Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context
Abstract
:1. Introduction
Theoretical Framework: Terminal Efficiency and On-Time Graduation
2. Materials and Methods
2.1. Analysis Unit
2.2. Identification of Variables and Operational Definition
2.3. Data Analysis
3. Results
3.1. Exploratory Analysis
3.2. Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpentier, S. Determinantes Del Exceso de Duración En La Educación Terciaria En Chile. Calid. En La Educ. 2021, 54, 212. [Google Scholar] [CrossRef]
- Herrera, P.L.O. Determinantes de La Tasa de Graduación y de La Graduación a Tiempo En La Educación Superior de Colombia 1998–2010. Coyunt. EconÓMica Investig. EconÓMica Y Soc. 2013, 43, 143–177. [Google Scholar]
- Martínez-González, A.; Sánchez-Mendiola, M.; Manzano-Patiño, A.P.; García-Minjares, M.; Herrera-Penilla, C.J.; Buzo-Casanova, E.R. Grado de Conocimientos de Los Estudiantes Al Ingreso a La Licenciatura y Su Asociación Con El Desempeño Escolar y La Eficiencia Terminal. Modelo Multivariado. Rev. La Educ. Super. 2018, 47, 57–85. [Google Scholar] [CrossRef]
- Melo-Becerra, L.A.; Ramos-Forero, J.E.; Hernández-Santamaría, P.O. La Educación Superior En Colombia: Situación Actual y Análisis de Eficiencia. Desarro. Soc. 2017, 2017, 59–111. [Google Scholar] [CrossRef]
- Tentsho, K.; McNeil, N.; Tongkumchum, P. Examining Timely Graduation Rates of Undergraduate Students. J. Appl. Res. High. Educ. 2019, 11, 199–209. [Google Scholar] [CrossRef]
- Vain, P. El Enfoque Biográfico-Narrativo y El Estudio de Las Trayectorias Estudiantiles Universitarias. Dimensiones Epistemológicas y Metodológicas. Rev. Argent. Investig. Narrat. 2022, 2, 31–41. [Google Scholar]
- Allen, J.; Robbins, S. Effects of Interest-Major Congruence, Motivation, and Academic Performance on Timely Degree Attainment. J. Couns. Psychol. 2010, 57, 23–35. [Google Scholar] [CrossRef]
- Instituto Nacional de Evaluación Educativa (INEE). Panorama de La Educación. Indicadores de La OCDE; Secretaría General Técnica: Madrid, España, 2019; ISBN 978-84-680-1323-7. [Google Scholar]
- Ferreyra, M.M.; Avitabile, C.; Botero Álvarez, J.; Haimovich, F.; Urzúa, S. Equity, Quality and Variety of Higher Education; Springer: Berlin/Heidelberg, Germany, 2017; Volume 23, ISBN 9781464809712. [Google Scholar]
- Von Hippel, P.T.; Hofflinger, A. The Data Revolution Comes to Higher Education: Identifying Students at Risk of Dropout in Chile. J. High. Educ. Policy Manag. 2021, 43, 2–23. [Google Scholar] [CrossRef]
- Bound, J.; Lovenheim, M.F.; Turner, S. Why Have College Completion Rates Declined? An Analysis of Changing Student Preparation and Collegiate Resources. Am. Econ. J. Appl. Econ. 2010, 2, 129–157. [Google Scholar]
- Cortés Cáceres, S.; Alvarez, P.; Llanos Ortiz, M.; Castillo Collado, L. CI Deserción Universitaria: La Epidemia Que Aqueja a Los Sistemas de Educación Superior. Rev. Perspect. 2019, 20, 13–25. [Google Scholar] [CrossRef]
- Servicio de Información de Educación Superior, SIES. Informe 2020: Retención de Primer Año de Pregrado, Cohortes 2015-2019. 2020, 1–16. Available online: https://www.mifuturo.cl/wpcontent/uploads/2020/12/Informe_retencion_pregrado_SIES_2020.pdf (accessed on 1 March 2022).
- Servicio de Información de Educación Superior, SIES. Informe 2020: Duración Real y Sobreduración de Las Carreras y/o Programas. 2020, 1–21. Available online: https://www.mifuturo.cl/wp-content/uploads/2020/12/Duracion-Real-y-Sobreduracion-de-las-carreras_2020_SIES.pdf (accessed on 1 March 2022).
