Factor Structures in the Depressive Symptoms Domains in the 9Q for Northern Thai Adults and Their Association with Chronic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Variables and Measurements
2.2.1. Instrument
2.2.2. Study Variables
2.3. Prior Models of Depressive Smptoms Structure
2.4. Statistical Analysis
3. Results
3.1. Characteristics and Depressive Symptoms of the Participants
3.2. Structure of Depressive Symptoms Measurement
3.3. Associations with Chronic Diseases and Covariates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Mental Health. Available online: https://ourworldindata.org/mental-health (accessed on 10 March 2019).
- Freudenreich, O.; Kontos, N.; Nejad, S.H.; Gross, A.F. An approach to symptoms at the interface of medicine and psychiatry: Pain, insomnia, weight loss and anorexia, fatigue and forgetfulness, and sexual dysfunction. Med. Clin. N. Am. 2010, 94, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Chilcot, J.; Norton, S.; Wellsted, D.; Almond, M.; Davenport, A.; Farrington, K. A confirmatory factor analysis of the Beck Depression Inventory-II in end-stage renal disease patients. J. Psychosom. Res. 2011, 71, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Lim, P.S.; Wu, W.C.; Chiu, H.C.; Chen, C.H.; Kuo, H.Y.; Tsai, T.W.; Chien, P.I.; Su, Y.J.; Su, Y.L.; et al. Sleep behavior disorders in a large cohort of chinese (Taiwanese) patients maintained by long-term hemodialysis. Am. J. Kidney Dis. 2006, 48, 277–284. [Google Scholar] [CrossRef]
- Corfield, E.C.; Martin, N.G.; Nyholt, D.R. Co-occurrence and symptomatology of fatigue and depression. Compr. Psychiatry 2016, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Casper, R.C.; Redmond, D.E., Jr.; Katz, M.M.; Schaffer, C.B.; Davis, J.M.; Koslow, S.H. Somatic symptoms in primary affective disorder. Presence and relationship to the classification of depression. Arch. Gen. Psychiatry 1985, 42, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Brenne, E.; Loge, J.H.; Kaasa, S.; Heitzer, E.; Knudsen, A.K.; Wasteson, E. Depressed patients with incurable cancer: Which depressive symptoms do they experience? Palliat. Support. Care 2013, 11, 491–501. [Google Scholar] [CrossRef]
- Cheng, H.T.; Ho, M.C.; Hung, K.Y. Affective and cognitive rather than somatic symptoms of depression predict 3-year mortality in patients on chronic hemodialysis. Sci. Rep. 2018, 8, 5868. [Google Scholar] [CrossRef] [PubMed]
- Dessotte, C.A.; Silva, F.S.; Furuya, R.K.; Ciol, M.A.; Hoffman, J.M.; Dantas, R.A. Somatic and cognitive-affective depressive symptoms among patients with heart disease: Differences by sex and age. Rev. Lat. Am. Enferm. 2015, 23, 208–215. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, H.; Guo, L.; Fan, B.; Wang, W.; Teopiz, K.M.; Lui, L.M.W.; Lee, Y.; Li, L.; Han, X.; et al. Impact of cognitive-affective and somatic symptoms in subthreshold depression transition in adults: Evidence from Depression Cohort in China (DCC). J. Affect. Disord. 2022, 315, 274–281. [Google Scholar] [CrossRef]
- Best, J.R.; Gan, D.R.Y.; Wister, A.V.; Cosco, T.D. Age and sex trends in depressive symptoms across middle and older adulthood: Comparison of the Canadian Longitudinal Study on Aging to American and European cohorts. J. Affect. Disord. 2021, 295, 1169–1176. [Google Scholar] [CrossRef]
