Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review
Abstract
:1. Introduction
2. Analytics
Radionuclide | Half-Life, Days | Energy, keV | Quantum Yield, % | Interferences | Energy, keV | Quantum Yield, % |
---|---|---|---|---|---|---|
46Sc | 83.8 | 889.28 | 99.98 | – | – | – |
140La | 1.68 | 1596.2 | 95.4 | U(n, f) | – | – |
141Ce | 32.5 | 145.44 | 48.3 | U(n, f) | − | − |
175Yb | 144.86 | 0.67 | ||||
142Pr | 19.1 h | 1575.6 | 3.7 | – | – | – |
147Nd | 11.0 | 91.11 | 28.1 | U(n, f) | – | – |
153Sm | 1.94 | 69.67 | 4.73 | − | – | – |
152mEu | 9.3 h | 963.39 | 11.7 | 152mEu | 961.06 | 0.12 |
153Gd | 240.4 | 103.18 | 21.1 | 233 Pa(233Th) | 103.86 | 0.854 |
160 Tb | 72.3 | 298.58 | 26.1 | 233 Pa | 298.81 | 0.088 |
165Dy | 2.3 h | 361.68 | 0.904 | – | – | – |
166Ho | 1.12 | 80.57 | 6.71 | 133Xe | 81.00 | 36.9 |
171Er | 7.5 h | 308.29 | 64.0 | – | – | – |
170Tm | 128.6 | 84.25 | 2.48 | 182Ta | 84.68 | 2.65 |
175Yb | 4.18 | 396.33 | 13.2 | – | – | – |
177Lu | 6.65 | 208.37 | 10.4 | 176Yb→177Lu | 208.37 | 10.4 |
233 Pa(233Th) | 27.0 | 311.90 | 38.5 | – | – | – |
239Np(239U) | 2.36 | 277.60 | 14.4 | – | – | – |
3. Sequential Leaching Methods to Evaluate the Mobility and Plant Availability of REE
4. REE in the Lithosphere
4.1. Crustal Abundance and Geology
4.2. Sediments
4.2.1. Stream Sediments
4.2.2. Marine Sediments
4.3. Coal and Coal Ash
Element | East Alabama | West Alabama | Darco | Wall | Lignites * | Hard Coal * | Bottom Ash | Fly Ash | Argonne Coal | Argonne Coal Ash |
---|---|---|---|---|---|---|---|---|---|---|
Reference | [118] | [119] | [36] | [47] | ||||||
Sc | 3 (2–5) | 2 (0.7–5) | 3 (0.8–8) | 1 (0.7–3) | 6.6 ± 3.4 | 4.2 ± 3.3 | 16.2 ± 6.1 | 16.4 ± 8.1 | 2.18 (0.81–7.61) | 20 (9.4–33) |
Y | 9 (7–11) | 13 (7–21) | 6 (3–13) | 5 (2–10) | 10 ± 7 | 9.6 ± 3.5 | 40.3 ± 16.6 | 46.3 ± 14.9 | n.a. | 39 (25–86) |
La | 14 (9–17) | 3 (2–7) | 5 (0.7–12) | 5 (1–14) | 18 ± 9 | 16.7 ± 12.2 | 42 ± 26 | 44 ± 18 | 6.1 (2.8–21.5) | 64 (39–137) |
Ce | n.a. | n.a. | n.a. | n.a. | 30 ± 15 | 25.8 ± 23.1 | 84 ± 36 | 92 ± 28 | 11.4 (4.4–30) | n.a. |
Nd | n.a. | n.a. | n.a. | n.a. | 29 ± 15 | 42.5 ± 38.0 | 49 ± 33 | 62 ± 1 | 8 (2.3–11.9) | 77 (39–113) |
Sm | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 1.14 (0.41–3.52) | 8.1 (<3–14) |
Eu | n.a. | n.a. | n.a. | n.a. | 0.6 ± 0.3 | 0.43 ± 0.42 | 1.18 ± 0.63 | 1.15 ± 0.53 | 0.22 (0.08–0.67) | n.a. |
Tb | n.a. | n.a. | n.a. | n.a. | 0.6 ± 0.2 | 0.71 ± 0.52 | 1.19 ± 0.55 | 1.13 ± 0.48 | 0.14 (0.06–0.40) | n.a. |
Dy | n.a. | n.a. | n.a. | n.a. | 2.9 ± 1.7 | 2.43 ± 1.81 | 3.9 ± 2.5 | 3.1 ± 2.0 | n.a. | 5.5 (2.0–9.2) |
Yb | 0.8 (0.5–1.2) | 2.6 (2–4) | 0.6 (0.3–1.1) | 0.3 (0.1–0.8) | 1.6 ± 0.7 | 2.05 ± 1.43 | 1.56 ± 0.73 | 2.05 ± 1.43 | 0.50 (0.20–1.6) | n.a. |
Lu | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 16.2 ± 6.1 | 16.4 ± 8.1 | 0.13(0.04–0.22) | n.a. |
5. Pedosphere
5.1. Occurrence in Soil
5.2. Mobility and Speciation in Soil
6. REE in the Hydrosphere
6.1. Speciation in Solution
6.2. Limnic Water Bodies
Source | Groundwater 1 | Mississippi 2 | Sepik 2 | Fly 2 | Amazon 2 | Amazon River Mouth 3 | Luce 4 | Fraser 4 | Dordogne 4 | Garonne 4 | Columbia 4 | Sacramento 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Norway | USA | New Guinea | South America | Guyana | Scotland | Canada | France | North America | USA | ||
Y | 110–130 | n.a. | n.a | n.a | n.a | n.a | n.a | n.a | n.a | n.a | n.a | n.a |
La | 46–57 | 3.9 | 38 | 35 | 40 | 47 | 192 | 97 | 48 | 47 | 30 | 8.1 |
Ce | 8–13 | 7.3 | 85 | 81 | 111 | 118 | 451 | 155 | 77 | 81 | 58 | 11 |
Pr | 1–8 | 1.4 | 13 | 12 | n.a | n.a | n.a | 28 | 11 | 5.2 | 9.9 | 7.2 |
Nd | 31–37 | 7.3 | 57 | 55 | 73 | 76 | 264 | 88 | 37 | 38 | 23 | 11 |
Sm | 3–8 | 21 | 15 | 15 | 17 | 20 | 59 | 25 | 7.3 | 8.2 | 44 | 2.5 |
Eu | n.a | 0.7 | 4.4 | 3.3 | 4.1 | 4.9 | 15 | 7 | 1.3 | 1.6 | 1.6 | 1.0 |
Gd | 6–9 | 3.6 | 17 | 17 | 19 | 22 | 58 | 53 | 0.8 | 8.8 | 6.5 | 5.1 |
Tb | 1 | 0.5 | 2.3 | 1.9 | n.a | n.a | n.a | 43 | 1.3 | 1.2 | 1.2 | 0.5 |
Dy | n.a | 4.5 | 13 | 11 | 22 | 19 | 43 | n.a | n.a | n.a | n.a | n.a |
Ho | 2–3 | 1.2 | 2.3 | 2.2 | n.a | n.a | n.a | 7 | 1.2 | 1.6 | 0.9 | 0.4 |
Er | 7–9 | 4.1 | 6.1 | 5.3 | 11 | 11 | 24 | 14 | 4.3 | 4.1 | n.a | n.a |
Tm | 1–2 | 0.6 | 0.8 | 6.7 | n.a | n.a | n.a | n.a | 0.6 | 0.6 | n.a | n.a |
Yb | 14–18 | 3.9 | 4.6 | 4.6 | 8.4 | 9.3 | 20 | n.a | 3.7 | 3.6 | 4.5 | 2.5 |
Lu | 3–4 | 0.7 | 0.8 | 0.5 | 1.0 | 1.2 | n.a | n.a | 0.7 | 0.6 | 0.7 | 0.3 |
6.3. REE in Seawater
6.4. Groundwater
7. Biosphere
7.1. Plant Availability and Accumulation of REE in Herbaceous Plants
Species | Fagopyrum esculentum | Helianthus annuus | Legumes | Cereals | Agrostis capillaris | Miscanthus giganteus | Phalaris arundinacea | Hay Samples | Apple Leaves | |
---|---|---|---|---|---|---|---|---|---|---|
Region | East Germany 1 | Sweden 2 | East Germany 1 | Bohemian Massive, Austria 3 | Limestone Alps, Austria 3 | Austria 4 | ||||
Sc | 52 (14–1395) | 60 (4–100) | 30 (14–80) | 39 (5–110) | n.a. | 33 (20–56) | 44 (3–328) | 10 (<10–100) | 11 (<10–550) | <20 (<20–50) |
Y | 425 (33–842) | 112 (44–455) | 31 (9–100) | 33 (4–227) | 30 | 36 (10–71) | 42 (6–524) | 39 (5–195) | 218 (22–3294) | 27 (9–241) |
La | 564 (47–1119) | 204 (91–540) | 44 (17–171) | 56 (5–318) | 110 | 56 (13–111) | 65 (10–887) | 94 (22–306) | 330 (10–3747) | 62 (18–516) |
Ce | 963 (76–1826) | 358 (159–748) | 85 (29–296) | 86 (10–491) | 150 | 103 (28–207) | 120 (20–1824) | 166 (28–695) | 601 (40–7494) | 88 (26–612) |
Pr | 98 (8–179) | 14 (18–78) | 9 (3–35) | 10 (1–54) | 17 | 12 (3–23) | 14 (2–203) | 19 (3–77) | 69 (2–1559) | 11 (3–90) |
Nd | 356 (27–626) | 161 (74–309) | 40 (11–134) | 42 (4–233) | 91 | 49 (11–94) | 58 (8–835) | 71 (90–292) | 251 (7–5829) | 40 (11–492) |
Sm | 65 (6–116) | 30 (14–53) | 8 (2–25) | 7 (1–45) | 10 | 9 (4–17) | 12 (6–162) | 14 (2–56) | 46 (2–1117) | 8 (2–66) |
Eu | 18 (4–33) | 8 (3–12) | 3 (2–26) | 6 (1–51) | 1 | 3 (1–5) | 6 (1–60) | 8 (3–11) | 12 (2–219) | 9.2 (4.7–26) |
Gd | 79 (6–134) | 32 (19–74) | 8 (3–27) | 10 (2–64) | 10 | 13 (3–21) | 12 (2–135) | 13 (2–54) | 46 (2–1019) | 7 (2–75) |
Tb | 11 (1–20) | 2 (2–9) | 1 (<1–3) | 2 (<1–16) | 1.0 | 2 (<1–3) | 2 (<1–53) | 2 (<1–8) | 7 (<1–142) | 1.0 (0.2–9.9) |
Dy | 56 (5–110) | 20 (8–46) | 6 (2–16) | 6 (1–36) | 5.1 | 6 (2–12) | 10 (3–123) | n.a. | n.a. | n.a |
Ho | 11 (1–23) | 4 (2–9) | 1 (<1–3) | 1 (<1–17) | 1.0 | 1 (<1–3) | 2 (<1–65) | 1 (<1–7) | 7 (1 –133) | 0.9 (<0.1–7.1) |
Er | 32 (3–58) | 16 (8–29) | 4 (1–10) | 5 (1–28) | 3.1 | 8 (1–12) | 7 (<1–96) | 4 (<1–20) | 23 (3–389) | 2.5 (0.4–16.5) |
Tm | 4 (<1–7) | 2 (1–4) | 0.5 (<0.5–2) | 1 (<0.5–4) | 2.9 | 0.6 (<0.5–2) | 0.8 (<1–67) | n.a. | n.a. | n.a. |
