Alkali-Catalyzed Organosolv Treatment of Oat Bran for Enhanced Release of Hydroxycinnamate Antioxidants: Comparison of 1- and 2-Propanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Oat Bran
2.3. Solvent Assay and Acid-Catalyzed Organosolv Treatment
2.4. Severity Determination
2.5. Experimental Design and Treatment Optimization
2.6. Determination of Total Polyphenols and Antioxidant Properties
2.7. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Solvent Testing
3.2. Assessment of Treatment Severity
3.3. Response Surface Treatment Optimization
3.4. Polyphenolic Profile and Antioxidant Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bakan, B.; Bernet, N.; Bouchez, T.; Boutrou, R.; Choubert, J.-M.; Dabert, P.; Duquennoi, C.; Ferraro, V.; Garcia-Bernet, D.; Gillot, S. Circular economy applied to organic residues and wastewater: Research challenges. Waste Biomass Valor. 2022, 13, 1267–1276. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef] [PubMed]
- Amran, M.A.; Palaniveloo, K.; Fauzi, R.; Satar, N.M.; Mohidin, T.B.M.; Mohan, G.; Razak, S.A.; Arunasalam, M.; Nagappan, T.; Sathiya Seelan, J.S. Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 2021, 13, 11432. [Google Scholar] [CrossRef]
- Monteiro, A.R.; Battisti, A.P.; Valencia, G.A.; de Andrade, C.J. The Production of High-Added-Value Bioproducts from Non-Conventional Biomasses: An Overview. Biomass 2023, 3, 123–137. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Schwember, A.R.; Parada, R.; Garcia, S.; Maróstica Júnior, M.R.; Franchin, M.; Regitano-d’Arce, M.A.B.; Shahidi, F. Opinion on the hurdles and potential health benefits in value-added use of plant food processing by-products as sources of phenolic compounds. Int. J. Mol. Sci. 2018, 19, 3498. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Vian, M.A.; Ravi, H.K. Toward petroleum-free with plant-based chemistry. Curr. Opin. Green Sustain. Chem. 2021, 28, 100450. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging green techniques for the extraction of antioxidants from agri-food by-products as promising ingredients for the food industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process optimization and stability of waste orange peel polyphenols in extracts obtained with organosolv thermal treatment using glycerol-based solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Wei Kit Chin, D.; Lim, S.; Pang, Y.L.; Lam, M.K. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biomass Convers. Biorefinery 2020, 14, 808–829. [Google Scholar] [CrossRef]
- Sun, C.; Song, G.; Pan, Z.; Tu, M.; Kharaziha, M.; Zhang, X.; Show, P.-L.; Sun, F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresour. Technol. 2023, 368, 128356. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biomass Convers. Biorefinery 2017, 11, 567–590. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, J.; Wang, X.; Wang, J.; Fan, W. Alcoholysis: A promising technology for conversion of lignocellulose and platform chemicals. ChemSusChem 2017, 10, 2547–2559. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.A.; Murton, K.D.; Smith, D.A.; Dedual, G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Convers. Biorefinery 2022, 12, 5427–5442. [Google Scholar] [CrossRef]
- Tang, Y.; Li, S.; Yan, J.; Peng, Y.; Weng, W.; Yao, X.; Gao, A.; Cheng, J.; Ruan, J.; Xu, B. Bioactive components and health functions of oat. Food Rev. Int. 2022, 1–20. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. Antioxidants 2023, 12, 203. [Google Scholar] [CrossRef]
- Chen, D.; Shi, J.; Hu, X. Enhancement of polyphenol content and antioxidant capacity of oat (Avena nuda L.) bran by cellulase treatment. Appl. Biol. Chem. 2016, 59, 397–403. [Google Scholar] [CrossRef]
- Soycan, G.; Schär, M.Y.; Kristek, A.; Boberska, J.; Alsharif, S.N.; Corona, G.; Shewry, P.R.; Spencer, J.P. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chem. X 2019, 3, 100047. [Google Scholar] [CrossRef]
- Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borand, M.N.; Karaosmanoğlu, F. Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review. J. Renew. Sustain. Energy 2018, 10, 033104. [Google Scholar] [CrossRef]
