanian official Facebook page “RO Vaccinare”. SN Soc. Sci. 2022, 2, 119. [Google Scholar] [CrossRef]
- Robinson, M.A. Using multi-item psychometric scales for research and practice in human resource management. Hum. Resour. Manag. 2018, 57, 739–750. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial Least Squares Structural Equation Modeling. In Handbook of Market Research; Homburg, C., Klarmann, M., Vomberg, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 587–632. [Google Scholar]
- Huang, M.H. Designing websites attributes to induce experiential encounters. Comput. Hum. Behav. 2003, 19, 425–442. [Google Scholar] [CrossRef]
- Kwak, K.T.; Choi, S.K.; Lee, B.G. SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Comput. Hum. Behav. 2014, 31, 294–304. [Google Scholar] [CrossRef]
- Chadwick, A.; Vaccari, C. News Sharing on UK Social Media: Misinformation, Disinformation & Correction. Loughborough University. 2019. Available online: https://www.lboro.ac.uk/media/media/research/o3c/Chadwick%20Vaccari%20O3C1%20News%20Sharing%20on%20UK%20Social%20Media.pdf (accessed on 18 August 2022).
- Fang, J.; Shao, Y.; Wen, C. Transactional quality, relational quality, and consumer e-loyalty: Evidence from SEM, fsQCA. Int. J. Inf. Manag. 2016, 36, 1205–1217. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. “SmartPLS 3.“ Boenningstedt: SmartPLS GmbH. 2015. Available online: http://www.smartpls.com (accessed on 10 August 2022).
- Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis: A Global Perspective; Pearson Education: London, UK, 2010. [Google Scholar]
- Doanh, D.C.; Gadomska-Lila, K.; Loan, L.T. Antecedents of green purchase intention: A cross-cultural empirical evidence from Vietnam and Poland. Oeconomia Copernic. 2021, 12, 935–971. [Google Scholar] [CrossRef]
- Henseler, J.; Sarstedt, M. Goodness-of-fit indices for partial least squares path modelling. Comput. Stat. 2013, 28, 565–580. [Google Scholar] [CrossRef]
- Mihalca, L.; Ratiu, L.; Brendea, G.; Metz, D.; Dragan, M.; Dobre, F. Exhaustion while teleworking during COVID-19: A moderated-mediation model of role clarity, self-efficacy, and task interdependence. Oeconomia Copernic. 2021, 12, 269–306. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach for structural equation modelling. In Methodology for Business and Management. Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modelling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef]
- Ray, J. Young People Rely on Social-Media, but Don’t Trust it. Gallup. 2021. Available online: https://news.gallup.com/opinion/gallup/357446/young-people-rely-social-media-don-trust.aspx (accessed on 18 August 2022).
- Ecker, U.K.H.; Lewandowsky, S.; Cook, J.; Schmid, P.; Fazio, L.K.; Brashier, N.; Kendeou, P.; Vraga, E.K.; Amazeen, M.A. The psychological drivers of misinformation belief and its resistance to correction. Nat. Rev. Psychol. 2022, 1, 13–29. [Google Scholar] [CrossRef]
- Yang, F.; Horning, M. Reluctant to Share: How Third Person Perceptions of Fake News Discourage News Readers From Sharing “Real News” on Social Media. Soc. Media Soc. 2020, 6, 2056305120955173. [Google Scholar] [CrossRef]
- Majerczak, P.; Strzelecki, A. Trust, Media Credibility, Social Ties, and the Intention to Share towards Information Verification in an Age of Fake News. Behav. Sci. 2022, 12, 51. [Google Scholar] [CrossRef]
- Lukowicz, K.; Strzelecki, A. User Satisfaction on Social Media Profile of E-sports Organization. Mark. Manag. Innov. 2020, 4, 61–75. [Google Scholar] [CrossRef]
- Vitak, J.; Kim, J. “You can’t block people offline”: Examining how Facebook’s affordances shape the disclosure process. In Proceedings of the CSCW ‘14: 17th ACM conference on Computer supported cooperative work & social computing, Baltimore, MD, USA, 15–19, February 2014; pp. 461–474. [Google Scholar] [CrossRef]
- Media Insight Project. ‘Who shared it?’: How Americans Decide What News to Trust on Social Media. American Press Institute. 2017. Available online: https://www.americanpressinstitute.org/publications/reports/survey-research/trust-social-media/ (accessed on 18 August 2022).