- Song, A.; Kim, W. The association between relative income and depressive symptoms in adults: Findings from a nationwide survey in Korea. J. Affect. Disord. 2020, 263, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ge, S.; Greene, B.; Dunbar-Jacob, J. Depression in the context of chronic diseases in the United States and China. Int. J. Nurs. Sci. 2019, 6, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Boing, A.F.; Melo, G.R.; Boing, A.C.; Moretti-Pires, R.O.; Peres, K.G.; Peres, M.A. [Association between depression and chronic diseases: Results from a population-based study]. Rev. Saude Publica 2012, 46, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Roest, A.M.; Thombs, B.D.; Grace, S.L.; Stewart, D.E.; Abbey, S.E.; de Jonge, P. Somatic/affective symptoms, but not cognitive/affective symptoms, of depression after acute coronary syndrome are associated with 12-month all-cause mortality. J. Affect. Disord. 2011, 131, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Karawekpanyawong, N.; Kaewkitikul, K.; Maneeton, B.; Maneeton, N.; Siriaree, S. The prevalence of depressive disorder and its association in Thai cervical cancer patients. PLoS ONE 2021, 16, e0252779. [Google Scholar] [CrossRef] [PubMed]
- Maneeton, B.; Maneeton, N.; Reungyos, J.; Intaprasert, S.; Leelarphat, S.; Thongprasert, S. Prevalence and relationship between major depressive disorder and lung cancer: A cross-sectional study. Onco Targets Ther. 2014, 7, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Tupanich, W.; Wongsawat, P.; Settanachok, H. Factors Influencing Depression in Older Adults with Non-Communicable Diseases in Nonthaburi, Thailand. J. Med. Assoc. Thai 2023, 106, 1086–1094. [Google Scholar]
- Schiffer, A.A.; Pelle, A.J.; Smith, O.R.; Widdershoven, J.W.; Hendriks, E.H.; Pedersen, S.S. Somatic versus cognitive symptoms of depression as predictors of all-cause mortality and health status in chronic heart failure. J. Clin. Psychiatry 2009, 70, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Postolache, T.T.; Lapidus, M.; Sander, E.R.; Langenberg, P.; Hamilton, R.G.; Soriano, J.J.; McDonald, J.S.; Furst, N.; Bai, J.; Scrandis, D.A.; et al. Changes in allergy symptoms and depression scores are positively correlated in patients with recurrent mood disorders exposed to seasonal peaks in aeroallergens. ScientificWorldJournal 2007, 7, 1968–1977. [Google Scholar] [CrossRef]
- Trikojat, K.; Luksch, H.; Rösen-Wolff, A.; Plessow, F.; Schmitt, J.; Buske-Kirschbaum, A. “Allergic mood”—Depressive and anxiety symptoms in patients with seasonal allergic rhinitis (SAR) and their association to inflammatory, endocrine, and allergic markers. Brain Behav. Immun. 2017, 65, 202–209. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, L.; Xu, S.; Bao, Q.; Ma, Y.; Guo, L.; Zhang, S.; Huang, X.; Cao, C.; Ruan, L. Allergic disorders and risk of depression: A systematic review and meta-analysis of 51 large-scale studies. Ann. Allergy Asthma Immunol. 2018, 120, 310–317.e312. [Google Scholar] [CrossRef] [PubMed]
- Bell, I.R.; Jasnoski, M.L.; Kagan, J.; King, D.S. Depression and allergies: Survey of a nonclinical population. Psychother. Psychosom. 1991, 55, 24–31. [Google Scholar] [CrossRef]
- Charles, C.; Bardet, A.; Larive, A.; Gorwood, P.; Ramoz, N.; Thomas, E.; Viari, A.; Rousseau-Tsangaris, M.; Dumas, A.; Menvielle, G.; et al. Characterization of Depressive Symptoms Trajectories After Breast Cancer Diagnosis in Women in France. JAMA Netw. Open 2022, 5, e225118. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Behnezhad, S.; Azad, E. Migraine headache and depression in adults: A systematic Review and Meta-analysis. Neuropsychiatr. 2019, 33, 131–140. [Google Scholar] [CrossRef]