- King-Domínguez, A.; Backhouse Erazo, P.; Améstica-Rivas, L. Deserción y Graduación. Midiendo La Eficiencia de Las Universidades Estatales En Chile. Mendive 2020, 18, 326–335. [Google Scholar]
- Sandoval Vilches, P. Permanencia y Titulación de Las Carreras Universitarias En Chile. Seguimiento de Cohortes 2009 a 2017 Empleando Datos Abiertos. Rev. Educ. Las AmÉRicas 2020, 10, 46–62. [Google Scholar] [CrossRef]
- Winterer, E.R.; Froyd, J.E.; Borrego, M.; Martin, J.P.; Foster, M. Factors Influencing the Academic Success of Latinx Students Matriculating at 2-Year and Transferring to 4-Year US Institutions—Implications for STEM Majors: A Systematic Review of the Literature. Int. J. STEM Educ. 2020, 7, 1–23. [Google Scholar] [CrossRef]
- Yue, H.; Fu, X. Rethinking Graduation and Time to Degree: A Fresh Perspective. Res. High. Educ. 2017, 58, 184–213. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, J.H.; Borden, V.M.H. Making Graduation Matter: Initial Evidence and Implications for Policy and Research. Stud. High. Educ. 2021, 46, 1850–1865. [Google Scholar] [CrossRef]
- López Suárez, A.; Albíter Rodríguez, Á.; Ramírez Revueltas, L. Eficiencia Terminal En La Educación Superior, La Necesidad de Un Nuevo Paradigma. Rev. La Educ. Super. 2008, 37, 135–151. [Google Scholar]
- Hernández-Falcón, D.d.l.C.; Vargas-Jiménez, A.; Almuiñas-Rivero, J.L. La Importancia de La Evaluación de La Eficiencia Académica En Las Universidades. Rev. Cuba. Educ. Super. 2020, 39, 12. [Google Scholar]
- Kosor, M.M. Efficiency Measurement in Higher Education: Concepts, Methods and Perspective. Procedia-Soc. Behav. Sci. 2013, 106, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, M.; Gómez, E.; Morfín, M. Efecto de La Beca CONACYT En La Eficiencia Terminal En El Posgrado. Rev. Electron. Investig. Educ. 2012, 14, 153–163. [Google Scholar]
- Domínguez Pérez, D.; Sandova Caraveo, M.; del, C.; Cruz Cruz, F.; Pulido Téllez, A.; del, R. Problemas Relacionados Con La Eficiencia Terminal Desde La Perspectiva de Estudiantes Universitarios. Rev. Reice. Rev. Iberoam. Sobre Calid. Y Cambio En Educ. 2013, 12, 25–34. [Google Scholar]
- Valencia-Arias, A.; Salim, C.; Cadavid-Orrego, M.; Gallegos, A.; Benjumea-Arias, M.; Rodríguez-Salazar, D.Y. University Dropout Model for Developing Countries: A Colombian Context Approach. Behav. Sci. 2023, 13, 382. [Google Scholar] [CrossRef]
- Rodríguez Espinar, S. Los Estudiantes Universitarios de Hoy: Una Visión Multinivel. REDU. Rev. Docencia Univ. 2015, 13, 91. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.; Calcagno, J.C.; Jenkins, D.; Leinbach, T.; Kienzl, G. Is Student-Right-to-Know All You Should Know? An Analysis of Community College Graduation Rates. Res. High. Educ. 2006, 47, 491–519. [Google Scholar] [CrossRef] [Green Version]
- Goldrick-Rab, S. Challenges and Opportunities for Improving Community College Student Success. Rev. Educ. Res. 2010, 80, 437–469. [Google Scholar] [CrossRef]
- Melguizo, T.; Torres, F.S.; Jaime, H. The Association between Financial Aid Availability and the College Dropout Rates in Colombia. High. Educ. 2011, 62, 231–247. [Google Scholar] [CrossRef]
- Blanco, C.; Meneses, F.; Paredes, R. Más Allá de La Deserción: Trayectorias Académicas. Calid. En La Educ. 2018, 49, 137–187. [Google Scholar]
- Cubillos, J.; Altamirano, O.; Prado, G. Retiro y Completación En Educación Superior. Algunas Pistas Para Repensar Programas de Intervención. Rev. Iberoam. Educ. Super. 2017, VIII, 154–172. [Google Scholar] [CrossRef]
- Demeter, E.; Dorodchi, M.; Al-Hossami, E.; Benedict, A.; Slattery Walker, L.; Smail, J. Predicting First-Time-in-College Students’ Degree Completion Outcomes. High. Educ. 2022, 84, 589–609. [Google Scholar] [CrossRef]