Yb | 20 (2–40) | 10 (4–18) | 3 (1–9) | 3 (<0.5–16) | 1.9 | 4 (2–8) | 5 (0.5–74) | n.a. | n.a. | n.a. |
Lu | 3 (<0.5–6) | 2 (0.5–4) | 0.5 (<0.5–1.3) | 0.6 (<0.5–3) | 0.3 | 0.5 (<0.5–1.8) | 0.8 (<0.5–59) | 0.4 (<0.4–2) | 3.1 (<0.5–54) | <0.3 (<0.1–1.2) |
7.2. Physiological Responses of Plants to REE
7.3. REE Accumulation in Woody Plant Species
Species | Picea abies | Pinus silvestris | Populus nigra | Malus domestica | Fagus silvatica | Pinus densiflora | Castanea crenata | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Sweden 1 | Russia 2 | Germany 2 | Bulgaria 3 | Austria 4 | Sweden 1 | Korea (Chungcheonbukdo) 5 | |||||||
Sampling details | May | Aug. | Jul. | Sep. | Litter Nov. | Litter prev. year | Leaf litter | Woody parts | Leaf litter | Woody parts | ||||
Sc | n.a. | 17.3 | 15 | n.a. | <20 | <20 | 32 | 42 | n.a. | 327 | 40 | 60 | 160 | 20 |
Y | 150–770 | 64 | 150 | 140 (50–710) | 22 (9–281) | 27 (8 –378) | 21 | 26 | 65 | 195 | n.a. | n.a. | n.a. | n.a. |
La | 150–250 | 194 | 160 | 220 (79–1093) | 58 (15–521) | 80 (26–784) | 44 | 49 | 130 | 370 | 370 | 640 | 5920 | 1010 |
Ce | 250–550 | 210 | 310 | 330 (120–1120) | 70 (22–759) | 121 (45–1134) | 66 | 84 | 235 | 700 | 500 | 880 | 3360 | 560 |
Pr | 30–60 | 23 | 35 | 39 (2–156) | 9 (3–92) | 15 (5–154) | 8 | 10 | 26 | 79 | 80 | 130 | 1090 | 140 |
Nd | 100–250 | 74 | 130 | 157 (71–628) | 31 (10–586) | 54 (18–594) | 55 | 67 | 181 | 560 | 270 | 450 | 3900 | 500 |
Sm | 20–40 | 15 | 21 | 32 (13–235) | 6 (2–70) | 10 (4–123) | 5 | 6 | 17 | 52 | 50 | 80 | 670 | 80 |
Eu | 5–15 | 7 | 6 | 12 (4–86) | 8 (4–26) | 14 (9–37) | 9 | 10 | 15 | 26 | 20 | 20 | 180 | 30 |
Gd | 10–230 | 14 | 32 | 33 (13–209) | 5.4 (1.6–81) | 7.8 (2.8–136) | 5 | 7 | 18 | 53 | 50 | 70 | 760 | 90 |
Tb | 5–15 | 2 | 6 | 4.1 (1.6–22) | 0.6 (0.2–11) | 1.0 (0.4–18) | n.a. | n.a. | 2.2 | 6.9 | 100 | 10 | 10 | 10 |
Dy | 25–50 | 11 | 24 | 21 (9–91) | n.a. | n.a. | 4 | 5 | 12 | 36 | 40 | 50 | 570 | 50 |
Ho | 5–15 | 2 | 60 | 3.9 (1.6–26) | 0.6 (<0.2–8) | 0.8 (0.4–13.5) | 1.0 | 1.0 | 2.2 | 6.8 | n.a. | n.a. | n.a. | n.a. |
Er | 15–30 | 7 | 16 | 11 (4.6–55) | 1.5 (0.4–19) | 2.5 (1.0–31.3) | 2 | 2 | 6 | 20 | n.a. | n.a. | n.a. | n.a. |
Tm | n.a. | 2 | 6 | n.a. | n.a. | n.a. | 0.2 | 0.3 | 0.9 | 2.7 | n.a. | n.a. | n.a. | n.a. |
Yb | 15–30 | 7 | 16 | 8 (3–26) | n.a. | n.a. | 2 | 2 | 6 | 17 | n.a. | n.a. | n.a. | n.a. |
Lu | 2.5–5.0 | 1 | 3 | 1.1 (0.5–6.3) | 0.2 (<0.2–1.3) | 0.3 (0.2–1.9) | 0.2 | 0.3 | 0.8 | 2.5 | n.a. | n.a. | n.a. | n.a. |
7.4. REE Accumulation in Ferns, Mosses and Lichens
7.5. REE in Fungi
7.6. Aquatic Biota
8. Anthroposphere
8.1. Economics
8.2. Ore Formation, Technical Enrichment Methods, and Recovery of REE
8.3. Environmental Pollution with REE
Element | Homes of Non-Smokers | Homes of Smokers | Restaurants | Bars | Discotheques | Outdoor |
---|---|---|---|---|---|---|
Cd | 0.1 (0.01–1.3) | 0.8 (0.1–3.0) | 2.6 (1.2–7.7) | 3.7 (1.7–27) | 9.7 (5.3–16) | n.a. |
Ce | 0.4 (0.1–36) | 9.6 (0.2–71) | 18.5 (5.5–48) | 24 (17–290) | 50 (28–130) | (0.1–0.6) |
La | 0.2 (0.01–14.4) | 5.9 (0.2–39) | 10.6 (2.3–23) | 15 (8–170) | 23 (13–60) | (<0.1–0.3) |
8.4. REE in Food Production and Products of Animal Origin
8.5. Essentiality and Toxicity of REE
9. Conclusions
Funding
Conflicts of Interest
References
- Baumgartner, E. Treibacher activities on REE. Mater. Chem. Phys. 1992, 31, 89–91. [Google Scholar] [CrossRef]
- Thomas, P.J.; Carpenter, D.; Boutin, C.; Allison, J.E. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere 2014, 96, 57–66. [Google Scholar] [CrossRef] [PubMed]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 109. [Google Scholar] [CrossRef]
- Davranche, M.; Gruau, G.; Dia, A.; Le Coz-Bouhnik, M.; Marsac, R.; Pédrot, M.; Pourret, O. Chapter 7. Rare earth elements in Wetlands. In Trace Elements in Waterlogged Soils and Sediments; Rinklebe, J., Knox, A.S., Paller, M., Eds.; Taylor & Francis Group: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2017; pp. 135–162. [Google Scholar]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wyttenbach, A.; Furrer, V.; Schleppi, P.; Tobler, L. Rare earth elements in soil and in soil-grown plants. Plant Soil 1998, 199, 267–273. [Google Scholar] [CrossRef]
- Pourret, O.; van der Ent, A.; Hursthouse, A.; Irawan, D.E.; Liu, H.Y.; Wiche, O. The ‘europium anomaly’ in plants: Facts and fiction. Plant Soil 2022, 476, 721–728. [Google Scholar] [CrossRef]
- Diatloff, E.; Asher, C.J.; Smith, F.W. The effects of rare earth elements on the growth and nutrition of plants. REE ’98. Mater. Sci. Forum 1999, 315, 354–360. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Wang, X.; Deng, X. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere 2001, 44, 655–661. [Google Scholar] [CrossRef]
- Kovaříková, M.; Tomášková, I.; Soudek, P. Rare earth elements in plants. Biol. Plant 2019, 63, 20–32. [Google Scholar] [CrossRef]
- Ma, J.F.; Ryan, P.R.; Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Stekelenburg, A.; Nakanishi, T.M.; Delhaize, E.; Ryan, P.R. Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat. Plant Cell Environ. 2002, 25, 453–460. [Google Scholar] [CrossRef]
- Wiche, O.; Pourret, O. The role of root carboxylate release on rare earth element (hyper)accumulation in plants—A biogeochemical perspective on rhizosphere chemistry. Plant Soil 2023, 492, 79–90. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F. Speciation of the rare earth element neodymium in groundwaters of the Nevada Test site and Yucca Mountain and implications for actinide solubility. Appl. Geochem. 1995, 10, 565–572. [Google Scholar] [CrossRef]
- Brown, P.H.; Rathjen, A.H.; Graham, R.D.; Tribe, D.E. Rare earth elements in biological systems, Chapter 92. Handb. Phys. Chem. Rare Earths 1990, 13, 423–452. [Google Scholar]
- Ding, S.M.; Liang, T.; Zhang, C.S.; Yan, J.C.; Zhang, Z.L. Accumulation and fractionation of rare earth elements (REEs) in wheat: Controlled by phosphate precipitation, cell wall absorption and solution complexation. J. Exp. Bot. 2005, 56, 2765–2775. [Google Scholar] [CrossRef]
- Liang, T.; Zang, S.; Wang, L.; Kung, H.-T.; Wang, Y.; Hu, A.; Ding, S. Environmental biogeochemical behaviors of rare earth elements in soil-plant systems. Environ. Geochem. Health 2005, 27, 301–311. [Google Scholar] [CrossRef]
- Vogel, W.R.; Kienzl, K.; Riss, A. Die Treibacher chemischen Werke—Wirkungen auf die Umwelt. Wien, Dez. 1991 (monograph volume 26 of the Austrian Federal Environmental Agency Vienna). Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/m026.pdf (accessed on 14 December 2023).