- Khosravi, A.; Razavi, S.H. The role of bioconversion processes to enhance bioaccessibility of polyphenols in rice. Food Biosci. 2020, 35, 100605. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R. Phenolic acid composition and antioxidant capacity of acid and alkali hydrolysed wheat bran fractions. Food Chem. 2009, 116, 947–954. [Google Scholar] [CrossRef]
- Papadaki, E.S.; Palaiogiannis, D.; Lalas, S.I.; Mitlianga, P.; Makris, D.P. Polyphenol Release from Wheat Bran Using Ethanol-Based Organosolv Treatment and Acid/Alkaline Catalysis: Process Modeling Based on Severity and Response Surface Optimization. Antioxidants 2022, 11, 2457. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Morsli, F.; Grigorakis, S.; Halahlah, A.; Poulianiti, K.P.; Makris, D.P. Appraisal of the combined effect of time and temperature on the total polyphenol yield in batch stirred-tank extraction of medicinal and aromatic plants: The extraction efficiency factor. J. Appl. Res. Med. Arom. Plants 2021, 25, 100340. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar]
- Sidiras, D.; Politi, D.; Giakoumakis, G.; Salapa, I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. Bioresour. Technol. 2022, 343, 126158. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Meyer, A.S. Lignocellulose pretreatment severity–relating pH to biomatrix opening. New Biotech. 2010, 27, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I.; Makris, D.P. β-Cyclodextrin-aided aqueous extraction of antioxidant polyphenols from peppermint (Mentha× piperita L.). Oxygen 2022, 2, 424–436. [Google Scholar] [CrossRef]
- Cherif, M.M.; Grigorakis, S.; Halahlah, A.; Loupassaki, S.; Makris, D.P. High-efficiency extraction of phenolics from wheat waste biomass (bran) by combining deep eutectic solvent, ultrasound-assisted pretreatment and thermal treatment. Environ. Process. 2020, 7, 845–859. [Google Scholar] [CrossRef]
- Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules 2020, 25, 921. [Google Scholar] [CrossRef] [Green Version]
- Alrahmany, R.; Tsopmo, A. Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chem. 2012, 132, 413–418. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; García-Casas, M.J.; Martínez-Villaluenga, C.; Frías, J.; Peñas, E.; Rico, D. Wheat and oat brans as sources of polyphenol compounds for development of antioxidant nutraceutical ingredients. Foods 2021, 10, 115. [Google Scholar] [CrossRef]
- Hitayezu, R.; Baakdah, M.M.; Kinnin, J.; Henderson, K.; Tsopmo, A. Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. J. Cereal Sci. 2015, 63, 35–40. [Google Scholar] [CrossRef]
- Walters, M.; Ribeiro, A.P.L.; Hosseinian, F.; Tsopmo, A. Phenolic acids, avenanthramides, and antioxidant activity of oats defatted with hexane or supercritical fluid. J. Cereal Sci. 2018, 79, 21–26. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Cătoi, A.-F.; Vodnar, D.C. Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Mateo Anson, N.; van den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). J. Agric. Food Chem. 2008, 56, 5589–5594. [Google Scholar] [CrossRef] [PubMed]
Process Variables | Codes | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
t (min) | X1 | 60 | 180 | 300 |
T (°C) | X2 | 50 | 70 | 90 |
T (°C) | t (min) | CSF | CSF′ | YTP (mg FAE g−1 DM) | |||
---|---|---|---|---|---|---|---|
1-Pr | 2-Pr | 1-Pr | 2-Pr | 1-Pr | 2-Pr | ||
50 | 60 | −12.29 b | −12.14 b | 5.91 a | 5.76 a | 13.44 a | 8.12 a |
180 | −11.82 b | −11.67 b | 6.38 a | 6.23 a | 14.86 c | 10.32 c | |
300 | −11.59 c | −11.44 c | 6.61 c | 6.46 c | 15.94 c | 11.08 c | |
70 | 60 | −11.71 c | −11.56 c | 6.49 c | 6.34 c | 15.31 c | 9.97 c |
180 | −11.23 c | −11.08 c | 6.97 c | 6.82 c | 15.61 c | 11.10 c | |
300 | −11.01 c | −10.86 c | 7.19 c | 7.04 c | 16.92 b | 12.74 c | |
90 | 60 | −11.12 c | −10.97 c | 7.08 c | 6.93 c | 15.93 c | 11.44 c |
180 | −10.64 a | −10.49 a | 7.56 b | 7.41 b | 16.78 b | 14.62 b | |