- Crisp, G.; Doran, E.; Salis Reyes, N.A. Predicting Graduation Rates at 4-Year Broad Access Institutions Using a Bayesian Modeling Approach. Res. High. Educ. 2018, 59, 133–155. [Google Scholar] [CrossRef]
- Ojha, T.; Heileman, G.L.; Martinez-Ramon, M.; Slim, A. Prediction of Graduation Delay Based on Student Performance. Proc. Int. Jt. Conf. Neural Netw. 2017, 2017, 3454–3460. [Google Scholar] [CrossRef]
- Shapiro, D.; Dundar, A.; Huie, F.; Wakhungu, P.K.; Yuan, X.; Nathan, A.; Bhimdiwali, A. Completing College: A National View of Student Completion Rates-Fall 2011 Cohort. Natl. Stud. Clear. Res. Cent. 2017, 14, 1–58. [Google Scholar]
- Yue, H. Service-Learning and Graduation: Evidence from Event History Analysis. Mich. J. Community Serv. Learn. 2017, 23, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Cintina, I.; Kana’iaupuni, S.M. Finishing Strong: GPA and Timely College Graduation Outcomes among Native Hawaiian STEM Majors. Rev. High. Educ. 2019, 42, 1459–1487. [Google Scholar] [CrossRef]
- Raju, D.; Schumacker, R. Exploring Student Characteristics of Retention That Lead to Graduation in Higher Education Using Data Mining Models. J. Coll. Stud. Retent. Res. Theory Pract. 2015, 16, 563–591. [Google Scholar] [CrossRef]
- Crisp, G.; Cruz, I. Mentoring College Students: A Critical Review of the Literature between 1990 and 2007. Res. High. Educ. 2009, 50, 525–545. [Google Scholar] [CrossRef]
- Nurafifah Mohammad Suhaimi, S.A.-R.; Mutalib, S.; Hamid, N.H.A.; Malik, A.M.A. Review on Predicting Students’ Graduation Time Using Machine Learning Algorithms. Int. J. Mod. Educ. Comput. Sci. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Huang, L.; Roche, L.R.; Kennedy, E.; Brocato, M.B. Using an Integrated Persistence Model to Predict College Graduation. Int. J. High. Educ. 2017, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Ferrão, M.E. Differential Effect of University Entrance Scores on Graduates’ Performance: The Case of Degree Completion on Time in Portugal. Assess. Eval. High. Educ. 2023, 48, 95–106. [Google Scholar] [CrossRef]
- Larson, L.M.; Pesch, K.M.; Surapaneni, S.; Bonitz, V.S.; Wu, T.F.; Werbel, J.D. Predicting Graduation: The Role of Mathematics/Science Self-Efficacy. J. Career Assess. 2015, 23, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Bengesai, A.V.; Paideya, V. An Analysis of Academic and Institutional Factors Affecting Graduation Among Engineering Students at a South African University. Afr. J. Res. Math. Sci. Technol. Educ. 2018, 22, 137–148. [Google Scholar] [CrossRef]
- Al-Nassar, N.S.; Alhajjaj, A.A.; Bleady, A. Potential Predictors of Length of Study for Finance and Accounting Degrees: Evidence from a Public Business School in Saudi Arabia. Heliyon 2022, 8, e09636. [Google Scholar] [CrossRef] [PubMed]
- Margarit, V.; Kennedy, J. Students’ Variables Predicting Timely Graduation at a Community College. J. High. Educ. Theory Pract. 2019, 19, 97–117. [Google Scholar] [CrossRef]
- Acosta-Gonzaga, E. The Effects of Self-Esteem and Academic Engagement on University Students’ Performance. Behav. Sci. 2023, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, T.T.; Yu, B.; Xu, F.; Yuan, Z.; Mailizar, M. Analysis of Factors Affecting Academic Performance of Mathematics Education Doctoral Students: A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2023, 20, 4518. [Google Scholar] [CrossRef] [PubMed]
- González-Brignardello, M.P.; Sánchez-Elvira Paniagua, Á. Dimensional Structure of MAPS-15: Validation of the Multidimensional Academic Procrastination Scale. Int. J. Environ. Res. Public Health 2023, 20, 3201. [Google Scholar] [CrossRef]