- Gouveia, M.A.; Prudêncio, M.I.; Figueiredo, M.O.; Pereira, L.C.J.; Waerenborgh, J.C.; Morgado, I.; Pena, T.; Lopes, A. Behavior of REE and other trace and major elements during weathering of granitic rocks, Évora, Portugal. Chem. Geol. 1993, 107, 293–296. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentially of rare earth elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Aide, M.T.; Aide, C. Rare earth elements: Their importance in understanding soil genesis. ISRN Soil Sci. 2012, 2012, 783876. [Google Scholar] [CrossRef]
- Szabó, J.A.; Kiraly, C.; Karlik, M.; Tóth, A.; Szalai, Z.; Gergely, J. Rare Earth Oxide Tracking and Soil Surface Modelling—Opportunity to Study Small Scale Soil Redistribution; European Geosciences Union General Assembly: Vienna, Austria, 2022. [Google Scholar]
- Pastor, A.; Gallello, G.; Cervera, M.L.; De la Guardia, M. Mineral and composition interfacing archaeology and chemistry. Trends Anal. Chem. 2016, 78, 48–59. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Rim, K.-T. Effects of rare earth elements on the environment and human health: A literature review. Toxicol. Environ. Health Sci. 2016, 8, 189–200. [Google Scholar] [CrossRef]
- Kegl, T.; Kosak, A.; Lobnik, A.; Novak, Z.; Kralj, A.K.; Ban, I. Adsorption of rare earth metals from wastewater by nanomaterials: A review. J. Hazard Mater. 2020, 386, 121632. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, P.; Morse, R.; Ford, H.; Eisenbud, M.; Penna Franca, E.; de Castro, M.B.; Lobao, N.; Sachett, I.; Carlos, M. Th, U, Ra and rare earth element distribution in farm animal tissues from an elevated natural radiation background environment. J. Environ. Radioact. 1991, 14, 233–257. [Google Scholar] [CrossRef]
- Zhu, W.; Kennedy, M.; De Leer, E.W.B.; Zhou, H.; Alaerts, G.J.F.R. Distribution and modelling of rare earth elements in Chinese river sediments. Sci. Total Environ. 1997, 204, 233–243. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- El-Ramady, H.R.H. A Contribution on the Bio-Actions of Rare Earth Elements in the Soil/Plant Environment. Ph.D. Thesis, Julius Kühn-lnstitut, Bundesforschungsinstitut für Kulturpflanzen, Quedlinburg, Germany, 2009. [Google Scholar]
- Li, J.; Hong, M.; Yin, X.; Liu, J. Effects of the accumulation of the rare earth elements on soil macrofauna community. J. Rare Earths 2010, 28, 957–964. [Google Scholar] [CrossRef]
- Shyam, R.; Aery, N.C. Effect of cerium on growth. dry matter production. biochemical constituents and enzymatic activities of cowpea plants (Vigna unguiculata (L.) Walp.). J. Soil Sci. Plant Nutr. 2012, 12, 1–14. [Google Scholar] [CrossRef]
- Saatz, J.; Vetterlein, D.; Mattusch, J.; Otto, M.; Daus, B. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ. Pollut. 2015, 204, 32–38. [Google Scholar] [CrossRef]
- Rowe, J.J.; Steinnes, E. Determination of 30 element in coal and fly ash by thermal and epithermal neutron-activation analysis. Talanta 1977, 24, 433–439. [Google Scholar] [CrossRef]
- Palmer, C.A. Determination of 29 elements in eight Argonne premium coal samples by INAA. Energy Fuels 1990, 4, 436–439. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.X.; Chen, H.M.; Guo, F.Q. Determination of the contents and distribution characteristics of rare earth elements in natural plants by NAA. J. Radoanal. Chem. Nucl. 1997, 219, 99–103. [Google Scholar] [CrossRef]
- Turra, C.; De Nadal Fernandez, E.A.; Arruda Bacchi, M.; Adrián Sarríes, G.; Lai Reyes, A.E. Uptake of rare earth elements by citrus plants from phosphate fertilizers. Plant Soil 2019, 437, 291–299. [Google Scholar] [CrossRef]
- Patra, A.C.; Lenka, P.; Sahoo, S.K.; Jha, S.K.; Kulkarni, M.S. Probing rare earth element distributions in soils of the mineralized Singhbhum region in India using INAA A.C. Appl. Radiat. Isot. 2020, 166, 109360. [Google Scholar] [CrossRef] [PubMed]
- Hamidatou, L.; Arbaoui, F.; Boucherit, M.N.; Slamene, H. Determination of chemical elements in two Algerian bentonites by k0-NAA and WDXRF techniques. J. Radioanal. Nucl. Chem. 2023, 332, 573–580. [Google Scholar] [CrossRef]
- Nazarov, V.M.; Chinaeva, V.P.; Frontasyeva, M.V.; Parry, S.; Bennet, B.A.; Pal, C.S.; Zu, L.C. Fine-powder Al2O3 and SiO2 for preparation of multielement standards for rare-earth element analysis. J. Radioanal. Nucl. Chem. 1993, 168, 163–168. [Google Scholar] [CrossRef]
- Silachyov, I. Zircon concentrate analysis for sixteen rare earth elements by the complex of nuclear analytical methods. J. Radioanal. Nucl. Chem. 2023, 332, 2017–2026. [Google Scholar] [CrossRef]
- Allajbeu, S.; Yushin, N.S.; Qarri, F.; Duliu, O.G.; Lazo, P.; Frontasyeva, M.V. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology. Environ. Sci. Pollut. Res. 2016, 23, 14087–14101. [Google Scholar] [CrossRef]
- Adeti, P.J.; Amoako, G.; Tandoh, J.B.; Gyampo, O.; Ahiamadjie, H.; Amable, A.S.K.; Kansaana, C.; Annan, R.A.T.; Bamford, A. Rare-earth element comparative analysis in chosen geological samples using nuclear-related analytical techniques. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2023, 540, 122–128. [Google Scholar] [CrossRef]
- Abdel Haleem, A.S.; Sroor, A.; El-Bahi, S.M.; Zohny, E. Heavy metals and rare earth elements in phosphate fertilizer components using instrumental neutron activation analysis. Appl. Radiat. Isot. 2001, 55, 569–573. [Google Scholar] [CrossRef]
- Makombe, M.; Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Voltammetric and spectroscopic determination of rare earth elements in fresh and surface water samples. Environments 2018, 5, 112. [Google Scholar] [CrossRef]
- Sheen, C.J.; Libby, B.J.; Crandell, W.B. Automated semiquantitative direct current arc spectrographic analysis of eight Argonne premium coal ash samples. Energy Fuels 1990, 4, 431–436. [Google Scholar]
- Zuleger, E.; Erzinger, J. Determination of REE and Y in silicate matrices with ICP-AES. Fres. Z. Anal. Chem. 1988, 332, 140–143. [Google Scholar] [CrossRef]
- Paukert, T.; Rubeska, I.; Weiss, D. Determination of Rare Earth Elements by ICP optical emission spectrometry after organic solvent extraction. ICP Inform. Newsl. 1990, 16, 998–999. [Google Scholar]
- Medyk, M.; Falandysz, J. Occurrence. bio-concentration and distribution of rare earth elements in wild mushrooms. Sci. Total Environ. 2022, 851, 158159. [Google Scholar] [CrossRef] [PubMed]
- Zocher, A.L.; Klimpel, F.; Kraemer, D.; Bau, M. Naturally grown duckweeds as quasi-hyperaccumulators of rare earth elements and yttrium in aquatic systems and the bioavailability of Gd-based MRI contrast agents. Sci. Total Environ. 2022, 838, 155909. [Google Scholar] [CrossRef]
- Bandoniene, D.; Walkner, C.; Zettl, D.; Meisel, T. Rare earth labeling as a tool for assuring the origin of eggs and poultry products. J. Agric. Food Chem. 2018, 66, 11729–11738. [Google Scholar] [CrossRef]
- Doughten, M.W.; Gillison, J.R. Determination of selected elements in whale coal and in coal ash from the eight Argonne premium coal samples by AAS, AES and ISE. Energy Fuels 1990, 4, 426–430. [Google Scholar] [CrossRef]
- Trimmel, S.; Musil, T.; Lancaster, S.T.; Prohaska, T.; Irrgeher, J. Determination of 48 elements in 7 plant CRMs by ICP-MS/MS with a focus on technology-critical elements. Anal. Bioanal. Chem. 2023, 415, 1159–1172. [Google Scholar] [CrossRef]
- Wiche, O.; Dittrich, C.; Pourret, O.; Monei, N.; Heim, J.; Lambers, H. Relationships between carboxylate-based nutrient-acquisition strategies, phosphorus-nutritional status and rare earth element accumulation in plants. Plant Soil 2023, 489, 645–666. [Google Scholar] [CrossRef]
- Krachler, M.; Mohl, C.; Emons, H.; Shotyk, W. Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 844–851. [Google Scholar] [CrossRef]
- Alfassi, Z.B.; Wai, C.M. Preconcentration Techniques for Trace Elements; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Wiche, O.; Zertani, V.; Hentschel, W.; Achtziger, R.; Midula, P. Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). J. Geochem. Explor. 2017, 175, 120–129. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Luck, J. Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry. Spectrochim. Acta B 1992, 47, 1379–1387. [Google Scholar] [CrossRef]
- De Boer, J.L.M.; Verwey, W.; van der Velde-Koerts, T.; Mennes, W. Levels of rare earth elements in Dutch drinking water and its sources. Determination by inductively coupled plasma mass spectrometry and toxicological implications. A pilot study. Water Res. 1996, 30, 190–198. [Google Scholar] [CrossRef]
- Hu, Y.; Vanhaecke, F.; Moens, L.; Dams, R.; Del Castilho, P.; Japenga, J. Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry. Anal. Chim. Acta 1998, 373, 95–105. [Google Scholar] [CrossRef]
- Censi, P.; Raso, M.; Yechieli, Y.; Ginat, H.; Salano, F.; Zuddas, P.; Brusca, L.; DÁlessandro, W.; Inguaggiato, C. Geochemistry of Zr, Hf, and REE in a wide spectrum of Eh and water composition. The case of the Dead Sea Fault system (Israel). Geochem. Geophys. Geosyst. 2017, 18, 844–857. [Google Scholar] [CrossRef]
- Zwiener, C.; Perschnik, N.; Frimmel, F.H. Gadolinium speciation to track Gd-contrast media in drinking water treatment. In Proceedings of the of Anakon 2007, Jena, Germany, 27–30 March 2007; p. 55. [Google Scholar]
- Oresčanin, V.; Mikelič, L.; Roje, V.; Lulič, S. Determination of lanthanids in environmental samples by source excited EDXRF method. Anal. Chim. Acta 2006, 570, 277–282. [Google Scholar]
- Mittermüller, M.; Saatz, J.; Daus, B. A sequential extraction procedure to evaluate the mobilization behavior of rare earth elements in soils and tailings materials. Chemosphere 2016, 147, 155–162. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Zhao, G. Assessment of the bioavailability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Chemosphere 2000, 40, 23–28. [Google Scholar]
- Wu, C.-Y.; Chu, M.-F.; Huang, K.-F.; Hseu, Z.-Y. Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma 2022, 423, 115–966. [Google Scholar] [CrossRef]
- Li, F.L.; Shan, X.Q.; Zhang, T.H.; Zhang, S.Z. Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Environ. Pollut. 1998, 102, 269–277. [Google Scholar] [CrossRef]
- Li, F.L.; Shan, X.Q.; Zhang, S.Z. Evaluation of single extractants for assessing plant availability of rare earth elements in soils. Commun. Soil Sci. Plan. 2001, 32, 2577–2587. [Google Scholar] [CrossRef]
- Shan, X.-Q.; Wang, Z.; Wang, W. Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants. Anal. Bioanal. Chem. 2003, 375, 400–407. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus acquisition and utilization in plants. Ann. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Tischler, D.; Fauser, C.; Lodemann, J.; Heilmeier, H. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea. Int. J. Phytorem. 2017, 19, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Wiche, O.; Kummer, N.-A.; Heilmeier, H. Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 2016, 402, 235–245. [Google Scholar] [CrossRef]