- Cuc, L.D.; Pelau, C.; Szentesi, S.G.; Sanda, G. The Impact of Green Marketing on the Consumers’ Intention to Buy Green Products in the Context of the Green Deal. Amfit. Econ. 2022, 24, 330–345. [Google Scholar] [CrossRef]
- Newman, N.; Fletcher, R.; Kalogeropoulos, A.; Levy, D.A.L.; Nielsen, R.K. Digital News Report 2018; Reuters Institute for the Study of Journalism: Oxford, UK, 2018. [Google Scholar]
- Ognyanova, K.; Lazer, D.; Robertson, R.E.; Wilson, C. Misinformation inaction: Fake news exposure is linked to lower trust in media, higher trust in government when yourside is in power. Harv. Kennedy Sch. Misinformation Rev. 2020, 1, 1–19. [Google Scholar]
Variable | Frequency | Percentage |
---|---|---|
Gender | ||
Female | 524 | 55.75% |
Male | 408 | 44.25% |
Education | ||
Primary school | 8 | 0.9% |
Gymnasium | 47 | 5.1% |
10 classes | 70 | 7.6% |
Vocational school | 58 | 6.3% |
High school | 374 | 40.6% |
College | 52 | 5.6% |
University | 210 | 22.8% |
Postdoctoral studies | 103 | 11.2% |
Age | ||
<30 years | 445 | 45.8% |
30–50 years | 430 | 44.1% |
>50 years | 70 | 10.1% |
Income | ||
Low | 401 | 43.5% |
Middle | 439 | 47.6% |
High | 82 | 8.9% |
Construct | Item | Measure | Loading | Cronbach’s Alpha/ AVE/CR | Source |
---|---|---|---|---|---|
Perceived Control (PC) | PC1 | While using social media, the website allows me to control the computer interaction. | 1.000 | 1.000/1.000/1.000 | Adapted from [97] |
Concentration (CON) | CON1 | While using social media, I am deeply engrossed. | 0.851 | 0.833/0.652/0.882 | Adapted from [38] |
CON2 | While using social media, I am absorbed intensely in activity. | 0.747 | |||
CON3 | While using social media, my attention is focused on activity. | 0.786 | |||
CON4 | While using social media, I concentrate fully on activity. | 0.843 | |||
Time Distortion (TD) | TD1 | When I am using social media, time seems to pass quite fast. | 0.837 | 0.842/0.864/0.927 | Adapted from [98] |
TD2 | Time flies when I am using social media. | 0.898 | |||
TD3 | I frequently spend more time than anticipated on social media. | 0.880 | |||
Social Media Usage (SMU) | SMU1 | On average, I spend a lot of time browsing on Instagram. | 0.794 | 0.784/0.696/0.873 | Adapted from [99] |
SMU2 | On average, I spend a lot of time browsing on Facebook. | 0.846 | |||
SMU3 | On average, I spend a lot of time browsing on TikTok. | 0.861 | |||
Sharing Fake News (SFN) | SFN1 | The news I shared on SNS about companies seemed accurate at the time, but later I found out it was fabricated. | 0.856 | 0.895/0.705/0.923 | Adapted from [99] |
SFN2 | I did not realize that the company-related news I posted on SNS was exaggerated at the time I posted it. | 0.814 | |||
SFN3 | Initially, the company-related news I shared on SNS appeared genuine, but it was later revealed to be a hoax. | 0.888 | |||
SFN4 | The satirical news I shared on SNS about companies was presented as real news. | 0.877 | |||
SFN5 | I have shared fake news about companies on SNS having this knowledge when sharing. | 0.757 | |||
Trust in Online Information about Companies (TOI) | TOI1 | I trust the information about companies that is shared online. | 0.908 | 0.846/0.864/0.927 | Adapted from [100] |
TOI 2 | I trust the news about companies that is shared online. | 0.950 |
Fornell-Larcker Criterion | Construct | Heterotrait-Monotrait Criterion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | PC | SFN | SMU | TD | TOI | CON | PC | SFN | SMU | TD | TOI | |
0.808 | CON | |||||||||||
0.342 | 1.000 | PC | 0.342 | |||||||||
0.123 | 0.111 | 0.840 | SFN | 0.128 | 0.117 | |||||||
0.229 | 0.179 | 0.102 | 0.834 | SMU | 0.253 | 0.204 | 0.117 | |||||
0.559 | 0.224 | 0.193 | 0.271 | 0.872 | TD | 0.647 | 0.242 | 0.223 | 0.325 | |||
0.281 | 0.205 | 0.181 | 0.053 | 0.168 | 0.929 | TSMI | 0.327 | 0.226 | 0.201 | 0.073 | 0.197 |
Path Effects | Path Coefficients | Standard Deviation | T-Value | CI 1 | p-Value | Hypotheses |
---|---|---|---|---|---|---|
PC→SMU | 0.106 | 0.036 | 2.933 | 0.040–0.178 | 0.004 ** | H1-Supported |
CON→SMU | 0.080 | 0.033 | 2.430 | 0.012–0.138 | 0.015 ** | H2-Supported |
TD→SMU | 0.202 | 0.034 | 5.986 | 0.133–0.265 | 0.000 *** | H3-Supported |
SMU→SFN | 0.102 | 0.035 | 2.942 | 0.023–0.161 | 0.003 ** | H4-Supported |
SFN→TOI | 0.181 | 0.036 | 5.043 | 0.113–0.245 | 0.000 *** | H5-Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obadă, D.-R.; Dabija, D.-C. The Mediation Effects of Social Media Usage and Sharing Fake News about Companies. Behav. Sci. 2022, 12, 372. https://doi.org/10.3390/bs12100372
Obadă D-R, Dabija D-C. The Mediation Effects of Social Media Usage and Sharing Fake News about Companies. Behavioral Sciences. 2022; 12(10):372. https://doi.org/10.3390/bs12100372
Chicago/Turabian StyleObadă, Daniel-Rareș, and Dan-Cristian Dabija. 2022. "The Mediation Effects of Social Media Usage and Sharing Fake News about Companies" Behavioral Sciences 12, no. 10: 372. https://doi.org/10.3390/bs12100372
APA StyleObadă, D. -R., & Dabija, D. -C. (2022). The Mediation Effects of Social Media Usage and Sharing Fake News about Companies. Behavioral Sciences, 12(10), 372. https://doi.org/10.3390/bs12100372