300 | −10.42 a | −10.27 a | 7.78 b | 7.63 b | 17.14 b | 14.50 b |
Source | Nparm | DF | Sum of Squares | F Ratio | Prob > F |
---|---|---|---|---|---|
1-propanol | |||||
t | 1 | 1 | 3.6973500 | 75.8581 | 0.0003 * |
T | 1 | 1 | 5.9202667 | 121.4654 | 0.0001 * |
t × T | 1 | 1 | 0.1444000 | 2.9626 | 0.1458 |
t × t | 1 | 1 | 0.0249349 | 0.5116 | 0.5065 |
T × T | 1 | 1 | 0.0014849 | 0.0305 | 0.8683 |
2-propanol | |||||
t | 1 | 1 | 12.877350 | 55.0025 | 0.0007 * |
T | 1 | 1 | 20.313600 | 86.7646 | 0.0002 * |
t × T | 1 | 1 | 0.002500 | 0.0107 | 0.9217 |
t × t | 1 | 1 | 1.214414 | 5.1871 | 0.0718 |
T × T | 1 | 1 | 0.452498 | 1.9327 | 0.2232 |
Term | Estimate | Std Error | t Ratio | Prob > |t| |
---|---|---|---|---|
1-propanol | ||||
Intercept | 15.683684 | 0.113254 | 138.48 | <0.0001 * |
t | 0.785 | 0.09013 | 8.71 | 0.0003 * |
T | 0.9933333 | 0.09013 | 11.02 | 0.0001 * |
t × T | −0.19 | 0.110386 | −1.72 | 0.1458 |
t × t | −0.099211 | 0.138707 | −0.72 | 0.5065 |
T × T | −0.024211 | 0.138707 | −0.17 | 0.8683 |
2-propanol | ||||
Intercept | 11.718947 | 0.248216 | 47.21 | <0.0001 * |
t | 1.465 | 0.197536 | 7.42 | 0.0007 * |
T | 1.84 | 0.197536 | 9.31 | 0.0002 * |
t × T | 0.025 | 0.241931 | 0.10 | 0.9217 |
t × t | −0.692368 | 0.304002 | −2.28 | 0.0718 |
T × T | 0.4226316 | 0.304002 | 1.39 | 0.2232 |
Source | DF | Sum of Squares | Mean Square | F Ratio |
---|---|---|---|---|
1-propanol | ||||
Lack of Fit | 3 | 0.20283509 | 0.067612 | 3.3089 |
Pure Error | 2 | 0.04086667 | 0.020433 | Prob > F |
Total Error | 5 | 0.24370175 | 0.2407 | |
Max R2 | ||||
0.9959 | ||||
2-propanol | ||||
Lack of Fit | 3 | 0.9906158 | 0.330205 | 3.6689 |
Pure Error | 2 | 0.1800000 | 0.090000 | Prob > F |
Total Error | 5 | 1.1706158 | 0.2215 | |
Max R2 | ||||
0.9950 |
Design Point | Independent Variables | Response (YTP, mg FAE g−1 DM) | ||||
---|---|---|---|---|---|---|
X1 (t) | X2 (T) | 1-Propanol | 2-Propanol | |||
Measured | Predicted | Measured | Predicted | |||
1 | −1 | −1 | 13.44 | 13.59 | 8.12 | 8.17 |
2 | −1 | 1 | 15.84 | 15.96 | 11.44 | 11.80 |
3 | 1 | −1 | 15.50 | 15.54 | 11.08 | 11.05 |
4 | 1 | 1 | 17.14 | 17.15 | 14.50 | 14.78 |
5 | −1 | 0 | 15.07 | 14.80 | 9.97 | 9.56 |
6 | 1 | 0 | 16.42 | 16.37 | 12.74 | 12.49 |
7 | 0 | −1 | 14.86 | 14.67 | 10.32 | 10.30 |
8 | 0 | 1 | 16.78 | 16.65 | 14.62 | 13.98 |
9 | 0 | 0 | 15.61 | 15.68 | 11.21 | 11.72 |
10 | 0 | 0 | 15.70 | 15.68 | 11.82 | 11.72 |
11 | 0 | 0 | 15.42 | 15.68 | 11.50 | 11.72 |
Sample | Polyphenolic Content (μg g−1 DM) | Total | AAR (μmol DPPH g−1 DM) | PR (μmol AAE g−1 DM) | |
---|---|---|---|---|---|
FA | p-CouA | ||||
40% 1-prop/1.5% SoHy | 481.55 ± 32.01 | 23.55 ± 1.84 | 505.10 | 54.41 ± 5.0 | 30.14 ± 2.42 |
40% 1-prop | 5.2 ± 0.32 | Nd | 5.2 | 2.73 ± 0.14 | 17.83 ± 1.84 |
60% 2-prop/1.5% SoHy | 291.05 ± 18.05 | 15.55 ± 0.87 | 306.60 | 6.54 ± 0.55 | 24.24 ± 1.52 |
60% 2-prop | 5.3 ± 0.11 | nd | 5.3 | 6.81 ± 0.67 | 13.90 ± 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guenaoui, A.; Casasni, S.; Grigorakis, S.; Makris, D.P. Alkali-Catalyzed Organosolv Treatment of Oat Bran for Enhanced Release of Hydroxycinnamate Antioxidants: Comparison of 1- and 2-Propanol. Environments 2023, 10, 118. https://doi.org/10.3390/environments10070118
Guenaoui A, Casasni S, Grigorakis S, Makris DP. Alkali-Catalyzed Organosolv Treatment of Oat Bran for Enhanced Release of Hydroxycinnamate Antioxidants: Comparison of 1- and 2-Propanol. Environments. 2023; 10(7):118. https://doi.org/10.3390/environments10070118
Chicago/Turabian StyleGuenaoui, Akram, Selma Casasni, Spyros Grigorakis, and Dimitris P. Makris. 2023. "Alkali-Catalyzed Organosolv Treatment of Oat Bran for Enhanced Release of Hydroxycinnamate Antioxidants: Comparison of 1- and 2-Propanol" Environments 10, no. 7: 118. https://doi.org/10.3390/environments10070118
APA StyleGuenaoui, A., Casasni, S., Grigorakis, S., & Makris, D. P. (2023). Alkali-Catalyzed Organosolv Treatment of Oat Bran for Enhanced Release of Hydroxycinnamate Antioxidants: Comparison of 1- and 2-Propanol. Environments, 10(7), 118. https://doi.org/10.3390/environments10070118