The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Thermogravimetric Analysis
2.2.2. Kinetic Analysis of Phloem Pyrolysis
2.2.3. FT-IR Analysis
2.2.4. ICP-AES Analysis
2.2.5. Calculation of Slagging/Fouling Indices
2.2.6. Scanning Electron Microscopy
2.2.7. Moderate Temperature Isothermal Slow Pyrolysis
2.2.8. Steam Activation of Phloem Biochars
2.2.9. Methylene Blue Adsorption
2.2.10. Methylene Blue Adsorption Kinetics
2.2.11. BET Surface Area of Activated Carbons
2.2.12. Statistical Analysis
3. Results
3.1. Surface Characteristics of Quercus cerris Phloem
3.2. Mineral Composition of Quercus cerris Phloem
3.3. Pyrolysis Behavior and Kinetics of Quercus cerris Phloem
3.4. Biochar Yield
3.5. Methylene Blue Adsorption
3.6. BET Surface Area of Activated Carbons
3.7. Surface Characteristics of Biochars and Activated Carbons
4. Discussion
5. Conclusions
- Quercus cerris phloem is a renewable and sustainable lignocellulosic solid material, that may have various valorization pathways.
- The ash content of Quercus cerris phloem is high and composed mainly of calcium (88%) and potassium (4%) which are likely to cause slagging and fouling problems in combustion.
- Quercus cerris phloem decomposes in a wide temperature range between 265 °C and 765 °C.
- The activation energy of Quercus cerris phloem pyrolysis ranges between 82 kJ mol−1 and 172 kJ mol−1.
- The biochar yield of Quercus cerris phloem under moderate temperatures (400–600 °C) ranges between 28% and 42%.
- Raw Quercus cerris phloem, phloem biochars, and phloem-activated carbons show high methylene blue removal efficiencies. Methylene blue adsorption follows pseudo-second-order kinetics.
- The specific surface area of Quercus cerris phloem-activated carbons ranged between 262 m2 g−1 and 318 m2 g−1 indicating that the steam activation was efficient.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. BioResources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C. Valorization of bark for chemicals and materials: A review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. What Is the Global Potential for Renewable Energy? Renew. Sustain. Energy Rev. 2012, 16, 244–252. [Google Scholar] [CrossRef]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Prog. Sustain. Energy Off. Publ. Am. Inst. Chem. Eng. 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Şen, A.U.; Pereira, H. State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. Processes 2021, 9, 87. [Google Scholar] [CrossRef]
- Lehmann, J.; Kuzyakov, Y.; Pan, G.; Ok, Y.S. Biochars and the Plant-Soil Interface. Plant Soil 2015, 395, 1–5. [Google Scholar] [CrossRef]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a Sustainable Electrode Material for Electricity Production in Microbial Fuel Cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Bridgwater, T. Biomass for Energy. J. Sci. Food Agric. 2006, 86, 1755–1768. [Google Scholar] [CrossRef]
- Şen, A.; Leite, C.; Lima, L.; Lopes, P.; Pereira, H. Industrial Valorization of Quercus cerris Bark: Pilot Scale Fractionation. Ind. Crops Prod. 2016, 92, 42–49. [Google Scholar] [CrossRef]
- Miranda, I.; Gominho, J.; Mirra, I.; Pereira, H. Chemical Characterization of Barks from Picea Abies and Pinus Sylvestris after Fractioning into Different Particle Sizes. Ind. Crops Prod. 2012, 36, 395–400. [Google Scholar] [CrossRef]
