A Correlation Analysis between Undergraduate Students’ Safety Behaviors in the Laboratory and Their Learning Efficiencies
Abstract
:1. Introduction
2. Literature Review
3. Research Methods
3.1. Arrangement of the Course
3.2. The Arrangement of the Laboratory Experiments
3.3. The Evaluation in the Final Examination
- In the experimental lessons, we conducted eight experiments in different rooms. These experiments include: OM, SEM, TEM, RM, and XRD (Figure 3A); FTIR, DSC, UV-vis, and electrospinning preparation (FTIR was directly given in the blank) (Figure 3B). Fill the experiments in their located rooms, where they were carried out (7 points).
- Give the full names of OM, SEM, TEM, RM, FTIR, DSC, XRD, and UV-vis. (4 points). The standard answers are: OM—Optical microscopy (or microscope); SEM—Scanning electron microscopy (or microscope); TEM—Transmission electron microscopy (or microscope); RM—Raman spectroscopy; FTIR—Fourier-transform infrared; DSC—Differential scanning calorimetry; XRD—X-ray diffraction; and UV-vis—Ultraviolet-visible spectroscopy.
- Which one of those rooms is the most dangerous place for you? Describe your behaviors during the experiments and point out the possible unsafe factors (7 points, no standard answer).
3.4. The Data-Treating Methods
4. Results
5. Discussion
5.1. The Validation of the Arrangement of the Course
5.2. The Safety Questions Reasonably Reflect the Students’ Behaviors
5.3. The Relationship Analyses
6. Conclusions
7. Suggestions for Practical Use
- For the lessons of basic professional courses, a combined curriculum can be arranged for undergraduate students, which can contain theoretical lessons in the classroom, practice training in the laboratory, and also self-training lessons.
- Students often prefer information related directly to the target experiments [80]. When they personally experience safety issues in the laboratory, their learning effects about professional knowledge will be augmented. Reasonable selections of the experiments are important.
- The students’ whole final examination scores have a linear relationship with their safety question scores, both in an individual manner and in an interval average manner. Safety education and evaluation can be useful tools for promoting the teaching of responsibility and also elevating learning effects.
- Improving students’ safety behaviors and enhancing their subjective safety awareness are conducive to improving learning efficiency for professional knowledge.
- Certainly, for effectively implementing safety education about professional practices, it is important that teachers should try their best to follow the most recent developments in their scientific fields [9]. Only based on this point, students can be imparted with cutting-edge techniques and professional knowledge. Meanwhile, online learning platforms have become a universal medium for knowledge acquisition and online teaching because of the influence of the COVID-19 pandemic in the last three years [81]. This situation would make professional practices, safety education, and related behaviors even more important for students to become a talent in their future work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawless, K.A.; Pellegrino, J.W. Professional Development in Integrating Technology into Teaching and Learning: Knowns, Unknowns, and Ways to Pursue Better Questions and Answers. Rev. Educ. Res. 2007, 77, 575–614. [Google Scholar] [CrossRef]
- Sui, J.; Hua, Z.; Zhu, H.; Shen, S. Training Mechanism of Engineering Education and Innovation Talent Based on Courses-Competitions Combination. Nanotechnol. Environ. Eng. 2022, 7, 833–841. [Google Scholar] [CrossRef]