- de Vries Lentsch, S.; Louter, M.A.; van Oosterhout, W.; van Zwet, E.W.; van Noorden, M.S.; Terwindt, G.M. Depressive symptoms during the different phases of a migraine attack: A prospective diary study. J. Affect. Disord. 2022, 297, 502–507. [Google Scholar] [CrossRef]
- Breslau, N.; Lipton, R.B.; Stewart, W.F.; Schultz, L.R.; Welch, K.M. Comorbidity of migraine and depression: Investigating potential etiology and prognosis. Neurology 2003, 60, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Yang, S.; Wu, Q.; Ye, Z.; Zhou, C.; He, P.; Zhang, Y.; Hou, F.F.; Qin, X. Bidirectional relations between depression symptoms and chronic kidney disease. J. Affect. Disord. 2022, 311, 224–230. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, X.; Pan, J.; Zhao, J.; Li, H.; Cheng, Y.; Liu, J.; Zhang, N.; Tao, Y. Network of depressive symptoms before and after a diagnosis of chronic kidney disease. Health Psychol. 2024, 43, 132–141. [Google Scholar] [CrossRef]
- Kawilapat, S.; Maneeton, B.; Maneeton, N.; Prasitwattanaseree, S.; Kongsuk, T.; Arunpongpaisal, S.; Leejongpermpoon, J.; Sukhawaha, S.; Traisathit, P. Comparison of unweighted and item response theory-based weighted sum scoring for the Nine-Questions Depression-Rating Scale in the Northern Thai Dialect. BMC Med. Res. Methodol. 2022, 22, 268. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Harry, M.L.; Waring, S.C. The measurement invariance of the Patient Health Questionnaire-9 for American Indian adults. J. Affect. Disord. 2019, 254, 59–68. [Google Scholar] [CrossRef]
- Kim, Y.E.; Lee, B. The Psychometric Properties of the Patient Health Questionnaire-9 in a Sample of Korean University Students. Psychiatry Investig. 2019, 16, 904–910. [Google Scholar] [CrossRef]
- Aslan, J.; Cova, F.; Saldivia, S.; Bustos, C.; Inostroza, C.; Rincón, P.; Ortiz, C.; Bühring, V. Psychometric Properties of the Patient Health Questionnaire-9 in Elderly Chilean Primary Care Users. Front. Psychiatry 2020, 11, 555011. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Agostino, D.; Chua, K.C.; Peters, T.J.; Scazufca, M.; Araya, R. Psychometric properties of the PHQ-9 measure of depression among Brazilian older adults. Aging Ment. Health 2022, 26, 2285–2290. [Google Scholar] [CrossRef]
- López-Guerra, V.M.; López-Núñez, C.; Vaca-Gallegos, S.L.; Torres-Carrión, P.V. Psychometric Properties and Factor Structure of the Patient Health Questionnaire-9 as a Screening Tool for Depression Among Ecuadorian College Students. Front. Psychol. 2022, 13, 813894. [Google Scholar] [CrossRef] [PubMed]
- Vu, L.G.; Le, L.K.; Dam, A.V.T.; Nguyen, S.H.; Vu, T.T.M.; Trinh, T.T.H.; Do, A.L.; Do, N.M.; Le, T.H.; Latkin, C.; et al. Factor Structures of Patient Health Questionnaire-9 Instruments in Exploring Depressive Symptoms of Suburban Population. Front. Psychiatry 2022, 13, 838747. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Wang, L.; Cao, C.; Fang, R.; Li, G.; Liu, P.; Luo, S.; Yang, H.; Hall, B.J. The factor structure of major depressive symptoms in a sample of Chinese earthquake survivors. BMC Psychiatry 2021, 21, 59. [Google Scholar] [CrossRef]