- Rayner, G.; Papakonstantinou, T. The Variables That Predict Science Undergraduates’ Timely Degree Completion: A Conceptual Model. Res. Sci. Educ. 2022, 53, 463–476. [Google Scholar] [CrossRef]
- Khareedi, R.; Ratnaweera, M. Exploring Selected Factors That Determine Graduation Times in an Undergraduate Programme. Asian J. Educ. E-Learn. 2021, 9, 110–118. [Google Scholar] [CrossRef]
- Alyahyan, E.; Düştegör, D. Predicting Academic Success in Higher Education: Literature Review and Best Practices. Int. J. Educ. Technol. High. Educ. 2020, 17, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Pey, R.; Durán, F.; Jorquera, P. Informe Para La Toma de Decisiones Sobre Duración de Las Carreras de Pregrado en el CRUCh; Consejo de Rectores de las Universidades Chilenas (CRUCH): Santiago, Chile, 2012. [Google Scholar]
- Carvajal, C.M.; González, J.A.; Tassara, C.A. Sobre-Duración: Una Aproximación Cuantitativa Over-Duration: A Quantitative Approach. Form. óN Univ. 2018, 11, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Sampieri, R.; Mendoza, C. Metodología de La Investigación. Las Rutas Cuantitativa, Cualitativa y Mixta; McGraw-Hill Interamericana Editores: New Yor, NY, USA, 2018. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Ma, X. Early Acceleration of Students in Mathematics: Does It Promote Growth and Stability of Growth in Achievement across Mathematical Areas? Contemp. Educ. Psychol. 2005, 30, 439–460. [Google Scholar] [CrossRef]
- Nisbet, J.D.; Miner, G. Handbook of Statistical Analysis and Data Mining Applications; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Ortiz-Lozano, J.M.; Rua Vieites, A.; Bilbao Calabuig, P. Aplicación de Árboles de Clasificación a La Detección Precoz de Abandono En Los Estudios Universitarios de Administración y Dirección de Empresas. Recta 2017, 18, 177–201. [Google Scholar] [CrossRef]
- Schiattino, I.; Silva, C. Árboles de Clasificación y Regresión: Modelos CART. Cienc. y Trab. 2008, 30, 161–166. [Google Scholar]
- Bravo, M.; Salvo-Garrido, S.; Muñoz, C. Profiles of Chilean Students According to Academic Performance in Mathematics: An Exploratory Study Using Classification Trees and Random Forests. Stud. Educ. Eval. 2015, 44, 50–59. [Google Scholar] [CrossRef]
- JMP®, Version 14; SAS Institute Inc.: Cary, NC, USA, 1989.
- Haberman, S. The Analysis of Residuals in Cross-Classified Tables. Int. Biom. Soc. 1973, 29, 205–220. [Google Scholar] [CrossRef]
- Abdullah, A.; Doucouliagos, H.; Manning, E. Does Education Reduce Income Inequality? A Meta-Regression Analysis. J. Econ. Surv. 2015, 29, 301–316. [Google Scholar] [CrossRef]
- Reyes Rocabado, J.; Escobar Flores, C.; Duarte Vargas, J.; Ramírez Peradotto, P. Una Aplicacion Del Modelo de Regression Logistica En La Prediccion Del Rendimiento Estudiantil. Estud. Pedagog. 2007, 33, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Tinto, V.; Pusser, B. Moving from Theory to Action: Building a Model of Institutional Action for Student Success. Natl. Postsecond. Educ. Coop. 2006, 51, 89–125. [Google Scholar]
- Gershenfeld, S.; Hood, D.W.; Zhan, M. The Role of First-Semester GPA in Predicting Graduation Rates of Underrepresented Students. J. Coll. Stud. Retent. Res. Theory Pract. 2016, 17, 469–488. [Google Scholar] [CrossRef]
- Spaull, N. Schooling in South Africa: How Low Quality Education Becomes a Poverty Trap. South African Child Gauge 2015, 1, 34–41. [Google Scholar]
- Perger, M.; Takács, I. Factors Contributing to Students’ Academic Success Based on the Students’ Opinion at Bme Faculty of Economic and Social Sciences. Period. Polytech. Soc. Manag. Sci. 2016, 24, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.P.K.; Zerquera, D.; Inge, B.; Berry, M. Latino Associate Degree Completion: Effects of Financial Aid Over Time. J. Hisp. High. Educ. 2014, 13, 177–190. [Google Scholar] [CrossRef]