- Taylor, J.A.; Roth, K.; Wilson, C.D.; Stuhlsatz, M.A.; Tipton, E. The Effect of An Analysis-of-Practice, Videocase-Based, Teacher Professional Development Program on Elementary Students’ Science Achievement. J. Res. Educ. Eff. 2017, 10, 241–271. [Google Scholar] [CrossRef]
- Agustian, H.Y.; Finne, L.T.; Jørgensen, J.T.; Pedersen, M.I.; Christiansen, F.V.; Gammelgaard, B.; Nielsen, J.A. Learning Outcomes of University Chemistry Teaching in Laboratories: A Systematic Review of Empirical Literature. Rev. Educ. 2022, 10, e3360. [Google Scholar] [CrossRef]
- Jiménez-Parra, J.F.; Manzano-Sánchez, D.; Camerino, O.; Prat, Q.; Valero-Valenzuela, A. Effects of a Hybrid Program of Active Breaks and Responsibility on the Behaviour of Primary Students: A Mixed Methods Study. Behav. Sci. 2022, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-F.; Wang, T.-H.; Huang, C.-H. Investigating Students’ Answering Behaviors in a Computer-Based Mathematics Algebra Test: A Cognitive-Load Perspective. Behav. Sci. 2022, 12, 293. [Google Scholar] [CrossRef]
- Shoda, V.P.; Yamanaka, T. A Study on Instructional Humor: How Much Humor Is Used in Presentations? Behav. Sci. 2022, 12, 7. [Google Scholar] [CrossRef]
- Piao, S.; Joo, J. A Behavioral Strategy to Nudge Young Adults to Adopt In-Person Counseling: Gamification. Behav. Sci. 2022, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ge, S.; Yuan, F. Research on the Mechanism of Influence of Game Competition Mode on Online Learning Performance. Behav. Sci. 2022, 12, 225. [Google Scholar] [CrossRef]
- Manzano-Sánchez, D.; Gómez-Mármol, A.; Valero-Valenzuela, A.; Jiménez-Parra, J.F. School Climate and Responsibility as Predictors of Antisocial and Prosocial Behaviors and Violence: A Study Towards Self-Determination Theory. Behav. Sci. 2021, 11, 36. [Google Scholar] [CrossRef]
- Alebaikan, R.; Alajlan, H.; Almassaad, A.; Alshamri, N.; Bain, Y. Experiences of Middle School Programming in an Online Learning Environment. Behav. Sci. 2022, 12, 466. [Google Scholar] [CrossRef]
- Constantinou, C.S.; Thrastardottir, T.O.; Baidwan, H.K.; Makenete, M.S.; Papageorgiou, A.; Georgiades, S. Training of Faculty and Staff in Recognising Undergraduate Medical Students’ Psychological Symptoms and Providing Support: A Narrative Literature Review. Behav. Sci. 2022, 12, 305. [Google Scholar] [CrossRef]
- Pajares, M.F. Teachers’ Beliefs and Educational Research: Cleaning up A Messy Construct. Rev. Educ. Res. 1992, 62, 307–332. [Google Scholar] [CrossRef]
- Nadershahi, N.A.; Salmon, E.S.; Fathi, N.; Schmedders, K.; Hargis, J. Review of Outcomes from A Change in Faculty Clinic Management in A US Dental School. J. Dent. Educ. 2010, 74, 961–969. [Google Scholar] [CrossRef]
- Dyche, L.; Epstein, R.M. Curiosity and Medical Dducation. Med. Educ. 2011, 45, 663–668. [Google Scholar] [CrossRef]
- Tang, S.; Long, M.; Tong, F.; Wang, Z.; Zhang, H.; Sutton-Jones, K.L. A Comparative Study of Problem-Based Learning and Traditional Approaches in College English Classrooms: Analyzing Pedagogical Behaviors Via Classroom Observation. Behav. Sci. 2020, 10, 105. [Google Scholar] [CrossRef]
- Menard, A.D.; Trant, J.F. A Review and Critique of Academic Lab Safety Research. Nat. Chem. 2020, 12, 17–25. [Google Scholar] [CrossRef]
- De Carli, G.; Abiteboul, D.; Puro, V. The Importance of Implementing Safe Sharps Practices in the Laboratory Setting in Europe. Biochem. Med. 2014, 24, 45–56. [Google Scholar] [CrossRef]
- Park, T.; Kang, S.H.; Ju, D.-B.; Lee, E.J. Laboratory Safety Management System of Korean Universities. Korean J. Comp. Edu. 2021, 31, 213–238. [Google Scholar] [CrossRef]
- Chen, L. Research of the Safety Path of Colleges and Universities Laboratory Basing on the Analysis of Grey Correlation Degree. J. Intell. Fuzzy Syst. 2021, 40, 7755–7762. [Google Scholar] [CrossRef]