- Patel, J.S.; Oh, Y.; Rand, K.L.; Wu, W.; Cyders, M.A.; Kroenke, K.; Stewart, J.C. Measurement invariance of the patient health questionnaire-9 (PHQ-9) depression screener in U.S. adults across sex, race/ethnicity, and education level: NHANES 2005-2016. Depress Anxiety 2019, 36, 813–823. [Google Scholar] [CrossRef]
- de Jonge, P.; Mangano, D.; Whooley, M.A. Differential association of cognitive and somatic depressive symptoms with heart rate variability in patients with stable coronary heart disease: Findings from the Heart and Soul Study. Psychosom. Med. 2007, 69, 735–739. [Google Scholar] [CrossRef]
- Krause, J.; Bombardier, C.; Carter, R. Assessment of Depressive Symptoms During Inpatient Rehabilitation for Spinal Cord Injury: Is There an Underlying Somatic Factor When Using the PHQ? Rehabil. Psychol. 2008, 53, 513–520. [Google Scholar] [CrossRef]
- Richardson, E.J.; Richards, J.S. Factor structure of the PHQ-9 screen for depression across time since injury among persons with spinal cord injury. Rehabil. Psychol. 2008, 53, 243–249. [Google Scholar] [CrossRef]
- Buderer, N.M. Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad. Emerg. Med. 1996, 3, 895–900. [Google Scholar] [CrossRef]
- Jackson, D.L. Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N:q Hypothesis. Struct. Equ. Model. A Multidiscip. J. 2003, 10, 128–141. [Google Scholar] [CrossRef]
- Kongsuk, T.; Arunpongpaisal, S.; Janthong, S.; Prukkanone, B.; Sukhawaha, S.; Leejongpermpoon, J. Criterion-Related Validity of the 9 Questions Depression Rating Scale revised for Thai Central Dialect. J. Psychiatr. Assoc. Thail. 2018, 63, 321–334. [Google Scholar]
- Ledesma, R.; Valero-Mora, P. Determining the Number of Factors to Retain in EFA: An easy-to- use computer program for carrying out Parallel Analysis. Pract. Assess. Res. Eval. 2007, 12, 2. [Google Scholar]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural Equation Modeling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2007, 6, 1–55. [Google Scholar]
- McCallum, S.M.; Batterham, P.J.; Calear, A.L.; Sunderland, M.; Carragher, N.; Kazan, D. Associations of fatigue and sleep disturbance with nine common mental disorders. J. Psychosom. Res. 2019, 123, 109727. [Google Scholar] [CrossRef]
- Bi, Y.H.; Pei, J.J.; Hao, C.; Yao, W.; Wang, H.X. The relationship between chronic diseases and depression in middle-aged and older adults: A 4-year follow-up study from the China Health and Retirement Longitudinal Study. J. Affect. Disord. 2021, 289, 160–166. [Google Scholar] [CrossRef]
- Jokela, M.; García-Velázquez, R.; Airaksinen, J.; Gluschkoff, K.; Kivimäki, M.; Rosenström, T. Chronic diseases and social risk factors in relation to specific symptoms of depression: Evidence from the U.S. national health and nutrition examination surveys. J. Affect. Disord. 2019, 251, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.Y.; Kwon, Y.J.; Cho, A.R. Serum Low-Density Lipoprotein Cholesterol Levels and Depressive Mood in Korean Adults: A Nationwide Population-Based Study. Korean J. Fam. Med. 2022, 43, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Kivimäki, M.; Brunner, E.J.; Chandola, T.; Marmot, M.G.; Singh-Manoux, A.; Ferrie, J.E. Association between metabolic syndrome and depressive symptoms in middle-aged adults: Results from the Whitehall II study. Diabetes Care 2009, 32, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Péterfalvi, Á.; Németh, N.; Herczeg, R.; Tényi, T.; Miseta, A.; Czéh, B.; Simon, M. Examining the Influence of Early Life Stress on Serum Lipid Profiles and Cognitive Functioning in Depressed Patients. Front. Psychol. 2019, 10, 1798. [Google Scholar] [CrossRef] [PubMed]