- Ferreira, J.P.A.; Miranda, I.; Gominho, J.; Pereira, H. Selective Fractioning of Pseudotsuga Menziesii Bark and Chemical Characterization in View of an Integrated Valorization. Ind. Crops Prod. 2015, 74, 998–1007. [Google Scholar] [CrossRef]
- Leite, C.; Pereira, H. Cork-Containing Barks—A Review. Front. Mater. 2017, 3, 63. [Google Scholar] [CrossRef]
- Şen, A.; Miranda, I.; Santos, S.; Graça, J.; Pereira, H. The Chemical Composition of Cork and Phloem in the Rhytidome of Quercus cerris Bark. Ind. Crops Prod. 2010, 31, 417–422. [Google Scholar] [CrossRef]
- Şen, A.; Quilhó, T.; Pereira, H. Bark Anatomy of Quercus cerris L. Var. Cerris from Turkey. Turk. J. Bot. 2011, 35, 45–55. [Google Scholar] [CrossRef]
- Sen, A.; Miranda, I.; Esteves, B.; Pereira, H. Chemical Characterization, Bioactive and Fuel Properties of Waste Cork and Phloem Fractions from Quercus cerris L. Bark. Ind. Crops Prod. 2020, 157, 112909. [Google Scholar] [CrossRef]
- Şen, A.; Quilhó, T.; Pereira, H. The Cellular Structure of Cork from Quercus cerris Var. Cerris Bark in a Materials’ Perspective. Ind. Crops Prod. 2011, 34, 929–936. [Google Scholar] [CrossRef]
- Şen, A.U.; Nobre, C.; Durão, L.; Miranda, I.; Pereira, H.; Gonçalves, M. Low-Temperature Biochars from Cork-Rich and Phloem-Rich Wastes: Fuel, Leaching, and Methylene Blue Adsorption Properties. Biomass Convers. Biorefin. 2020, 12, 3899–3909. [Google Scholar] [CrossRef]
- Şen, A.U.; Fonseca, F.G.; Funke, A.; Pereira, H.; Lemos, F. Pyrolysis Kinetics and Estimation of Chemical Composition of Quercus cerris Cork. Biomass Convers. Biorefin. 2020, 12, 4835–4845. [Google Scholar] [CrossRef]
- Şen, U.; Pereira, H. Pyrolysis Behavior of Alternative Cork Species. J. Therm. Anal. Calorim. 2022, 147, 4017–4025. [Google Scholar] [CrossRef]
- Vyazovkin, S. Evaluation of Activation Energy of Thermally Stimulated Solid-state Reactions under Arbitrary Variation of Temperature. J. Comput. Chem. 1997, 18, 393–402. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C.A. Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Thermochim. Acta 1999, 340, 53–68. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure. Reactions 1984, 613, 1960–1982. [Google Scholar]
- Ovčačíková, H.; Velička, M.; Vlček, J.; Topinková, M.; Klárová, M.; Burda, J. Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al–Si System. Materials 2022, 15, 5796. [Google Scholar] [CrossRef]
- Oraon, A.; Prajapati, A.K.; Ram, M.; Saxena, V.K.; Dutta, S.; Gupta, A.K. Synthesis, Characterization, and Application of Microporous Biochar Prepared from Pterospermum Acerifolium Plant Fruit Shell Waste for Methylene Blue Dye Adsorption: The Role of Surface Modification by SDS Surfactant. Biomass Convers. Biorefin. 2022, 1–23. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saha, P. Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudo-first-and Pseudo-second-order Kinetic Models: Comparison of Linear and Non-linear Methods. CLEAN–Soil Air Water 2011, 39, 274–282. [Google Scholar] [CrossRef]
- Sen, A.; Marques, A.V.; Gominho, J.; Pereira, H. Study of Thermochemical Treatments of Cork in the 150–400 °C Range Using Colour Analysis and FTIR Spectroscopy. Ind. Crops Prod. 2012, 38, 132–138. [Google Scholar] [CrossRef]
- Lachman, J.; Baláš, M.; Lisý, M.; Lisá, H.; Milčák, P.; Elbl, P. An Overview of Slagging and Fouling Indicators and Their Applicability to Biomass Fuels. Fuel Process. Technol. 2021, 217, 106804. [Google Scholar] [CrossRef]