- Ting, J.M. Safety Moments in Chemical Safety Education. J. Chem. Educ. 2021, 98, 9–14. [Google Scholar] [CrossRef]
- Wirth, O.; Foreman, A.M.; Friedel, J.E.; Andrew, M.E. Two Discrete Choice Experiments on Laboratory Safety Decisions and Practices. J. Saf. Res. 2020, 75, 99–110. [Google Scholar] [CrossRef]
- Stoessel, F. Experiences on Education of Students and Professionals in Thermal Process Safety. Educ. Chem. Eng. 2021, 35, 47–53. [Google Scholar] [CrossRef]
- Beastall, G.H. Adding Value to Laboratory Medicine: A Professional Responsibility. Clin. Chem. Lab. Med. 2013, 51, 221–227. [Google Scholar] [CrossRef]
- Faver, C.A. Sterilization of Companion Animals: Exploring the Attitudes and Behaviors of Latino Students in South Texas. J. Appl. Anim. Welf. Sci. 2009, 12, 314–330. [Google Scholar] [CrossRef]
- Ren, X.; Wang, X.; Jin, X.; Li, M. The Impact of Personal Moral Philosophies on the Safe Practice of Students in Chemistry and Related Majors. Sci. Educ. 2021, 30, 67–80. [Google Scholar] [CrossRef]
- Ho, S.Y. Variables Related to Students’ Attitudes and Perceptions Concerning Lab-Practice and Lab Safety in Agricultural High School of Korea. J. Pract. Arts Edu. Res. 2018, 24, 241–256. [Google Scholar]
- Hu-Au, E.; Okita, S. Exploring Differences in Student Learning and Behavior Between Real-Life and Virtual Reality Chemistry Laboratories. J. Sci. Educ. Technol. 2021, 30, 862–876. [Google Scholar] [CrossRef]
- Yu, D.G.; Li, Q.; Song, W.; Xu, L.; Zhang, K.; Zhou, T. Advanced Technique-Based Combination of Innovation Education and Safety Education in Higher Education. J. Chem. Educ. 2023, 100. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Deng, C.; Wang, R.; Zhang, H. Protocol for Atmospheric Water Harvesting Using in situ Polymerization Honeycomb Hygroscopic Polymers. STAR Protoc. 2022, 3, 101780. [Google Scholar] [CrossRef]
- Kang, S.X.; Hou, S.C.; Chen, X.W.; Yu, D.G.; Wang, L.; Li, X.Y.; Williams, G.R. Energy-Saving Electrospinning with A Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers. Polymers 2020, 12, 2421. [Google Scholar] [CrossRef]
- Jiang, W.L.; Zhang, X.Y.; Liu, P.; Zhang, Y.; Song, W.L.; Yu, D.G.; Lu, X.H. Electrospun Healthcare Nanofibers from Medicinal Liquor of Phellinus Igniarius. Adv. Compos. Hybrid Mater. 2022, 5, 3045–3056. [Google Scholar] [CrossRef]
- Chen, L.J.; Jiang, X.W.; Lv, M.; Wang, X.L.; Zhao, P.R.; Zhang, M.; Lv, G.L.; Wu, J.Y.; Liu, Y.Y.; Yang, Y.; et al. Reductive-Damage-Induced Intracellular Maladaptation for Cancer Electronic Interference Therapy. Chem 2022, 8, 866–879. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; He, W.; Xiong, M.; Niu, X.; Li, X.; Yu, D.G. A Review on Fabrication and Application of Tunable Hybrid Micro–Nano Array Surfaces. Adv. Mater. Interfaces 2023. [Google Scholar] [CrossRef]
- Li, X.; Niu, X.; Chen, Y.; Yuan, K.; He, W.; Yang, S.; Tang, T.; Yu, D.G. Electrospraying Micro-Nano Structures on Chitosan Composite Coatings for Enhanced Antibacterial Effect. Prog. Org. Coat. 2023, 174, 107310. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, P.; Song, W.; Wang, M.; Yu, D.-G. Electrospun Zein/Polyoxyethylene Core–Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022, 12, 1110. [Google Scholar] [CrossRef]
- Sivan, M.; Madheswaran, D.; Hauzerova, S.; Novotny, V.; Hedvicakova, V.; Jencova, V.; Kostakova, E.K.; Schindler, M.; Lukas, D. AC electrospinning: Impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater. Today Chem. 2022, 26, 101025. [Google Scholar] [CrossRef]