- Khalfan, A.F.; Campisi, S.C.; Lo, R.F.; McCrindle, B.W.; Korczak, D.J. The association between adolescent depression and dyslipidemia. J. Affect. Disord. 2023, 338, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yan, Z.; Cai, C.; Jiang, H.; Song, A.; Qiu, C. Association between lipid profile and depressive symptoms among Chinese older people: Mediation by cardiovascular diseases? Int. J. Behav. Med. 2014, 21, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Fittipaldi, E.; Andrade, A.D.; Santos, A.C.O.; Campos, S.; Fernandes, J.; Catanho, M. Depressive Symptoms are Associated with High Levels of Serum Low-Density Lipoprotein Cholesterol in Older Adults with Type 2 Diabetes Mellitus. Arq. Bras. Cardiol. 2020, 115, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Miao, G.; Deen, J.; Struzeski, J.B.; Chen, M.; Zhang, Y.; Cole, S.A.; Fretts, A.M.; Lee, E.T.; Howard, B.V.; Fiehn, O.; et al. Plasma lipidomic profile of depressive symptoms: A longitudinal study in a large sample of community-dwelling American Indians in the strong heart study. Mol. Psychiatry 2023, 28, 2480–2489. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Y.; Subramaniam, M.; Abdin, E.; Vaingankar, J.; Chong, S.A. Peptic ulcer disease and mental illnesses. Gen. Hosp. Psychiatry 2014, 36, 63–67. [Google Scholar] [CrossRef]
- Hsu, C.C.; Hsu, Y.C.; Chang, K.H.; Lee, C.Y.; Chong, L.W.; Lin, C.L.; Shang, C.S.; Sung, F.C.; Kao, C.H. Depression and the Risk of Peptic Ulcer Disease: A Nationwide Population-Based Study. Medicine 2015, 94, e2333. [Google Scholar] [CrossRef]
- Lee, Y.B.; Yu, J.; Choi, H.H.; Jeon, B.S.; Kim, H.K.; Kim, S.W.; Kim, S.S.; Park, Y.G.; Chae, H.S. The association between peptic ulcer diseases and mental health problems: A population-based study: A STROBE compliant article. Medicine 2017, 96, e7828. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Chen, M.H.; Wang, Y.P.; Liu, P.Y.; Hou, M.C.; Lee, F.Y.; Lu, C.L. Increased risk of short-term depressive disorder after Helicobacter pylori eradication: A population-based nested cohort study. Helicobacter 2021, 26, e12824. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.F.P.; Mercante, J.P.P.; Tobo, P.R.; Kamei, H.; Bigal, M.E. Anxiety and depression symptoms and migraine: A symptom-based approach research. J. Headache Pain. 2017, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, S.; Adjepong, D.; Al-Shami, H.A.; Malik, B.H. Is There an Association Between Migraine and Major Depressive Disorder? A Narrative Review. Cureus 2020, 12, e8551. [Google Scholar] [CrossRef]
- Priede, A.; Rodríguez-Pérez, N.; Hoyuela, F.; Cordero-Andrés, P.; Umaran-Alfageme, O.; González-Blanch, C. Cognitive variables associated with depressive and anxiety symptoms in patients with cancer: A five-year follow-up study. Psychooncology 2022, 31, 798–805. [Google Scholar] [CrossRef]
Covariates | n (%) |
---|---|
Sex | |
Male | 430 (31.95%) |
Female | 916 (68.05%) |
Age (mean = 47.0, SD = 14.5) | |
19–59 years old | 1079 (80.16%) |
≥60 years old | 267 (19.84%) |
Relationship status (n = 1345) | |
Single | 238 (17.70%) |
Married/with a partner | 876 (65.13%) |
Divorced | 99 (7.36%) |
Widowed | 132 (9.81%) |
Educational level (n = 1336) | |
None | 24 (1.80%) |
Primary school | 609 (45.58%) |