- Wiche, O.; Heilmeier, H. Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils. Miner. Eng. 2016, 92, 208–215. [Google Scholar] [CrossRef]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Shan, X.-Q.; Li, F.L. Low-molecular-weight organic-acids as extractant to predict plant bioavailability of rare earth elements. Int. J. Environ. Anal. Chem. 2000, 76, 283–294. [Google Scholar] [CrossRef]
- Shan, X.-Q.; Lian, J.; Wen, B. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 2002, 47, 701–710. [Google Scholar] [CrossRef]
- Pearse, S.J.; Veneklaas, E.J.; Cawthray, G.; Bolland, M.D.A.; Lambers, H. Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol. 2006, 173, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Chemical speciation and environmental mobility of heavy metals in sediments and soils. In Hazardous Metals in the Environment; Stoeppler, M., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 133–175. [Google Scholar]
- Sager, M.R.; Belocky, R.; Pucsko, R. Zur Ermittlung der Bindungsformen von Haupt- und Spurenelementen in Sedimenten durch sequentielle Löseverfahren. Acta Hydrochim. Hydrobiol. 1990, 188, 157–173. [Google Scholar] [CrossRef]
- Sager, M.; Vogel, W. Heavy Metal Load of Sediments of the River Gurk/Carinthia—Merits and Limitations of Sequential Leaching. Acta Hydrochim. Hydrobiol. 1993, 21, 21–34. [Google Scholar] [CrossRef]
- Land, M.; Öhlander, B.; Ingri, J.; Thunberg, J. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction. Chem. Geol. 1999, 160, 121–138. [Google Scholar] [CrossRef]
- Midula, P.; Wiche, O. Bioavailability of Heavy Metals, Germanium and Rare Earth Elements at Davidschacht Dump Field in Mine Affected Area of Freiberg (Saxony); European Geosciences Union General Assembly: Vienna, Austria, 2016. [Google Scholar]
- Abollino, O.; Aceto, M.; Malandrino, M.; Mentasti, E.; Sarzanini, C.; Barberis, R. Distribution and mobility of metals in contaminated sites. Chemometric investigation of pollutant profiles. Environ. Pollut. 2002, 119, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Ein vereinfachtes Verfahren zur Bestimmung mobiler Bodenfraktionen—Am Beispiel an Böden aus Apfelkulturen. In Proceedings of the VDLUFA, Stuttgart, Hohenheim; 2014; pp. 554–568. [Google Scholar]
- Sager, M. A simplified extraction schema to for the analytical characterization of apple orchard soils. J. Soils Sediments 2016, 16, 1193–1202. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
- Faure, G. Principles and Applications of Inorganic Chemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Vasyukova, E.; Pokrovsky, O.S.; Viers, J.; Dupré, B. New operational method of testing colloid complexation with metals in natural waters. Appl. Geochem. 2012, 27, 1226–1237. [Google Scholar] [CrossRef]
- Kumari, A.; Panda, R.; Jha, M.K.; Kumar, J.R.; Lee, J.Y. Process development to recover rare earth metals from monazite mineral: A review. Miner. Eng. 2015, 79, 102–115. [Google Scholar] [CrossRef]
- Bauluz, B.; Mayayo, M.J.; Fernandez-Nieto, C.; Lopez, J.M.G. Geochmistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): Implications for source-area weathering, sorting, provenance, and tectonic setting. Chem. Geol. 2000, 168, 135–150. [Google Scholar] [CrossRef]
- Ercit, T.S. The mess that is ‘allanite’. Can. Mineral. 2002, 40, 1411–1419. [Google Scholar] [CrossRef]
- Pan, Y.M.; Fleet, M.E.; Barnett, R.L. Rare-earth mineralogy and geochemistry of the Mattagami Lake volcanogenic massive sulfide deposit, Quebec. Can. Miner. 1994, 32, 133–147. [Google Scholar]
- Tichomirowa, M.; Berger, H.-J.; Koch, E.A.; Belyatski, B.V.; Götze, J.; Kempe, U.; Nasdala, L.; Schaltegger, U. Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—Constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 2001, 56, 303–332. [Google Scholar] [CrossRef]
- Price, R.C.; Gray, C.M.; Wilson, R.E.; Frey, F.A.; Taylor, S.R. The effects of weathering on rare-earth element. Y and Ba abundances in Tertiary basalts from southeastern Australia. Chem. Geol. 1991, 93, 245–265. [Google Scholar] [CrossRef]
- Grebnev, R.A.; Rundkvist, T.V.; Pripachkin, P.V. Geochemistry of mafic rocks of the PGE-bearing Vurechuaivench Massif (Monchegorsrk Complex. Kola region). Geochem. Int. 2014, 52, 726–739. [Google Scholar] [CrossRef]
- Compton, J.S.; White, R.-A.; Smith, M. Rare earth element behaviour in soils and salt pan sediments of a semi arid granitic terrain in the Western Cape, South Africa. Chem. Geol. 2003, 201, 239–255. [Google Scholar] [CrossRef]
- Göz, E.; Kadir, S.; Gürel, A.; Eren, M. Geology, mineralogy, geochemistry, and depositional environment of a late Miozene/Pliozene fluviolacustrine succession. Cappadocian Volcanic Province, Central Anatolia, Turkey. Turk. J. Earth Sci. 2014, 23, 386–411. [Google Scholar] [CrossRef]
- Misawa, K.; Nakamura, N. Demonstration of REE fractionation among individual chondrules from the Allende (CV3) chondrite. Geochim. Et Cosmochim. Acta 1988, 52, 1699–1710. [Google Scholar] [CrossRef]
- Masuda, A.; Nakamura, N.; Tanaka, T. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta 1973, 37, 239–248. [Google Scholar] [CrossRef]
- Protano, G.; Riccobono, F. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area. Environ. Pollut. 2002, 117, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Rétif, J.; Zalouk-Vergnoux, A.; Briant, N.; Poirier, L. From geochemistry to ecotoxicology of rare earth elements in aquatic environments: Diversity and uses of normalization reference materials and anomaly calculation methods. Sci. Total Environ. 2023, 856, 158890. [Google Scholar] [CrossRef] [PubMed]
- Bau, M.; Schmidt, K.; Pack, A.; Bendel, V.; Kraemer, D. The European shale: An improved dataset for normalization of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl. Geochem. 2018, 90, 142–149. [Google Scholar] [CrossRef]
- Dołegowska, S.; Migaszewsky, Z.M. Anomalous concentrations of rare earth elements in the moss-soil system from South-Central Poland. Environ. Pollut 2013, 178, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Sklyarova, O.A.; Sklyarov, E.V.; Och, L.; Pastukhov, M.V.; Zagorulko, N.A. Rare earth elements in tributaries of Lake Baikal (Siberia, Russia). Appl. Geochem. 2017, 82, 164–176. [Google Scholar] [CrossRef]
- Pirkl, H.S.; Schedl, A.; Pfleiderer, S. Geochem. Atlas von Österreich—Bundesweite Bach- und Flusssedimentgeochemie. Arch. Für Lagerstättenforschung 2015, 28, 288. [Google Scholar]
- Bodiš, D.; Rapant, S. Geochemical Atlas of the Slovak Republic—Stream Sediments; Geological Survey of the Slovak Republic: Bratislava, Slovakia, 1999. [Google Scholar]
- Klein, O.; Zimmermann, T.; Hildebrandt, L.; Pröfrock, D. Technology-critical elements in Rhine sediments—A case study on occurrence and spatial distribution. Sci. Total Environ. 2022, 852, 158464. [Google Scholar] [CrossRef]
- Borrego, J.; López-Gónzales, N.; Carro, B.K.; Lozano-Sorria, O. Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south western Spain). Mar. Pollut. Bull. 2004, 49, 1045–1053. [Google Scholar] [CrossRef]
- Sherief, M.K.; Awadallah, R.M.; Grass, F. Trace elements in sediment samples of the Aswan High Dam Lake. Chem. Erde 1981, 40, 178–194. [Google Scholar]
- Kowalkowski, T.; Pastuszak, M.; Szparaga, A.; Samczynski, Z.; Polkowska-Motrenko, H.; Buszewski, B. Rare earth elements in fine fraction (<20 µm) of the Vistula River sediments. Chemosphere 2019, 237, 124442. [Google Scholar]
- Mukherjee, P.K.; Purohit, K.K.; Saini, N.K.; Khanna, P.P.; Rathi, M.S.; Grosz, A.E. A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya. Geochem. J. 2007, 41, 83–95. [Google Scholar] [CrossRef]
- Albanese, S.; De Vivo, B.; Lima, A.; Cichella, D. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). J. Geochem. Explor. 2007, 93, 21–34. [Google Scholar] [CrossRef]
- Takematsu, N.; Sato, Y.; Okabe, S. Mechanism of incorporation of rare earth elements into ferromanganese concretions. La mer 1989, 27, 41–52. [Google Scholar]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.C.; Clarkson, M.O.; Wood, R.A. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 2016, 438, 146–162. [Google Scholar] [CrossRef]
- Vogt, C. Speciation of the inorganic components in brown coal. Fresenius J. Anal. Chem. 1994, 350, 89–92. [Google Scholar] [CrossRef]
- Given, P.H.; Miller, R.N. The association of major. minor and trace inorganic elements with lignites. III. Trace elements in four lignites and general discussion of all data from this study. Geochim. Cosmochim. Acta 1987, 51, 1843–1853. [Google Scholar] [CrossRef]
- Augustin-Gyurits, K.; Schroll, E. Geochemische Charakterisierung von Heimischen und Importierten Kohlen und Ihren Verbrennungsprodukten; Bericht der Bundesversuchs- und Forschungsanstalt Arsenal: Wien, Austria, 1990. (In German) [Google Scholar]
- Clarke, L.B. The fate of trace elements during coal combustion and gasification: An overview. Fuel 1993, 72, 731–736. [Google Scholar] [CrossRef]
- Warren, C.J.; Dudas, M.J. Leachability and partitioning of elements in ferromagnetic fly ash particles. Sci. Total Environ. 1989, 84, 223–236. [Google Scholar] [CrossRef]
- Pan, J.H.; Zhou, C.C.; Liu, C.; Tang, M.C.; Cao, S.S.; Hu, T.T.; Ji, W.S.; Luo, Y.L.; Wen, M.Z.; Zhang, N.N. Modes of occurrence of rare earth elements in coal fly ash: A case study. Energy Fuels 2018, 32, 9738–9743. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W. Effects of calcination temperature on the occurrence modes of rare earth elements in coal. Powder Technol. 2022, 407, 117670. [Google Scholar] [CrossRef]
- Yamasaki, S.; Takeda, A.; Nanzyo, M.; Taniyama, I.; Nakai, M. Background levels of trace and ultra-trace elements in soils of Japan. Soil Sci. Plant Nutr. 2001, 47, 755–765. [Google Scholar] [CrossRef]
- Takeda, A.; Kimura, K.; Yamasaki, S. Analysis of 57 elements in Japanese soils. with special reference to soil group and agricultural use. Geoderma 2004, 119, 291–307. [Google Scholar] [CrossRef]
- Miao, L.; Xu, P.; Ma, Y.; Zhu, Z.; Wang, J.; Cai, R.; Chen, Y. Geochemistry and biogeochemistry of REE in a surface environment (soil and plant) in South China. Environ. Geol. 2008, 56, 225–235. [Google Scholar] [CrossRef]
- Braun, J.-J.; Viers, J.; Dupre, B.; Polve, M.; Ndam, J.; Muller, J.P. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochim. Cosmochim. Acta 1998, 62, 273–299. [Google Scholar] [CrossRef]
- Chen, X.; Kwon, H.K.; Joung, D.; Baek, C.; Park, T.G.; Son, M.; Kim, G. Role of terrestrial versus marine sources of humic dissolved organic matter on the behaviors of trace elements in seawater. Geochim. Cosmochim. Acta 2022, 333, 333–346. [Google Scholar] [CrossRef]