- Zhu, H.; Xing, C.; Dou, X.; Zhao, Y.; Peng, Y.; Feng, C.; Fang, Y. Chiral Hydrogel Accelerates Re-Epithelization in Chronic Wounds via Mechanoregulation. Adv. Healthc. Mater. 2022, 11, 2201032. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.P.; Pan, J.Y.; Yang, J.H.; Zheng, S.Y.; Wang, C.S. Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochem. Energy Rev. 2021, 4, 169–193. [Google Scholar] [CrossRef]
- Wang, M.L.; Hou, J.S.; Yu, D.G.; Li, S.Y.; Zhu, J.W.; Chen, Z.Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd. 2020, 846, 156471. [Google Scholar] [CrossRef]
- Huang, C.X.; Dong, J.; Zhang, Y.Y.; Chai, S.L.; Wang, X.C.; Kang, S.X.; Yu, D.G.; Wang, P.; Jiang, Q. Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Mater. Design 2021, 212, 110240. [Google Scholar] [CrossRef]
- He, H.; Wu, M.; Zhu, J.; Yang, Y.; Ge, R.; Yu, D.-G. Engineered Spindles of Little Molecules Around Electrospun Nanofibers for Biphasic Drug Release. Adv. Fiber Mater. 2021, 4, 305–317. [Google Scholar] [CrossRef]
- Masi, M.; Petraretti, M.; De Natale, A.; Pollio, A.; Evidente, A. Fungal Metabolites with Antagonistic Activity Against Fungi of Lithic Substrata. Biomolecules 2021, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Guo, S.R.; Zhang, G.Y.; He, W.L.; Wu, Y.H.; Yu, D.G. Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile @ Acyclovir for Modifying Drug Release. Polymers 2021, 13, 4286. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, D.-G.; Liu, Y.; Liu, Y.-N. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J. Funct. Biomater. 2022, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Q.; Gao, J.; He, J.; Zhang, H.; Ding, J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS Appl. Mater. Interf. 2023. [Google Scholar] [CrossRef]
- Murugesan, R.; Raman, S. Recent Trends in Carbon Nanotubes Based Prostate Cancer Therapy: A Biomedical Hybrid for Diagnosis and Treatment. Curr. Drug Deliv. 2021, 19, 229–237. [Google Scholar] [CrossRef]
- Ge, R.; Ji, Y.; Ding, Y.; Huang, C.; He, H.; Yu, D.-G. Electrospun self-emulsifying core-shell nanofibers for effective delivery of paclitaxel. Front. Bioeng. Biotechnol. 2023, 11, 1112338. [Google Scholar] [CrossRef]
- dos Santos, G.G.; Malherbi, M.S.; de Souza, N.S.; César, G.B.; Tominaga, T.T.; Miyahara, R.Y.; de Mendonça, P.d.S.B.; Faria, D.R.; Rosso, J.M.; Freitas, V.F.; et al. 4th Generation Biomaterials Based on PVDF-Hydroxyapatite Composites Produced by Electrospinning: Processing and Characterization. Polymers 2022, 14, 4190. [Google Scholar] [CrossRef]
- Salehipour, M.; Rezaei, S.; Haddad, R.; Mogharabi-Manzari, M. Preparation of electrospun hybrid polyacrylonitrile nanofibers containing TiO2/Fe3O4 and their capsaicinoids adsorption applications. Vietnam J. Chem. 2022, 60, 267–280. [Google Scholar]
- Liu, Y.; Wang, X.; Wu, Q.; Pei, W.; Teo, M.J.; Chen, Z.S.; Huang, C. Application of lignin and lignin-based composites in different tissue engineering fields. Int. J. Biol. Macromol. 2022, 222, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.P.; Song, Q.; Liu, S.Y.; Pei, W.H.; Wang, P.; Zheng, L.M.; Huang, C.X.; Ma, M.G.; Jiang, Q.; Zhang, K. Advanced applications of cellulose-based composites in fighting bone diseases. Compos. B Eng. 2022, 245, 110221. [Google Scholar] [CrossRef]
- Zhao, P.; Li, H.; Bu, W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angrew Chem. Int. Ed. 2023, e202210415. [Google Scholar] [CrossRef]
- Huang, J.; Feng, C. Aniline Dimers Serving as Stable and Efficient Transfer Units for Intermolecular Charge-Carrier Transmission. Iscience 2023, 26, 105762. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Zhou, X.; Xiao, B.; Duan, L.; Zhu, Z. Mucus-Penetrating Silk Fibroin-Based Nanotherapeutics for Efficient Treatment of Ulcerative Colitis. Biomolecules 2022, 12, 1263. [Google Scholar] [CrossRef]