Lower secondary school | 195 (14.60%) |
Upper secondary school | 182 (13.62%) |
Diploma | 171 (12.80%) |
Bachelor | 139 (10.40%) |
Masters | 16 (1.20%) |
Occupation (n = 1339) | |
Employee | 598 (44.66%) |
Government official | 78 (5.83%) |
Merchant | 148 (11.05%) |
Agriculturist | 220 (16.43%) |
Business owner | 52 (3.88%) |
Student | 32 (2.39%) |
Unemployed | 211 (15.76%) |
Income (USD/month) a (n = 1331) | |
0–150 | 647 (48.61%) |
151–300 | 433 (32.53%) |
301–600 | 198 (14.88%) |
601–1200 | 39 (2.93%) |
>1200 | 14 (1.06%) |
Chronic diseases b (n = 1331) | |
No | 829 (62.28%) |
Yes | 502 (37.72%) |
Cancer | 10 (0.75%) |
Chronic kidney disease | 11 (0.83%) |
Coronary artery disease | 14 (1.05%) |
Asthma | 23 (1.73%) |
Diabetes mellitus | 109 (8.19%) |
Hypertension | 254 (19.08%) |
Dyslipidemia | 80 (6.01%) |
Migraine | 10 (0.75%) |
Peptic ulcer disease | 17 (1.28%) |
Thalassemia | 13 (0.98%) |
Thyroid | 30 (2.25%) |
Rheumatoid/gout | 25 (1.88%) |
Allergies | 28 (2.10%) |
Other diseases | 62 (4.66%) |
Items | Factor 1: Cognitive/Affective | Factor 2: Somatic |
---|---|---|
1. Mood | 0.799 * | 0.294 |
2. Anhedonia | 0.821 * | 0.205 |
3. Sleep | 0.350 * | 0.327 |
4. Fatigue | 0.690 * | 0.271 |
5. Appetite | 0.278 | 0.331 * |
6. Guilt | 0.478 * | 0.398 |
7. Concentration | 0.377 | 0.647 * |
8. Psychomotor | 0.305 | 0.688 * |
9. Suicidal ideation | 0.436 * | 0.364 |
Cronbach’s alpha | 0.798 | 0.645 |
9Q Items | Model 1 a | Model 2 b | Model 3 c | Model 4 d | Model 5 e | Model 6 f |
---|---|---|---|---|---|---|
Factor loadings | ||||||
1. Mood | 0.837 | 0.843 | 0.841 | 0.860 | 0.854 | 0.852 |
2. Anhedonia | 0.803 | 0.806 | 0.805 | 0.816 | 0.830 | 0.820 |
3. Sleep | 0.463 | 0.474 | 0.484 | 0.487 | 0.452 | 0.452 |
4. Fatigue | 0.730 | 0.743 | 0.767 | 0.732 | 0.738 | 0.735 |
5. Appetite | 0.403 | 0.413 | 0.420 | 0.429 | 0.391 | 0.429 |
6. Guilt | 0.625 | 0.614 | 0.615 | 0.608 | 0.650 | 0.607 |
7. Concentration | 0.639 | 0.636 | 0.639 | 0.674 | 0.721 | 0.783 |
8. Psychomotor | 0.591 | 0.596 | 0.590 | 0.628 | 0.686 | 0.724 |
9. Suicide | 0.565 | 0.565 | 0.565 | 0.562 | 0.584 | 0.557 |
Factor correlation | NA | 0.972 | 0.941 | 0.917 | 0.833 | 0.771 |
Model fit | ||||||
RMSEA | 0.104 | 0.105 | 0.104 | 0.100 | 0.082 | 0.077 |
CFI | 0.913 | 0.913 | 0.915 | 0.922 | 0.948 | 0.953 |
TLI | 0.884 | 0.880 | 0.882 | 0.893 | 0.928 | 0.936 |
SRMR | 0.049 | 0.049 | 0.049 | 0.046 | 0.043 | 0.043 |
AIC | 31,461.346 | 31,459.532 | 31,453.617 | 31,419.240 | 31,306.054 | 31,280.514 |
BIC | 31,601.878 | 31,605.269 | 31,599.354 | 31,564.977 | 31,451.791 | 31,426.251 |
Covariates | MIMIC Model | ||
---|---|---|---|
β | (95% CI) | p-Value | |
Cognitive-affective domain | |||
Female (ref: male) | 0.033 | (−0.025, 0.091) | 0.267 |
Age (years old) | −0.052 | (−0.123, 0.018) | 0.148 |
Divorced/widowed (ref: single/married) | 0.016 | (−0.043, 0.075) | 0.587 |
Income ≤ 300 USD (ref: >300 USD) | 0.045 | (−0.018, 0.108) | 0.164 |
Diploma/bachelor’s/master’s degree (ref: high school or lower) | −0.036 | (−0.104, 0.033) | 0.306 |
Unemployed (ref: students/employed/agriculturist/business owner) | 0.023 | (−0.035, 0.081) | 0.443 |
Cancer (ref: absence) | 0.054 | (−0.002, 0.110) | 0.060 |
Chronic kidney disease (ref: absence) | 0.050 | (−0.007, 0.107) | 0.086 |
Coronary artery disease (ref: absence) | 0.041 | (−0.016, 0.098) | 0.156 |
Asthma (ref: absence) | 0.015 | (−0.041, 0.072) | 0.597 |