- Tinto, V. Taking Retention Seriously: Rethinking the First Year of College. NACADA J. 1999, 19, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Flores, G.; Estudillo, A.G. Effects of a Peer-To-Peer Mentoring Program: Supporting First-Effects of a Peer-To-Peer Mentoring Program: Supporting First-Year College Students’ Academic and Social Integration on Year College Students’ Academic and Social Integration on Campus Campus. J. Hum. Serv. Train. Res. Pract. J. Hum. Serv. Train. Res. Pract. Acad. Soc. Integr. Campus 2018, 3, 1–25. [Google Scholar]
Pre-University Variables | |
---|---|
HS_GPA | High School Grade Ponderated Average (GPA) |
SAT_Math | University Selection Mathematics Test Score |
SAT-Lang | University Selection Language Test Score |
D_STSchool | Establishment of origin: Scientific or Technical School, where: D_SS = 1, if it is scientific school; 0, other; D_TS = 1, if it is technical/vocational school; 0, other |
D_FTSchool | School Type, where D_PrivateS = 1, if it is private school; 0, other; D_PublicS = 1, if it is public school; 0, other; D_SubS = 1, if it is sub-sidized school; 0, other |
D_ETH | Self-declared Etnicity, where: 1 = Mapuche Ancestry; 0 = No Mapuche Ancestry |
D_Gender | Gender of the student, where: 1 = Female; 0 = Male |
D_EduPLevel | Education level of the parents, where: 1 = Father and/or mother with university education; 0 = Father and mother without university education |
Transition/Motivation Variables | |
D_PEC | Preference with which a student enters a career, where: 1 = first preference; 0 = not first preference |
D_TSEU | Time from completion of secondary education and entry into the university, where 1, if enters into the program the following year after leaving high school or at the latest the following year (<3); 0, entry after two years (≥3) |
University Variables | |
University_GPA1 | First semester university GPA |
University_GPA2 | Second semester university GPA |
Math_GPA1 | GPA in mathematics for the first semester of the degree |
Math_GPA2 | GPA in mathematics for the second semester of the degree |
D_Tutoring | Participation in academic tutoring, where: 1 = participated; 0 = did not participate |
D_EWS | Work status during studies, where: 1 = does not work; 0 = works |
Distance | Distance between the university commune and origin (kilometers) |
D_RDS | Residence during their studies, where: D_LWP = 1, if resides with both parents; 0, other; D_LWFoM = 1, if resides with mother or fa-ther; 0, other; D_LWR = 1, if resides with relatives or spouse; 0, other; D_LWI = 1, if resides in a room or independent.; 0, other |
Education Trajectories | 2011–2014 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|
N° students enrolled | 514 | 118 | 133 | 144 | 119 |
Graduated on time (5 years) | 28% | 20% | 33% | 24% | 33% |
Graduate with 1 year delay (6 years) | 20% | 24% | 17% | 21% | 18% |
Stay in university without graduating at 6 years from entry | 13% | 20% | 10% | 15% | 9% |
Desert | 39% | 36% | 40% | 40% | 40% |
Variables | Range | Total | Graduate on Time | Do Not Graduate on Time |
---|---|---|---|---|
% or Mean (SD) | ||||
Pre-University Variables | ||||
HS_GPA (*) | 352–799 | 594 (81) | 633 (77) | 580 (78) |
SAT_Math (*) | 448–741 | 578 (45) | 591 (48) | 574 (43) |
SAT-Lang | 384–797 | 555 (61) | 556 (66) | 556 (59) |
D_SS | 0–1 | 72% | 75% | 71% |
D_TS | 0–1 | 28% | 25% | 29% |
D_PrivateS | 0–1 | 3% | 3% | 3% |
D_PublicS | 0–1 | 33% | 35% | 32% |
D_SubS | 0–1 | 65% | 63% | 65% |
D_ETH (*) | 0–1 | 18% | 13% | 21% |
D_Gender (*) | 0–1 | 55% | 63% | 52% |