- Köse, M.D.; Ungun, N.; Bayraktar, O. Eggshell Membrane Based Turmeric Extract Loaded Orally Disintegrating Films. Curr. Drug Deliv. 2021, 18, 547–559. [Google Scholar]
- Shen, Y.H.; Yu, X.; Cui, J.; Yu, F.; Liu, M.Y.; Chen, Y.J.; Wu, J.L.; Sun, B.B.; Mo, X.M. Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases. Biomolecules 2022, 12, 1245. [Google Scholar] [CrossRef]
- Huang, C.; Yu, Y.; Li, Z.; Yan, B.; Pei, W.; Wu, H. The preparation technology and application of xylo-oligosaccharide as prebiotics in different fields: A review. Front. Nutr. 2022, 9, 996811. [Google Scholar] [CrossRef]
- Song, W.; Tang, Y.; Qian, C.; Kim, B.J.; Liao, Y.; Yu, D.G. Electrospinning Spinneret: A Bridge Between the Visible World and the Invisible Nanostructures. Innovation 2023, 3, 100381. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, W.; Zhou, J.; Yu, D.-G.; Liu, H. The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers 2022, 14, 4947. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Liu, P.; Yu, D.-G.; Ge, R. Electrospun Nanofibers-Based Glucose Sensors for Glucose Detection. Front. Chem. 2022, 10, 944428. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Feng, Z.; Han, B.; Yu, D.-G.; Wang, K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022, 12, 1727. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Fu, J.; Yu, D.-G.; Liu, Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers 2022, 14, 3266. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef]
- Pattnaik, S.; Swain, K.; Ramakrishna, S. Optimal Delivery of Poorly Soluble Drugs Using Electrospun Nanofiber Technology: Challenges, State of the Art, and Future Directions. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1859. [Google Scholar] [CrossRef]
- Yu, D.-G.; Zhao, P. The Key Elements for Biomolecules to Biomaterials and to Bioapplications. Biomolecules 2022, 12, 1234. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, W.; Feng, Z.; Liu, Y.; Liu, P.; Xie, Y.; Yu, D.-G. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int. J. Nanomed. 2022, 17, 4137–4162. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, P.; Yang, Y.; Yu, D.-G. Electrospun Beads-on-the-String Nanoproducts: Preparation and Drug Delivery Application. Curr. Drug Deliv. 2022, 19, 2174. [Google Scholar] [CrossRef]
- Cao, X.; Chen, W.; Zhao, P.; Yang, Y.; Yu, D.G. Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Photocatalytic Degradation Applications. Polymers 2022, 14, 3990. [Google Scholar] [CrossRef]
- Liu, H.; Bai, Y.; Huang, C.; Wang, Y.; Ji, Y.; Du, Y.; Xu, L.; Yu, D.-G.; Bligh, S.W.A. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, M.; Huang, X.; Chen, B.; Ding, Y.; Zhang, Y.; Yu, D.G.; Kim, I. Smart L-Borneol-Loaded Hierarchical Hollow Polymer Nanospheres with Antipollution and Antibacterial Capabilities. Mater. Today Chem. 2022, 26, 101252. [Google Scholar] [CrossRef]
- Yu, D.G. Preface. Curr. Drug Deliv. 2023, 20, 1–2. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, M.; Yan, C.; Liu, H.; Yu, D.-G. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022, 12, 1254. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lv, H.; Zhang, M.; Wang, M.; Zhou, Y.; Liu, Y.; Yu, D.G. Recent Progress in Electrospun Nanofibers and Their Applications in Heavy Metal Wastewater Treatment. Front. Chem. Sci. Eng. 2023, 1–27. [Google Scholar] [CrossRef]
- Han, W.; Wang, L.; Li, Q.; Ma, B.; He, C.; Guo, X.; Nie, J.; Ma, G. A Review: Current Status and Emerging Developments on Natural Polymer-Based Electrospun Fibers. Macromol. Rapid Commun. 2022, 43, 2200456. [Google Scholar] [CrossRef]