- Pugliese Andrade, G.R.; Cuadros, J.; Peniche Barbosa, J.M.; Vidal Torrado, P. Clay mineral control rare earth elements (REE) fractionation in Brazilian mangrove soils. Catena 2022, 209, 105855. [Google Scholar] [CrossRef]
- Ure, A.M.; Bacon, J.R. Comprehensive analysis of soils and rocks by spark-source mass spectrometry. Analyst 1978, 103, 807–822. [Google Scholar] [CrossRef]
- Loell, M.; Reiher, W.; Felix-Henningsen, P. Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J. Plant Nutr. Soil Sci. 2011, 174, 644–654. [Google Scholar] [CrossRef]
- Loell, M.; Albrecht, C.; Felix-Henningsen, P. Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant Soil 2011, 349, 303–317. [Google Scholar] [CrossRef]
- Ion, A. Relationship from geology and radon in outdoor air in Massif Ditrau area, Eastern Carpathians- Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 163–168. [Google Scholar]
- Aiglsperger, T.; Proenza, J.; Galí, S.; Longo, F.; Roqué-Rosell, J. Geochemical and mineralogical survey of critical elements (PGE, REE, Sc and Co) in Ni laterites from the Caribbean. EGU 2019, 21, 1. [Google Scholar]
- Nesbitt, H.W.; Markovics, G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles. and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta 1997, 61, 1653–1670. [Google Scholar] [CrossRef]
- Pourret, O.; Davranche, M.; Gruau, G.; Dia, A. Rare earth elements complexation with humic acid. Chem. Geol. 2007, 243, 128–141. [Google Scholar] [CrossRef]
- Öhlander, B.; Land, M.; Ingri, J.; Widerlund, A. Mobility of rare earth elements during weathering of till in northern Sweden. Appl. Geochem. 1996, 11, 93–99. [Google Scholar] [CrossRef]
- Aide, M.; Pavich, Z. Rare earth element mobilization and migration in a Wisconsin spodosol. Soil Sci. 2002, 167, 680–691. [Google Scholar] [CrossRef]
- Li, M.; Yue-Ling, M.; Rei-Sing, X.; Wen, Y. Environmental biogeochemical characteristics of rare earth elements in soil and soil-grown plants of the Hetai goldfield, Guangdong Province, China. Environ. Earth Sci. 2011, 63, 505–511. [Google Scholar]
- Sena, I.C.M.; Souza, L.A.; Patire, V.F.; Arias Ortiz, A.; Creed, J.C.; Cruz, I.; Hatje, V. Environmental settings of seagrass meadows control rare earth element distribution and transfer from soil to plants. Sci. Total Environ. 2022, 843, 157095. [Google Scholar] [CrossRef] [PubMed]
- Mihajlovič, J.; Bauriegel, A.; Stärk, H.-J.; Roßkopf, N.; Zeitz, J.; Milbert, G.; Rinklebe, J. Rare earth elements in soil profiles of various ecosystems across Germany. Appl. Geochem. 2019, 102, 197–217. [Google Scholar] [CrossRef]
- Tyler, G.; Olsson, T. Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 2001, 52, 151–165. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Reimann, C.; Siewers, U.; Tarvainen, T.; Bityukova, L.; Eriksson, J.; Gilucis, A.; Gregorauskiene, V.; Lukasher, V.; Matinian, N.N.; Pasieczna, A. Baltic soil survey: Total concentrations of major and selected trace elements in arable soils from 10 countries around the Baltic Sea. Sci. Total Environ. 2000, 257, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.E. Concentrations of 61 Trace Elements in Sewage Sludge, Farmyard Manure, Mineral Fertilizers, Precipitation, Soil and Crops; Report 5148; EPA: Stockholm, Sweden, 2001. [Google Scholar]
- Sager, M. Element concentrations and interelement relations in apple leaves. blossom leaves and fruits and adjacent surface soils. Agricultura 2020, 1–2, 113–114. [Google Scholar]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe. Part 1: Background Information. Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Licht, O.A.B. Geochimica de Solo do Estano do Parana; Mineropar: Curidiba, Brazil, 2005; Volume 1. (In Spanish) [Google Scholar]
- Minařik, L.; Žigová, A.; Bendl, J.; Skřivan, P.; Št’astný, M. The behaviour of rare earth elements and Y during the rock weathering and soil formation in the Ricany granite massif, Central Bohemia. Sci. Total Environ. 1998, 215, 101–111. [Google Scholar] [CrossRef]
- Dong, W.; Wang, X.; Bian, X.; Wang, A.; Du, J.; Zuyi, T. Comparative study on sorption/desorption of radioeuropium on alumina. bentonite and red earth: Effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl. Radiat. Isotopes 2001, 54, 603–610. [Google Scholar]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Wang, Y.; Xu, Y.; Lin, Z.; Liang, X.; Cheng, H. Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geol. Rev. 2023, 157, 105446. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Lyons, W.B.; Stetzenbach, K.J.; Byrne, R.H. The solubility control of rare earth elements in natural terrestrial waters and the significance of PO43− and CO32− in limiting dissolved rare earth concentrations: A review of recent information. Aquat. Geochem. 1995, 1, 157–173. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Guo, H.Y.; Wang, X.R.; Yang, C.S. Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid. Chem. Speciat. Bioavailab. 2001, 13, 75–81. [Google Scholar]
- Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.; Le Coz-Bouhnik, M. Adsorption of REE(III)-humate complexes onto MnO2: Experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochim. Cosmochim. Acta 2005, 69, 4825–4835. [Google Scholar] [CrossRef]
- ObregónCastro, C.; Prudêncio, M.I.; Diamantino, C.; Carvalho, E.; Russo, D.; Rosa Marques, R. Geochemical Behaviour of Rare Earth Elements Throughout an Acid Mine Drainage Passive Treatment System in the Lousal Mine Area, Portugal. Mine Water Environ. 2023, 42, 533–545. [Google Scholar] [CrossRef]
- Davranche, M.; Pourret, O.; Gruau, G.; Dia, A. Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. J. Colloid Interface Sci. 2004, 277, 271–279. [Google Scholar] [CrossRef]
- Davranche, M.; Gruau, G.; Dia, A.; Marsac, R.; Pédrot, M.; Pourret, O. Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater. Aquat. Geochem. 2015, 21, 197–215. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, X.; Cheng, J.; Wang, L.; Dai, L. Effects of sulfate on speciation and bioavailability of rare earth elements in nutrient solution. Chem. Speciat. Bioavailab. 2000, 12, 52–58. [Google Scholar]
- Han, F.; Shan, X.-Q.; Zhang, J.; Xie, Y.-N.; Pei, Z.-G.; Zhang, S.-Z.; Zhu, Y.-G.; Wen, B. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 2005, 165, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Goyne, K.W.; Brantley, S.L.; Chorover, J. Rare earth element release from phosphate minerals in the presence of organic acids. Chem. Geol. 2010, 278, 1–14. [Google Scholar] [CrossRef]
- Nagao, S.; Rao, R.R.; Killey, R.W.D.; Young, J.L. Migration behaviour of Eu(III) in sandy soil in the presence of dissolved organic materials. Radiochim. Acta 1998, 82, 205–211. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Tao, Z. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids II. Tb3+. Yb3+ and Gd3+ complexes in weakly alkaline conditions. Appl. Radiat. Isotopes 2002, 56, 967–974. [Google Scholar]
- Dinali, G.S.; Root, R.A.; Amistadi, M.K.; Chorover, J.; Lopes, G.; Guimarães Guilherme, L.R. Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environ. Int. 2019, 128, 279–291. [Google Scholar] [CrossRef]
- Murray, R.W.; Buchholtz Ten Brink, M.R.; Gerlach, D.C.; Russ, G.P.; Jones, D.L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta 1991, 55, 1875–1895. [Google Scholar] [CrossRef]
- Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.; Jin, D.; Gaertner, D. Competitive binding of REE to humic acid and manganese oxide: Impact of reaction kinetics on development of cerium anomaly and REE adsorption. Chem. Geol. 2008, 247, 154–170. [Google Scholar] [CrossRef]
- Tyler, G.; Olsson, T. Conditions related to solubility of rare and minor elements in forest soils. J. Plant Nutr. Soil Sci. 2002, 165, 594–601. [Google Scholar] [CrossRef]
- Cao, Z.H.; Chu, H.Y.; Li, Z.G.; Zhu, J.G. Ecotoxicity of Lanthanum (La) to soil microbial groups and biological activities of red soil in China. In Proceedings of the 6th International Conference on the Biogeochemistry Trace Elements, Guelph, ON, Canada, 29 July–2 August 2001; p. 149. [Google Scholar]
- Tyler, G.; Olsson, T. Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant Soil 2001, 230, 307–321. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, X.-Q.; Zhang, S. Comparison of speciation and bioavailability of rare earth elements between wet rhizosphere soil and air-dried bulk soil. Anal. Chim. Acta 2001, 441, 147–156. [Google Scholar] [CrossRef]
- Grybos, M.; Davranche, M.; Gruau, G.; Petitjean, P. Is trace metal release in wetlandsoils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 2007, 314, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.H.; Li, B.Q. Comparative complexation behaviour of the rare earth. Geochim. Cosmochim. Acta 1995, 59, 4575–4589. [Google Scholar] [CrossRef]
- Henderson, P. Rare earth element geochemistry. In Developments in Geochemistry 2; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Sonke, J.E.; Salters, V.J.M. Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochim. Cosmochim. Acta 2006, 70, 1495–1506. [Google Scholar] [CrossRef]
- Aubert, D.; Stille, P.; Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta 2001, 65, 387–406. [Google Scholar] [CrossRef]
- Aubert, D.; Probst, A.; Stille, P. Distribution and origin of major and trace elements (particularly REE, U and Th) into labile and residual phases in an acid soil profile (Vosges Mountains, France). Appl. Geochem. 2004, 19, 899–916. [Google Scholar] [CrossRef]
- Ma, Y.; Huo, R.; Liu, C. Speciation and fractionation of rare earth elements in a lateritic profile from southern China; identification of the carriers of Ce anomalies. Geochim. Cosmochim. Acta 2002, 66, 471. [Google Scholar]
- Geng, A.; Zhang, S.; Hoiland, H. Binding capacity and stability of humic acid with rare earth elements in solution. China Environmental Science 1998, 18, 52–56. [Google Scholar]
- Goldstein, S.J.; Jacobsen, S.B. Rare earth elements in river waters. Earth Planet. Sci. Lett. 1988, 89, 35–47. [Google Scholar] [CrossRef]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Möller, P.; Bau, M. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet. Sci. Lett. 1993, 117, 671–676. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The geochemistry of rare earth elements in the Amazon River estuary. Geochim. Cosmochim. Acta 1993, 57, 2181–2190. [Google Scholar] [CrossRef]