Diabetes mellitus (ref: absence) | −0.002 | (−0.064, 0.060) | 0.954 |
Hypertension (ref: absence) | −0.019 | (−0.085, 0.047) | 0.569 |
Dyslipidemia (ref: absence) | 0.120 | (0.059, 0.181) | <0.001 * |
Migraine (ref: absence) | 0.052 | (−0.005, 0.108) | 0.072 |
Peptic ulcer disease (ref: absence) | −0.020 | (−0.076, 0.037) | 0.496 |
Thalassemia (ref: non-exposed) | −0.031 | (−0.088, 0.025) | 0.275 |
Thyroid (ref: absence) | −0.012 | (−0.069, 0.045) | 0.689 |
Rheumatoid/gout (ref: absence) | 0.022 | (−0.035, 0.079) | 0.457 |
Allergies (ref: absence) | 0.087 | (0.031, 0.143) | 0.002 * |
Somatic domain | |||
Female (ref: male) | −0.006 | (−0.069, 0.058) | 0.861 |
Age (years old) | −0.088 | (−0.165, −0.011) | 0.025 * |
Divorced/widowed (ref: single/married) | 0.028 | (−0.037, 0.092) | 0.401 |
Income ≤ 300 USD (ref: >300 USD) a | 0.008 | (−0.061, 0.077) | 0.824 |
Diploma/bachelor’s/master’s degree (ref: high school or lower) | −0.028 | (−0.102, 0.047) | 0.466 |
Unemployed (ref: students/employed/agriculturist/business owner) | −0.026 | (−0.089, 0.038) | 0.426 |
Cancer (ref: absence) | 0.007 | (−0.055, 0.068) | 0.836 |
Chronic kidney disease (ref: absence) | 0.033 | (−0.029, 0.095) | 0.299 |
Coronary artery disease (ref: absence) | 0.041 | (−0.021, 0.103) | 0.194 |
Asthma (ref: absence) | 0.012 | (−0.050, 0.073) | 0.712 |
Diabetes mellitus (ref: absence) | 0.022 | (−0.045, 0.089) | 0.521 |
Hypertension (ref: absence) | 0.025 | (−0.047, 0.097) | 0.499 |
Dyslipidemia (ref: absence) | 0.080 | (0.013, 0.147) | 0.019 * |
Migraine (ref: absence) | 0.144 | (0.083, 0.205) | <0.001 * |
Peptic ulcer disease (ref: absence) | 0.062 | (0.0004, 0.124) | 0.048 * |
Thalassemia (ref: non-exposed) | −0.003 | (−0.064, 0.059) | 0.932 |
Thyroid (ref: absence) | 0.003 | (−0.059, 0.064) | 0.928 |
Rheumatoid/gout (ref: absence) | 0.044 | (−0.018, 0.106) | 0.168 |
Allergies (ref: absence) | 0.058 | (−0.003, 0.120) | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawilapat, S.; Traisathit, P.; Maneeton, N.; Prasitwattanaseree, S.; Kongsuk, T.; Arunpongpaisal, S.; Leejongpermpoon, J.; Sukhawaha, S.; Maneeton, B. Factor Structures in the Depressive Symptoms Domains in the 9Q for Northern Thai Adults and Their Association with Chronic Diseases. Behav. Sci. 2024, 14, 577. https://doi.org/10.3390/bs14070577
Kawilapat S, Traisathit P, Maneeton N, Prasitwattanaseree S, Kongsuk T, Arunpongpaisal S, Leejongpermpoon J, Sukhawaha S, Maneeton B. Factor Structures in the Depressive Symptoms Domains in the 9Q for Northern Thai Adults and Their Association with Chronic Diseases. Behavioral Sciences. 2024; 14(7):577. https://doi.org/10.3390/bs14070577
Chicago/Turabian StyleKawilapat, Suttipong, Patrinee Traisathit, Narong Maneeton, Sukon Prasitwattanaseree, Thoranin Kongsuk, Suwanna Arunpongpaisal, Jintana Leejongpermpoon, Supattra Sukhawaha, and Benchalak Maneeton. 2024. "Factor Structures in the Depressive Symptoms Domains in the 9Q for Northern Thai Adults and Their Association with Chronic Diseases" Behavioral Sciences 14, no. 7: 577. https://doi.org/10.3390/bs14070577
APA StyleKawilapat, S., Traisathit, P., Maneeton, N., Prasitwattanaseree, S., Kongsuk, T., Arunpongpaisal, S., Leejongpermpoon, J., Sukhawaha, S., & Maneeton, B. (2024). Factor Structures in the Depressive Symptoms Domains in the 9Q for Northern Thai Adults and Their Association with Chronic Diseases. Behavioral Sciences, 14(7), 577. https://doi.org/10.3390/bs14070577