- Yao, L.; Sun, C.; Lin, H.; Li, G.; Lian, Z.; Song, R.; Zhuang, S.; Zhang, D. Electrospun Bi-Decorated BixTiyOz/TiO2 Flexible Carbon Nanofibers and Their Applications on Degradating of Organic Pollutants Under Solar Radiation. J. Mater. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Krysiak, Z.J.; Stachewicz, U. Electrospun Fibers as Carriers for Topical Drug Delivery and Release in Skin Bandages and Patches for Atopic Dermatitis Treatment. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1829. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, M.; Song, N.; Wang, C.; Lu, X. General Synthesis of Pt and Ni Co-Doped Porous Carbon Nanofibers to Boost HER Performance in Both Acidic and Alkaline Solutions. Chin. Chem. Lett. 2023, 34, 107359. [Google Scholar] [CrossRef]
- Huang, H.; Song, Y.; Zhang, Y.; Li, Y.; Li, J.; Lu, X.; Wang, C. Electrospun Nanofibers: Current Progress and Applications in Food Systems. J. Agric. Food Chem. 2022, 70, 1391–1409. [Google Scholar] [CrossRef]
- Ji, S.; Qin, X.; Li, K. Chinese University English Teachers’ Professional Learning through Academic Reading on Social Media—A Mixed-Methods Approach. Behav. Sci. 2022, 12, 390. [Google Scholar] [CrossRef]
- An, J.; Holme, T.A. Evaluation of Augmented Reality Application Usage and Measuring Students’ Attitudes toward Instrumentation. J. Chem. Educ. 2021, 98, 1458–1464. [Google Scholar] [CrossRef]
Student No. | Final Examination | Safety Issue Question | Ratio (%) | GPA a | |||
---|---|---|---|---|---|---|---|
Individual | Mean | Individual | Mean | Scoring Rate of the 18 Points | Proportion to Total Score | ||
1 | 95 | 92.5 | 18 | 18.0 | (18/18) × 100% = 100 | (18/92.5) × 100% = 19.5 | 3.14 |
2 | 94 | 18 | 3.58 | ||||
3 | 91 | 18 | 2.87 | ||||
4 | 90 | 18 | 3.72 | ||||
5 | 89 | 85.0 | 18 | 16.2 | (16.2/18) × 100% = 90.0 | (16.2/85) × 100% = 19.1 | 3.07 |
6 | 89 | 17 | 3.17 | ||||
7 | 87 | 17 | 2.54 | ||||
8 | 87 | 16 | 2.38 | ||||
9 | 86 | 16 | 3.27 | ||||
10 | 86 | 16 | 3.17 | ||||
11 | 83 | 14 | 3.34 | ||||
12 | 81 | 17 | 2.89 | ||||
13 | 81 | 16 | 3.04 | ||||
14 | 81 | 15 | 2.73 | ||||
15 | 78 | 74.7 | 15 | 14.0 | (14/18) × 100% = 77.8 | (14/74.7) × 100% = 18.7 | 2.19 |
16 | 77 | 15 | 3.17 | ||||
17 | 76 | 14 | 2.87 | ||||
18 | 75 | 14 | 2.64 | ||||
19 | 71 | 13 | 2.28 | ||||
20 | 71 | 13 | 2.48 | ||||
21 | 68 | 66.4 | 12 | 12.7 | (12.7/18) × 100% = 70.6 | (12.7/66.4) × 100% = 19.2 | 2.18 |
22 | 67 | 14 | 2.85 | ||||
23 | 67 | 13 | 2.91 | ||||
24 | 67 | 12 | 2.76 | ||||
25 | 67 | 12 | 2.38 | ||||
26 | 65 | 12 | 1.84 | ||||
27 | 64 | 14 | 2.03 | ||||
28 | 57 | 52.3 | 10 | 10.3 | (10.3/18) × 100% = 57.2 | (10.3/52.3) × 100% = 19.7 | 1.88 |
29 | 50 | 10 | 1.96 | ||||
30 | 50 | 11 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.-G.; Du, Y.; Chen, J.; Song, W.; Zhou, T. A Correlation Analysis between Undergraduate Students’ Safety Behaviors in the Laboratory and Their Learning Efficiencies. Behav. Sci. 2023, 13, 127. https://doi.org/10.3390/bs13020127
Yu D-G, Du Y, Chen J, Song W, Zhou T. A Correlation Analysis between Undergraduate Students’ Safety Behaviors in the Laboratory and Their Learning Efficiencies. Behavioral Sciences. 2023; 13(2):127. https://doi.org/10.3390/bs13020127
Chicago/Turabian StyleYu, Deng-Guang, Yutong Du, Jiahua Chen, Wenliang Song, and Tao Zhou. 2023. "A Correlation Analysis between Undergraduate Students’ Safety Behaviors in the Laboratory and Their Learning Efficiencies" Behavioral Sciences 13, no. 2: 127. https://doi.org/10.3390/bs13020127
APA StyleYu, D. -G., Du, Y., Chen, J., Song, W., & Zhou, T. (2023). A Correlation Analysis between Undergraduate Students’ Safety Behaviors in the Laboratory and Their Learning Efficiencies. Behavioral Sciences, 13(2), 127. https://doi.org/10.3390/bs13020127