- Sholkovitz, E.; Shen, G.T. The incorporation of rare earth elements in modern coral. Geochim. Cosmochim. Acta 1995, 59, 2749–2756. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Dupré, B.; Viers, J.; Dandurand, J.L.; Polve, M.; Benezeth, P.; Vervier, P.; Braun, J.J. Major and trace elements associated with colloids in organic-rich river waters: Ultrafiltration of natural and spiked solutions. Chem. Geol. 1999, 160, 63–80. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta 1997, 61, 3605–3618. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Farnham, I.M.; Guo, C.X.; Stetzenbach, K.J. Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochim. Cosmochim. Acta 1999, 63, 2697–2708. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Tang, J.W.; Daniels, J.M.; Bounds, W.J.; Burdige, D.J. Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chem. Geol. 2004, 209, 271–294. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Polve, M.; Schott, J.; Dandurand, J.-L.; Braun, J.-J. Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site. Cameroon): Comparison between organic poor and organic rich waters. Chem. Geol. 1997, 140, 181–206. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Zhou, X. Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake. Geochim. Cosmochim. Acta 1999, 63, 153–165. [Google Scholar] [CrossRef]
- Dia, A.; Gruau, G.; Olivié-Lauquet, G.; Riou, C.; Molénat, J.; Curmi, P. The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta 2000, 64, 4131–4151. [Google Scholar] [CrossRef]
- Shiller, A.M. Seasonality of Dissolved Rare Earth Elements in the Lower Mississippi River. Geochem. Geophys. Geosyst. 2002, 3, 1068. [Google Scholar] [CrossRef]
- Gruau, G.; Dia, A.; Olivié-Lauquet, G.; Davranche, M.; Pinay, G. Controls on the distribution of rare earth elements in shallow groundwaters. Water Res. 2004, 38, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, K.; Dia, A.; Marques, R.; Prudencio, M.I.; Diamantino, C.; Carvalho, E.; Russo, D.; Dionisio, I.; Davranche, M.; Bouhnik-Le-Coz, M.; et al. Bioconcentration and translocation of rare earth elements in plants collected from three legacy mine sites in Portugal. Front. Environ. Sci. 2023, 11, 1191909. [Google Scholar] [CrossRef]
- Beneš, E.; Steinnes, E. Migration forms of trace elements in natural fresh waters and the effect of the water storage. Water Res. 1975, 9, 741–749. [Google Scholar] [CrossRef]
- Bentouhami, E.; Bouet, G.M.; Meullemeestre, J.; Vierling, F.; Khan, M.A. Physicochemical study of the hydrolysis of Rare-Earth elements (III) and thorium (IV). C. R. Chim. 2004, 7, 537–545. [Google Scholar] [CrossRef]
- Millero, F.J. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 1992, 56, 3123–3132. [Google Scholar] [CrossRef]
- Cantrell, K.J.; Byrne, R.H. Rare earth element complexation by carbonates and oxalate ions. Geochim. Cosmochim. Acta 1987, 51, 597–605. [Google Scholar] [CrossRef]
- Tricca, A.; Stille, P.; Steinmann, M.; Kiefel, B.; Samuel, J.; Eikenberg, J. Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chem. Geol. 1999, 160, 139–158. [Google Scholar] [CrossRef]
- Pédrot, M.; Dia, A.; Davranche, M.; Bouhnik-Le Coz, M.; Henin, O.; Gruau, G. Insights into colloid-mediated trace element release at the soil/water interface. J. Colloid Interface Sci. 2008, 325, 187–197. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupré, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Rinat, M.; Manasypov, R.M.; Loiko, S.V.; Liudmila, S.; Shirokova, L.S. Organic and organo-mineral colloids in discontinuous permafrost zone. Geochim. Cosmochim. Acta 2016, 188, 1–20. [Google Scholar] [CrossRef]
- Tepe, N.; Bau, M. Distribution of rare earth elements and other high field strength elements in glacial meltwaters and sediments from the western Greenland ice sheet; evidence for different sources of particles and nanoparticles. Chem. Geol. 2015, 412, 59–68. [Google Scholar] [CrossRef]
- Tang, J.; Johannesson, K.H. Speciation of rare earth elements in natural terrestrial waters: Assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta 2003, 67, 2321–2339. [Google Scholar] [CrossRef]
- Marsac, R.; Davranche, M.; Gruau, G.; Aline Dia, A. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence. Geochim. Cosmochim. Acta 2010, 74, 1749–1761. [Google Scholar] [CrossRef]
- Chen, Y.; Fabbricino, M.; Benedetti, M.F.; Korshin, G.V. Spectroscopic in situ examination of interactions of rare earth ions with humic substances. Water Res. 2015, 68, 273–281. [Google Scholar] [CrossRef]
- Kouhail, Y.Z.; Benedetti, M.F.; Reiller, P.E. Formation of mixed Eu(III)-CO3-fulvic acid complex: Spectroscopic evidence and NICA-Donnan modeling. Chem. Geol. 2019, 522, 175–185. [Google Scholar] [CrossRef]
- Hannigan, R.E.; Sholkovitz, E.R. The development of middle rare earth element enrichments in freshwaters: Weathering of phosphate minerals. Chem. Geol. 2001, 175, 495–508. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Ji, H.B. Rare earth geochemistry in the dissolved, suspended and sedimentary loads in karstic rivers. Southwest China. Environ. Earth Sci. 2012, 66, 2217–2234. [Google Scholar] [CrossRef]
- Turcotte, P.; Smith, S.A.; Gagné, F.; Gagnon, C. Lanthanides release and partitioning in municipal wastewater effluents. Toxics 2022, 10, 254. [Google Scholar] [CrossRef]
- Och, L.M.; Müller, B.; Wichser, A.; Ullrich, A.; Vologina, E.G.; Sturm, M. Rare earth elements in the sediments of Lake Baikal. Chem. Geol. 2014, 376, 61–75. [Google Scholar] [CrossRef]
- Möller, P.; Knappe, A.; Dulski, P. Seasonal variation of REE and yttrium distribution in the lowland Havel river, Germany, by agricultural fertilization and effluents of sewage treatment plants. Appl. Geochem. 2014, 41, 62–72. [Google Scholar] [CrossRef]
- Bau, M.; Tepe, N.; Mohwinkel, D. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 2013, 364, 30–36. [Google Scholar] [CrossRef]
- Stille, P.; Steinmann, M.; Pierret, M.-C.; Gauthier-Lafaye, F.; Chabaux, F.; Viville, D.; Pourcelot, L.; Matera, V.; Aouad, G.; Aubert, D. The impact of vegetation on REE fractionation in stream waters of a small forested catchment (the Strengbach case). Geochim. Cosmochim. Acta 2006, 70, 3217–3230. [Google Scholar] [CrossRef]
- Möller, P.; Morteani, G.; Dulski, P. Anomalous Gd, Ce and Y contents in the Adige and Isarco river and in the water of their tributaries. Acta Hydrochim. Hydrobiol. 2003, 31, 225–239. [Google Scholar] [CrossRef]
- Gomez-Rivera, F.; Field, J.A.; Brown, D.; Sierra-Alvarez, R. Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresour. Technol. 2012, 108, S300–S304. [Google Scholar] [CrossRef]
- Reimann, C.; Hall, G.E.M.; Siewers, U.; Bjorvatnd, K.; Morland, G.; Skarphagen, H.T.; Strand, T. Radon, fluoride and 62 elements as determined by ICP-MS in 145 Norwegian hard rock groundwater samples. Sci. Total Environ. 1996, 192, 1–19. [Google Scholar] [CrossRef]
- Byrne, R.H.; Kim, K.-H. Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta 1990, 54, 2645–2656. [Google Scholar] [CrossRef]
- Reimann, C.; Siewers, U.; Skarphagen, H.; Banks, D. Does bottle type and acid washing influence trace element analyses by ICP-MS on water samples? Sci. Total Environ. 1999, 239, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Banks, D.; Hall, G.; Reimann, C.; Siewers, U. Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Appl. Geochem. 1999, 14, 27–39. [Google Scholar] [CrossRef]
- Iwatsuki, T.; Munemoto, T.; Kubota, M.; Hayashida, K.; Kato, T. Characterization of rare earth elements (REEs) associated with suspended particles in deep granitic groundwater and their post-closure behaviour from a simulated underground facility. Appl. Geochem. 2017, 82, 134–145. [Google Scholar] [CrossRef]
- Feng, F.; Akagi, T.; Yabuki, S.; Iwaki, K. The variation of rare earth elements in soil-grown plants. Plant Soil 2001, 235, 53–64. [Google Scholar]
- Ichihashi, H.; Morita, H.; Tatsukawa, R. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environ. Pollut. 1992, 76, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Akagi, T.; Shinotsuka, K. Distribution pattern of rare earth elements in fern. Biol. Trace Elem. Res. 1998, 64, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Yuan, D.; Shan, X.-Q.; Li, F.-L.; Zhang, S.-Z. The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions. Chem. Spec. Bioavailab. 2001, 13, 39–48. [Google Scholar] [CrossRef]
- Van der Ent, A.; Nkrumah, P.N.; Purwadi, I.; Erskine, P.D. Rare earth element (hyper)accumulation in some Proteaceae from Queensland, Australia. Plant Soil 2023, 485, 247–257. [Google Scholar] [CrossRef]
- Sager, M. Element- und Spurenelementgehalte von Äpfeln (Element and Trace Element Content of Apples). J. Ernährungsmedizin 2014, 16, 31. [Google Scholar]
- Sager, M. Main and Trace Element Contents of Tomatoes Grown in Austria. J. Food Sci. Eng. 2017, 7, 239–248. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sager, M. Element contents of basic feeds for dairy cows grown in 3 regions of Lower Austria. In Proceedings of the 68th ALVA Meeting, Klosterneuburg, Austria, 23–24 May 2013. [Google Scholar]
- Thomas, M.D.; Ford, K.L.; Keating, P. Review paper: Exploration geophysics for intrusion-hosted rare metals. Geophys. Prospect. 2016, 64, 1275–1304. [Google Scholar] [CrossRef]
- Cheng, J.; Ding, C.; Li, X.; Zhang, T.; Wang, X. Rare earth element transfer from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and the effects on internal fruit quality. PLoS ONE 2015, 10, e0120618. [Google Scholar] [CrossRef] [PubMed]
- Diatloff, E.; Asher, C.J.; Smith, F.W. Use of GEOCHEM-PC to predict rare earth element (REE) species in nutrient solutions. Plant Soil 1993, 155, 251–254. [Google Scholar] [CrossRef]
- Ding, S.M.; Liang, T.; Zhang, C.S.; Wang, L.J.; Sun, Q. Accumulation and Fractionation of Rare Earth Elements in a Soil-Wheat System. Pedosphere 2006, 16, 82–90. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Shan, X.-Q. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant Soil 2004, 261, 163–170. [Google Scholar] [CrossRef]
- Brioschi, L.; Steinmann, M.; Lucot, E.; Pierret, M.C.; Stille, P.; Prunier, J.; Badot, P.M. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 2013, 366, 143–163. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R. Aluminum toxicity and tolerance in plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef]
- Kamh, M.; Horst, W.J.; Amer, F.; Mostafa, H.; Maier, P. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 1999, 211, 19–27. [Google Scholar] [CrossRef]
- Kamh, M.; Roppel, P.; Horst, W.J. Exudation of organic acid anions by different maize cultivars as affected by phosphorus deficiency and aluminium toxicity. In Plant Nutrition—Food Security and Sustainability of Agro-Ecosystems; Horst, W.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 490–491. [Google Scholar]
- Kochain, L.V.; Hoekenga, O.A.; Pineros, M.A. How do crop plants tolerate acid soils? Mechanisns of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef]
- Quiquampoix, H.; Ratcliffe, R.G.; Ratkovic, S.; Vucinic, Z. H-1 and P-31 NMR investigation of gadolinium uptake in maize roots. J. Inorg. Biochem. 1990, 38, 265–275. [Google Scholar] [CrossRef]