- Llorente, M.J.F.; García, J.E.C. Comparing Methods for Predicting the Sintering of Biomass Ash in Combustion. Fuel 2005, 84, 1893–1900. [Google Scholar] [CrossRef]
- Şen, A.; Van Den Bulcke, J.; Defoirdt, N.; Van Acker, J.; Pereira, H. Thermal Behaviour of Cork and Cork Components. Thermochim. Acta 2014, 582, 94–100. [Google Scholar] [CrossRef]
- Fang, Z.; Sato, T.; Smith, R.L., Jr.; Inomata, H.; Arai, K.; Kozinski, J.A. Reaction Chemistry and Phase Behavior of Lignin in High-Temperature and Supercritical Water. Bioresour. Technol. 2008, 99, 3424–3430. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Cao, Z.; Fu, S.; Fang, Z.; Wu, Q.; Ye, J. Thermal degradation and flame retardancy properties of ABS/lignin: Effects of lignin content and reactive compatibilization. Thermochim. Acta 2011, 518, 59–65. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Ball, R.; McIntosh, A.C.; Brindley, J. Feedback Processes in Cellulose Thermal Decomposition: Implications for Fire-Retarding Strategies and Treatments. Combust. Theory Model. 2004, 8, 281. [Google Scholar] [CrossRef]
- Sen, U.; Martins, M.; Santos, E.; Lemos, M.A.; Lemos, F.; Pereira, H. Slow Pyrolysis of Quercus cerris Cork: Characterization of Biochars and Pyrolysis Volatiles. Environments 2023, 10, 4. [Google Scholar] [CrossRef]
- Vyazovkin, S. A Time to Search: Finding the Meaning of Variable Activation Energy. Phys. Chem. Chem. Phys. 2016, 18, 18643–18656. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent Advances in Utilization of Biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview of engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Carrier, M.; Hardie, A.G.; Uras, Ü.; Görgens, J.; Knoetze, J.H. Production of Char from Vacuum Pyrolysis of South-African Sugar Cane Bagasse and Its Characterization as Activated Carbon and Biochar. J. Anal. Appl. Pyrolysis 2012, 96, 24–32. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Gorecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Franciski, M.A.; Peres, E.C.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. Development of CO2 Activated Biochar from Solid Wastes of a Beer Industry and Its Application for Methylene Blue Adsorption. Waste Manag. 2018, 78, 630–638. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R. Comparison of Characteristics of Twenty-One Types of Biochar and Their Ability to Remove Multi-Heavy Metals and Methylene Blue in Solution. Fuel Process. Technol. 2017, 160, 55–63. [Google Scholar] [CrossRef]
- Sen, A.; Pereira, H.; Olivella, M.A.; Villaescusa, I. Heavy metals removal in aqueous environments using bark as a biosorbent. Int. J. Environ. Sci. Technol. 2015, 12, 391–404. [Google Scholar] [CrossRef]
- Wang, D.; Geng, Z.; Li, B.; Zhang, C. High Performance Electrode Materials for Electric Double-Layer Capacitors Based on Biomass-Derived Activated Carbons. Electrochim. Acta 2015, 173, 377–384. [Google Scholar] [CrossRef]