D_EduLevel | 0–1 | 15% | 15% | 16% |
Transition/Motivation Variables | ||||
D_PEC | 0–1 | 82% | 88% | 80% |
D_TSEU (*) | 0–1 | 82% | 91% | 78% |
University Variables | ||||
University_GPA1 (*) | 1.0–6.6 | 4.67 (0.80) | 5.22 (0.50) | 4.44 (0.79) |
University_GPA2 (*) | 1.0–6.5 | 4.56 (0.86) | 5.07 (0.52) | 4.33 (0.89) |
Math_GPA1 (*) | 1.0–6.8 | 3.99 (1.19) | 4.80 (0.93) | 3.65 (1.12) |
Math_GPA2 (*) | 1.0–7.0 | 3.84 (1.13) | 4.45 (0.97) | 3.55 (1.08) |
D_Tutoring (*) | 0–1 | 23% | 31% | 20% |
D_EWS (*) | 0–1 | 82% | 89% | 79% |
Distance | 0–2327 | 88 (204) | 107 (279) | 82 (166) |
D_LWP (*) | 0–1 | 32% | 40% | 28% |
D_LWFoM | 0–1 | 30% | 27% | 31% |
D_LWR | 0–1 | 11% | 10% | 11% |
D_LWI | 0–1 | 28% | 24% | 29% |
Variables | % Contribution |
---|---|
University_GPA1 | 55.8 |
University_GPA2 | 23.7 |
Math_GPA1 | 9.12 |
D_TSEU | 5.1 |
D_ETH | 3.8 |
D_Tutoring | 2.6 |
Group | N° Students per Group (% Compared to Total) | % That Graduates on Time (Compared to Their Group) | Characteristics of the Group |
---|---|---|---|
I | 35 students (6.8%) | >75% | Good performance in the first semester (University_GPA1 ≥ 5.0), good performance in the second semester (University_GPA2 ≥ 4.6), is motivated to enter the program (enters immediately or maximum in the second year after finishing high school), and takes advantage of the institutional support by attending academic tutoring. |
II | 102 students (19.8%) | >50% and <75% | Good performance in the first semester (≥5.0), good performance in the second semester (≥4.6), motivated to enter the program (enters immediately or a maximum of one year after finishing high school), and does not take advantage of the institutional support. |
III | 20 students (3.9%) | >25% and <50% | Good performance first semester (≥5.0), good performance second semester (≥4.6), and with less motivation to enter the program (enters after three or more years since finishing high school) |
IV | 33 students (6.4%) | <25% | Good performance in the first semester (≥5.0) and low performance in the second semester (<4.6). |
V | 37 students (7.2%) | >25% and < 50%: | Good performance first semester (<5.0), good performance in the second semester (≥4.5), and good performance in math in the first semester (≥4.2). |
VI | 107 students (20.8%) | <25% | Low performance in the first semester (<5.0), good performance in the second semester (≥4.5), low performance in math in the first semester (<4.2), and not Mapuche. |
VII | 27 students (5.3%) | 0% | Low performance in the first semester (<5.0), good performance in the second semester (≥4.5), low performance in math first semester (<4.2), and declares Mapuche ancestry. |
VIII | 153 students (29.8%) | <10% | Low performance in the first semester (>5.0) and low performance in the second semester (<4.5). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraga-Pumarino, A.; Salvo-Garrido, S.; Polanco-Levicán, K. Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context. Behav. Sci. 2023, 13, 582. https://doi.org/10.3390/bs13070582
Moraga-Pumarino A, Salvo-Garrido S, Polanco-Levicán K. Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context. Behavioral Sciences. 2023; 13(7):582. https://doi.org/10.3390/bs13070582
Chicago/Turabian StyleMoraga-Pumarino, Ana, Sonia Salvo-Garrido, and Karina Polanco-Levicán. 2023. "Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context" Behavioral Sciences 13, no. 7: 582. https://doi.org/10.3390/bs13070582
APA StyleMoraga-Pumarino, A., Salvo-Garrido, S., & Polanco-Levicán, K. (2023). Profiles of University Students Who Graduate on Time: A Cohort Study from the Chilean Context. Behavioral Sciences, 13(7), 582. https://doi.org/10.3390/bs13070582