- Wu, J.; Chen, A.; Peng, S.; Wei, Z.; Liu, G. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant Soil 2013, 373, 329–338. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Chen, Z. A review of in situ phytoextraction of rare earth elements from contaminated soils. Int. J. Phytoremediation 2022, 24, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.; Dittrich, C.; Kadner, J.; Senges, C.H.R.; Bandow, J.E.; Tischler, D.; Schlömann, M.; Levicán, G.; Wiche, O. Secondary metabolites released by the rhizosphere bacteria Arthrobacter oxydans and Kocuria rosea enhance plant availability and soil–plant transfer of germanium (Ge) and rare earth elements (REEs). Chemosphere 2021, 285, 131466. [Google Scholar] [CrossRef] [PubMed]
- Buée, M.; De Boer, W.; Martin, F.; van Overbeek, L.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Venturi, V.; Keel, C. Signaling in the rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Querol, X.; Alastuey, A.; de la Rosa, J.; Sánchez de la Campa, A.M.; Minguillón, M.; Pandolfi, M.; Gonzales-Castanedo, Y.; Monfort, E.; Gibbons, W. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci. Total Environ. 2010, 408, 4569–4579. [Google Scholar] [CrossRef]
- Berthelsen, B.O.; Lamble, G.M.; MacDowell, A.A.; Nicholson, D.G. Analysis of metal speciation and distribution in symbiotic fungi (ectomycorrhiza) studied by micro X-ray absorption spectroscopy and X-ray fluorescence. In Trace Elements in the Rhizosphere; Gobran, G.R., Wenzel, W.W., Lombi., E., Eds.; CRC: Boca Raton, FL, USA, 2000; pp. 149–164. [Google Scholar]
- Leyval, C.; Joner, E.J. Bioavailability of metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere; Gobran, G.R., Wenzel, W.W., Lombi, E., Eds.; CRC: Boca Raton, FL, USA, 2000; pp. 165–185. [Google Scholar]
- Fein, J.B.; Martin, A.M.; Wightman, P.G. Metal adsorption onto bacterial surfaces: Development of a predictive approach. Geochim. Cosmochim. Acta 2001, 65, 4267–4273. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhao, B. Arbuscular mycorrhizal fungi mediated uptake of lanthanum in Chinese milk vetch (Astralagus sinicus L.). Chemosphere 2007, 68, 1548–1555. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, R.; Zhao, W.; Fu, R.; Guo, J.; Bi, N.; Zhang, J. Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl. Soil Ecol. 2013, 72, 85–92. [Google Scholar] [CrossRef]
- Yuan, D.A.; Shan, X.-Q.; Wen, B.; Hua, Q. Isolation and characterization of rare earth element-binding protein in roots of maize. Biol. Trace Elem. Res. 2001, 79, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, X.; Chen, Z. Effects of rare earth elements and REE binding proteins on physiological responses in plants. Protein Peptide Lett. 2012, 19, 198–202. [Google Scholar] [CrossRef]
- Liu, C.; Sun, D.; Zheng, H.X.; Wang, G.B.; Liu, W.S.; Cao, Y.; Tang, Y.T.; Qiu, R.L. The limited exclusion and efficient translocation mediated by organic acids contribute to rare earth element hyperaccumulation in Phytolacca americana. Sci. Total Environ. 2022, 805, 150335. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhu, W.; Wang, Z.; Witkamp, G. Distribution of REE and heavy metals in field-grown maize after application of rare earth-containing fertilizer. Sci. Total Environ. 2002, 293, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; He, L.Q.; Dong, S.Y.; Fu, H.Y.; Wang, G.F.; Liang, X.L.; Tan, W.; He, H.P.; Zhu, R.L.; Zhu, J.X. Accumulation, translocation, and fractionation of rare earth elements (REEs) in fern species of hyperaccumulators and non-hyperaccumulators growing in urban areas. Sci. Total Environ. 2023, 905, 167344. [Google Scholar] [CrossRef] [PubMed]
- Monei, N.; Hitch, M.; Heim, J.; Pourret, O.; Heilmeier, H.; Wiche, O. Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius. Environ. Sci. Pollut. Res. 2022, 29, 57172–57189. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. The pathways of calcium movemement to the xylem. J. Exp. Bot. 2001, 52, 891–899. [Google Scholar] [CrossRef]
- Carpenter, D.; Boutin, C.; Allison, J.; Parsons, J.; Ellis, D.M. Uptake and effects of six rare earth elements (REEs) in selected native and crop species growing in contaminated soils. PLoS ONE 2015, 10, e0129936. [Google Scholar] [CrossRef] [PubMed]
- Klusener, B.; Boheim, G.; Liss, H.; Engelberth, J.; Weiler, E.W. Gadolinium-sensitive. voltage-dependent calcium-release channels in the endoplasmic reticulum of a higher-plant mechanoreceptor organ. Embo. J. 1995, 14, 2708–2714. [Google Scholar] [CrossRef]
- Lewis, B.D.; Spalding, E.P. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. J. Membrane Biol. 1998, 162, 81–90. [Google Scholar] [CrossRef]
- Karukstis, K.K.; Gruber, S.M. Effect of trivalent lanthanide cations on chlorophyll fluorescence and thylakoid membrane stacking. Biochim. Biophys. Acta 1986, 851, 322–326. [Google Scholar] [CrossRef]
- Burda, K.; Strzalka, K.; Schmid, G.H. Europium- and Dysprosium-ions as probes for the study of calcium binding sites in photosystem II. Z. Naturforsch. C 1995, 50, 220–230. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Fastovets, I.; Rogova, O.; Volkov, D.; Stolbova, V. Toxicity assay of lanthanum and cerium in solutions and soil. Ecotox. Environ. Saf. 2019, 167, 20–28. [Google Scholar] [CrossRef]
- Gong, B.; He, E.K.; Qiu, H.; Li, J.Q.; Zhao, L.; Cao, X.D. Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability. Environ. Poll. 2019, 246, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.Z.; Xue, C.Y.; Guo, C.; Jia, C.Y.; Li, X.J.; Tai, P.D. Regulatory actions of rare earth elements (La and Gd) on the cell cycle of root tips in rice seedlings (Oryza sativa L.). Chemosphere 2022, 307, 135795. [Google Scholar] [CrossRef] [PubMed]
- Pošćić, F.; Schat, H.; Marchiol, L. Cerium negatively impacts the nutritional status in rapeseed. Sci. Total Environ. 2017, 593–594, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, A.; Vasiluk, A.; Hale, B. Phytotoxicity effect concentrations (ECx) for Ce, Nd and Eu added to soil relative to total and bioaccessible soil REE concentrations, and tissue REE accumulation. Chemosphere 2022, 307, 135723. [Google Scholar] [CrossRef] [PubMed]
- Buckingham, S.; Maheswaran, J.; Meehan, B.; Peverill, K. The role of applications of rare earth elements in enhancement of crop and pasture production. REE ’98. Mater. Sci. Forum 1999, 315, 339–347. [Google Scholar] [CrossRef]
- Fashui, H.; Ling, W.; Xiangxuan, M.; Zheng, W.; Guiwen, Z. The effect of cerium (III) on the chlorophyll formation in spinach. Biol. Trace. Elem. Res. 2002, 89, 263–276. [Google Scholar] [CrossRef]
- Xie, Z.B.; Zhu, J.G.; Chu, H.Y.; Zhang, Y.L.; Zeng, Q.; Ma, H.L.; Cao, Z.H. Effect of lanthanum on rice production. nutrient uptake, and distribution. J. Plant Nutr. 2002, 25, 2315–2331. [Google Scholar] [CrossRef]
- Agathokleous, E.; Zhou, B.; Geng, C.; Xu, J.; Saitanis, C.J.; Feng, Z.; Tack, F.M.G.; Rinklebe, J. Mechanisms of cerium- induced stress in plants: A meta-analysis. Sci. Total Environ. 2022, 852, 158352. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.J.; Dinali, G.S.; de Carvalho, T.S.; Chaves, L.C.; Siqueira, J.O.; Guilherme, L.R.G. Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. J. Geochem. Expl. 2016, 168, 177–186. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.H.; Chen, Y.J.; Wang, X.R.; Dai, L.M. Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere 2002, 48, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormetic dose responses induced by lanthanum in plants. Environ. Poll. 2019, 244, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Enomoto, S.; Minai, Y.; Ambe, S.; Makide, Y. A survey of trace elements in Pteridophytes. Biol. Trace Elem. Res. 2000, 74, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Arnoldussen, A.; Boyd, R.; Finne, T.E.; Koller, F.; Nordgulen, Ø.; Englmaier, P. Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Sci. Total Environ. 2007, 377, 416–433. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. Changes in the concentration of major. minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For. Ecol. Manag. 2005, 206, 167–177. [Google Scholar] [CrossRef]
- Markert, B.; Li, Z.D. Natural background concentrations of rare-earth elements in a forest ecosystem. Sci. Total Environ. 1991, 103, 27–35. [Google Scholar] [CrossRef]
- Djingova, R.; Ivanova, J.; Wagner, G.; Korhammer, S.; Markert, B. Distribution of lanthanoids, Be, Bi, Ga, Te, Tl, Th and U on the territory of Bulgaria using Populus nigra Italica as an indicator. Sci. Total Environ. 2001, 280, 85–91. [Google Scholar] [CrossRef]
- Gautam, M.K.; Lee, K.S.; Berg, B.; Song, B.Y.; Yeon, J.Y. Trends of major, minor and rare earth elements in decomposing litter in a cool temperate ecosystem, South Korea. Chemosphere 2019, 222, 214–226. [Google Scholar] [CrossRef]
- Robinson, W.O.; Bastron, H.; Murata, K.J. Biogeochemistry of the rare-earth elements with particular reference to hickory trees. Geochim. Cosmochim. Acta 1958, 14, 55–67. [Google Scholar] [CrossRef]
- Van der Ent, A.; Brueckner, D.; Spiers, K.M.; Falch, K.V.; Falkenberg, G.; Layet, C.; Liu, W.-S.; Zhang, H.X.; Le Jean, M.; Blaudez, D. High-energy interference-free K-lines synchrotron X-ray fluorescence microscopy of rare earth elements in hyperaccumulator plants. Metallomics 2023, 15, mfad050. [Google Scholar] [CrossRef] [PubMed]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of rare earth elements—A review. Chemosphere 2022, 297, 134259. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.; Blaudez, D.; Chalot, M.; Gross, E.M.; Le Jean, M. Identification of new hardy ferns that preferentially accumulate light rare earth elements: A conserved trait within fern species. Environ. Chem. 2020, 17, 191–200. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, Q.Q.; Yan, W.W.; Yang, L.M.; Huang, B.L. Preliminary study of the enrichment and fractionation of REEs in a newly discovered REE hyperaccumulator Pronephrium simplex by SEC-ICP-MS and MALDI-TOF/ESI-MS. J. Anal. At. Spectr. 2005, 20, 751–753. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, Q.; Yang, L.; Huang, B. Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex. Talanta 2006, 70, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, L.; Wang, Q. Hyperaccumulation ability of pronephrium simplex to rare earth elements and corresponding REE binding peptides. J. Chin. Rare Earth Soc. 2009, 27, 289–296. [Google Scholar]
- Wei, Z.G.; Yin, M.; Zhang, X.; Hong, F.S.; Li, B.; Tao, Y.; Zhao, G.; Yan, C. Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South Jiangxi region (Southern China). Environ. Pollut. 2001, 114, 345–355. [Google Scholar]
- Enslein, J.; Brecher, I.; Soos, G.; Sorger, O. Pflanzenkunde für die Unteren Klassen der Österreichischen Mittelschulen; Deuticke-Hölder/Pichler/Tempksy-Leykam: Wien, Austria, 1963. [Google Scholar]