- Angın, D.; Altintig, E.; Köse, T.E. Influence of Process Parameters on the Surface and Chemical Properties of Activated Carbon Obtained from Biochar by Chemical Activation. Bioresour. Technol. 2013, 148, 542–549. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of Methylene Blue from Aqueous Solutions by Biochar Prepared from the Pyrolysis of Mixed Municipal Discarded Material. Sci. Total Environ. 2020, 714, 136832. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of Methylene Blue from Aqueous Solution by Sewage Sludge-Derived Biochar: Adsorption Kinetics, Equilibrium, Thermodynamics and Mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Sahu, S.; Pahi, S.; Tripathy, S.; Singh, S.K.; Behera, A.; Sahu, U.K.; Patel, R.K. Adsorption of Methylene Blue on Chemically Modified Lychee Seed Biochar: Dynamic, Equilibrium, and Thermodynamic Study. J. Mol. Liq. 2020, 315, 113743. [Google Scholar] [CrossRef]
Elements | mg/kg of Phloem Ash | % of Minerals |
---|---|---|
Al | 139.4 ± 12.8 | 1.37 |
B | 2.5 ± 0.2 | 0.02 |
Ba | 25.6 ± 1.5 | 0.25 |
Ca | 8979.9 ± 271.2 | 88.03 |
Fe | 172.2 ± 2.4 | 1.69 |
K | 415.7 ± 3.8 | 4.08 |
Mg | 175.8 ± 10.4 | 1.72 |
Mn | 71.6 ± 0.4 | 0.70 |
Na | 56.0 ± 8.0 | 0.55 |
Ni | 2.5 ± 0.4 | 0.02 |
P | 36.7 ± 0.7 | 0.36 |
Si | 95.7 ± 3.2 | 0.94 |
Sr | 21.1 ± 0.3 | 0.21 |
Ti | 3.4 ± 0.1 | 0.03 |
Zn | 3.4 ± 1.6 | 0.03 |
Total | 10,201.5 |
Index | Slagging/Fouling Potential | |
---|---|---|
Base to acid (B/A) | 28.86 | Severe slagging [28] |
Silica ratio (Sr) | 1.54 | High slagging [28] |
Sintering (SI) | 22.31 | Sintering not likely [29] |
Bed agglomeration (BAI) | 0.43 | Bed agglomeration not likely [28] |
Silica to alumina (S/A) | 0.78 | High slagging/fouling [24] |
Total alkali (TA) | 4.00 | High slagging/fouling [24] |
Biomass | C40060 | C50060 | C60060 | C500150 | C50090 | C50030 | AC400 | AC600 | Untreated |
---|---|---|---|---|---|---|---|---|---|
k1 | 0.0126 | 0.0152 | 0.0167 | 0.0194 | 0.0179 | 0.0282 | 0.0454 | 0.1603 | 0.0058 |
R2 | 0.93 | 0.96 | 0.97 | 0.98 | 0.98 | 0.99 | 0.88 | 0.93 | 0.93 |
k2 | 0.5365 | 0.0258 | 0.6663 | 0.4491 | 0.4739 | 0.3515 | 0.0719 | 0.0040 | 0.0070 |
R2 | 0.98 | 0.98 | 0.95 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 |
Activated Carbons | AC400 | AC600 |
---|---|---|
BET surface area (m2 g−1) | 262.1 | 317.5 |
Total pore volume (BJH adsorption, cm3 g−1) | 0.04 | 0.05 |
Total pore volume (BJH desorption, cm3 g−1) | 0.04 | 0.04 |
Total pore volume at adsorption (p/p° = 0.99, cm3 g−1) | 0.14 | 0.16 |
Total pore volume at desorption (p/p° = 0.99, cm3 g−1) | 0.14 | 0.16 |
Average pore width (BJH adsorption, nm) | 19.02 | 6.77 |
Average pore width (BJH desorption, nm) | 36.34 | 7.93 |
Average pore diameter (4V/A by BET adsorption, nm) | 2.12 | 2.02 |
Average pore diameter (4V/A by BET desorption, nm) | 2.12 | 2.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, U.; Longo, A.; Gonçalves, M.; Miranda, I.; Pereira, H. The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production. Environments 2023, 10, 71. https://doi.org/10.3390/environments10050071
Sen U, Longo A, Gonçalves M, Miranda I, Pereira H. The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production. Environments. 2023; 10(5):71. https://doi.org/10.3390/environments10050071
Chicago/Turabian StyleSen, Umut, Andrei Longo, Margarida Gonçalves, Isabel Miranda, and Helena Pereira. 2023. "The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production" Environments 10, no. 5: 71. https://doi.org/10.3390/environments10050071
APA StyleSen, U., Longo, A., Gonçalves, M., Miranda, I., & Pereira, H. (2023). The Potential of Waste Phloem Fraction of Quercus cerris Bark in Biochar Production. Environments, 10(5), 71. https://doi.org/10.3390/environments10050071