- Markert, B.; Li, Z.D. Inorganic chemical investigations in the forest biosphere reserve near Kalinin, USSR. Vegetatio 1991, 97, 57–62. [Google Scholar] [CrossRef]
- Markert, B.; Wtorova, W. inorganic chemical investigations in the forest biosphere reserve near Kalinin, USSR. Vegetatio 1992, 98, 43–58. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Danezis, G.P.; Georgiou, C.A.; Zervakis, G.I. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclobe cylindracea. J. Sci. Food Agric. 2018, 98, 5418–5427. [Google Scholar] [CrossRef] [PubMed]
- Zocher, A.L.; Kraemer, D.; Merschel, G.; Bau, M. Distribution of major and trace elements in the bolete mushroom Suillus luteus and the bioavailability of rare earth elements. Chem. Geol. 2018, 483, 491–500. [Google Scholar] [CrossRef]
- Figueiredo, C.; Oliveira, R.; Lopes, C.; Brito, P.; Caetano, M.; Raimundo, J. Rare earth elements biomonitoring using the mussel mytilus galloprovincialis in the Portuguese coast: Seasonal variations. Mar. Poll. Bull. 2022, 175, 113. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sun, S.; Li, Y.; Yang, J.; Zhang, C.; Cao, R.; Zhang, H.; Chen, J.; Gong, N. Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation. Sci. Total Environ. 2022, 828, 154119. [Google Scholar] [CrossRef] [PubMed]
- Bisaka, K.; Thobadi, I.C.; Pawlik, C. Extraction of REE from iron-rich rare earth deposits. J. South. Afr. Inst. Min. Metall. 2017, 117, 731–739. [Google Scholar] [CrossRef]
- Herrington, R.; Pinto-Ward, C.; Wilkinson, J.; Schissel, D.; Rocha de Rocha, A.; Sprecher, A. Genesis of the Giant Serra Verde Ion Adsorption REE Deposit. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Zhao, P.H.; Bi, R.; Sanganyado, E.; Zeng, X.F.; Li, W.W.; Lyu, Z.D.; Liu, J.Y.; Li, P.; Du, H.; Liu, W.H.; et al. Rare earth elements in oysters and mussles collected from the Chinese coast. Bioaccumulation and human health risks. Mar. Pol. Bull. 2022, 184, 114127. [Google Scholar]
- Teitler, Y.; Cathelineau, M.; Ulrich, M.; Ambrosi, J.P.; Munoz, M.; Sevin, B. Scandium Geochemistry and Resource Assessment in New Caledonian Ni-Co Laterites; European Geosciences Union General Assembly: Vienna, Austria, 2019. [Google Scholar]
- Hassas, B.V.; Rezaee, M.; Pisupati, S.V. Effect of various ligands on the selective precipitation of critical and rare earth elements from acid mine drainage. Chemosphere 2021, 280, 130684. [Google Scholar] [CrossRef]
- Stein, R.T.; Kasper, A.C.; Veit, H.M. Recovery of rare earth elements present in mobile phone magnets with the use of organic acids. Minerals 2022, 12, 668. [Google Scholar] [CrossRef]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotox. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef]
- Pinto, J.; Costa, M.; Leite, C.; Borges, C.; Coppola, F.; Henriques, B.; Monteiro, R.; Russo, T.; Di Cosmo, A.; Soares, A.M.V.M.; et al. Ecotoxicological effects of lanthanum in Mytillus galloprovincialis. Biochemical and histopathological impacts. Aquat. Toxicol. 2019, 211, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Abdus Salam, M.M.; Nawrot, N.; Kaipiainen, E.; Lane, D.J.; Wojciechowska, E.; Kinnunen, N.; Heimonen, M.; Tervahauta, A.; Peräniemi, S.; et al. Phytoextractoin and recovery of rare earth elements using willows (Salix spp.). Sci. Total Environ. 2022, 809, 152209. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Osseo-Asare, K. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy. Eh–pH diagrams for the systems Th–. Ce–. La–. Nd–(PO4)–(SO4)–H2O at 25 °C. Hydrometallurgy 2012, 113–114, 67–78. [Google Scholar] [CrossRef]
- Hagag, M.S.; Morsy, A.M.A.; Ali, A.H.; El-Sheikh, A.S. Adsorption of rare earth elements onto the phosphogypsum as a waste byproduct. Water. Air. Soil Pollut. 2019, 230, 308. [Google Scholar] [CrossRef]
- Rychkov, V.N.; Kirillov, E.V.; Kirillov, S.V.; Semenishchev, V.S.; Bunkov, G.M.; Botalov, M.S.; Smyshyaev, D.V.; Malyshev, A.S. Recovery of rare earth elements from phosphogypsum. J. Clean. Prod. 2018, 196, 674–681. [Google Scholar] [CrossRef]
- Lejwoda, P.; Bialecka, B.; Thomas, M. Removal of phosphate from brewery wastewater by Ce(III) chloride originating from spent polishing agent: Recovery and optimization studies. Sci Tot. Environ. 2023, 875, 162643. [Google Scholar] [CrossRef]
- Qiu, S.; Ya, H.; Hong, B.; Long, Q.; Xiao, J.; Li, F.; Tong, L.; Zhou, X.; Qiu, T. Desorption of REEs from halloysite and illite: A link to the exploitation of ion-adsorption RE-ore based on clay species. Minerals 2022, 12, 1003. [Google Scholar] [CrossRef]
- Qiu Sen, Li Fujian, Yan Huashan, Qiu Tinsheng, Long Qibang, Zhou Xiaowen, Li Yong, Xia Yi: Step-leaching and pre-enrichment of light and heavy REEs from kaolinite and montmorillonite. ACS Sustain. Chem. Eng. 2022, 10, 11815–11823. [CrossRef]
- Tunsu, C.; Menard, Y.; Erksen, D.Ø.; Ekberg, C.; Petranikova, M. Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of REE using acidic, solvating and mixed extractant systems. J. Clean. Prod. 2019, 218, 425–437. [Google Scholar] [CrossRef]
- Gonzales, R.; Canovas, C.; Olias, M.; Macias, F. Rare earth elements in a historical mining district (south-west Spain): Hydrogeochemical behavior and seasonal variability. Chemosphere 2020, 253, 126742. [Google Scholar] [CrossRef]
- Bronič, J.; Subotič, B. Removal of gadolinium ions from solutions using granulated zeolites. J. Radioanal. Nucl. Chem. 1986, 100, 91–101. [Google Scholar] [CrossRef]
- Böhlandt, A.; Schierl, R.; Diemer, J.C.; Bolte, G.; Kiranoglu, M.; Fromme, H.; Nowak, D. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke. Sci. Total Environ. 2012, 414, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Valente, T.; Marques, R.; Prudéncio, M.I.; Pamplona, J. Rare earth elements—Source and evolution in an aquatic system dominated by mine-influenced waters. J. Environ. Manag. 2022, 322, 116125. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.H.; Liang, T.; Li, K.X.; Wang, L.Q. Source and path identification of metal pollution in a mining area by PMF and rare earth element patterns in road dust. Sci. Total Environ. 2018, 633, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Zhao, J.; Li, S.; Liu, D.; Wang, K.; Xiao, P.; Yu, L.; Jiang, Y.; Song, J.; Zhou, J.; et al. Concentrations and health risks assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere 2017, 168, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Caliani, J.C.; Barba-Brioso, C.; De la Rosa, J.D. Mobility and speciation of rare earth elements in acid minesoils and geochemical implications for river water in southwestern Iberian margin. Geoderma 2009, 149, 393–401. [Google Scholar] [CrossRef]
- Otero, N.; Vitoria, L.; Soler, A.; Canals, A. Fertilizer characterization: Major, trace and rare earth elements. Appl. Geochem. 2005, 20, 1473–1488. [Google Scholar] [CrossRef]
- Raven, K.P.; Loeppert, R.H. Heavy metals in the environment—Trace element composition of fertilizers and soil amendments. J. Environ. Qual. 1997, 26, 551–557. [Google Scholar] [CrossRef]
- Imran, M.; Nguyen, A.; Sultanowa, Y. Quantification of rare earth elements in Australian and imported rice samples from different origins using ICP-MS. Sci Tot. Environ. 2023, 895, 164865. [Google Scholar] [CrossRef]
- Al Hwaiti, M.; Matheis, G.; Saffarini, G. Mobilization, redistribution and bioavailability of potentially toxic elements in Shidiya phosphorites. Southeast Jordan Environ. Geol. 2005, 47, 431–444. [Google Scholar] [CrossRef]
- Neira, P.; Romero-Freire, A.; Basallote, M.D.; Qiu, H.; Cobelo-Garcia, A.; Canovas, C.R. Review of the concentration, bioaccumulation, and effects of lanthanides in marine systems. Front. Mar. Sci. 2022, 9, 920405. [Google Scholar] [CrossRef]
- Schuller, S.; Borger, C.; He, M.L.; Henkelmann, R.; Jadamus, A.; Simon, O.; Rambeck, W.A. Untersuchungen zur Wirkung Seltener Erden als mögliche Alternative zu Leistungsförderern bei Schweinen und Geflügel. Berlin. Münch. Tierärzliche Wschr. 2002, 115, 16–23. [Google Scholar]
- Bandoniene, D.; Racchetti, A.; Walkner, C.; Meisel, T. A tool to assure the geographical origin of local food products (glasshouse tomatoes) using labelling with rare earth elements. J. Sci. Food Agric. 2018, 98, 4769–4777. [Google Scholar] [CrossRef] [PubMed]
- Sager, M.; McCulloch, C.R.; Schoder, D. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products. Food Chem. 2018, 255, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Haupt- und Spurenelemente von Käse in Österreich. Nutrition 2012, 36, 149–159. [Google Scholar]
- Sager, M.; Hobegger, M. Elementgehalte in Rohmilch aus drei Regionen Niederösterreichs (Contents of elements in raw milk from three regions in lower Austria). Nutrition 2013, 37, 277–290. [Google Scholar]
- Sager, M. Element- und Spurenelementgehalte in handelsüblichen Milchprodukten in Österreich—Element and trace element contents in Austrian commercial dairy products. J. Für Ernährungsmedizin 2016, 16, 12. [Google Scholar]
- Sager, M. Content of elements and trace elements in Austrian commercial dairy products. J. Elem. 2018, 23, 381–400. [Google Scholar] [CrossRef]
- Sager, M. Elementgehalte und Spurenelementgehalte in Rohmilch aus Österreich—Vergleich Almmilch—Stallmilch. VDLUFA-Schriftenreihe 2014, 70, 483–492. [Google Scholar]
- Sager, M. Analysis of less bioactive elements in green plants, food and feed samples (Sc-Y-La-Ce-Rb-Cs-Ti). Ecol Chem. Eng. 2010, 17, 289–295. [Google Scholar]
- Pol, A.; Barends, T.R.M.; Dietl, A.; Khadem, A.F.; Eygensteyn, J.; Jetten, M.S.M.; Op den Camp, H.J.M. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 2014, 16, 255–261. [Google Scholar] [CrossRef]
- Henriques, B.; Coppola, F.; Monteiro, R.; Pinto, J.; Viana, T.; Pretti, C.; Soares, A.; Freitas, R.; Pereira, E. Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Sci. Total Environ. 2019, 664, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Thomas, P.J.; Di Nunzio, A.; Trifuoggi, M. Human exposures to rare earth elements: Present knowledge and research projects. Environ. Res. 2019, 171, 493–500. [Google Scholar] [CrossRef]
- Lachaux, N.; Catrouillet, C.; Marsac, R.; Poirier, L.; Pain-Devin, S.; Gross, E.M.; Giamberini, L. Implications of speciation on rare earths element toxicity: A focus on organic matter influence in Daphnia magna standard test. Environ. Poll. 2022, 307, 119554. [Google Scholar] [CrossRef]
- Li, J.X.; Verweij, R.A.; Cornelis, A.M.; Van Gestel, C.A.M. Lanthanum toxicity of five different species of soil invertebrates to availability in soil. Chemosphere 2018, 193, 412–420. [Google Scholar] [CrossRef] [PubMed]
Element | 0.16 M Hac | 0.1 M–Ox | KClO3-HNO3 | HClO4/HNO3/HF |
---|---|---|---|---|
Sc | <0.01 | 0.36 | 3.47 | 5.88 |
Y | 0.033 | 0.37 | 9.19 | 10.8 |
La | 0.041 | 0.13 | 15.9 | 21.8 |
Ce | 0.15 | 0.30 | 40.0 | 46.6 |
Element | Monchegorsk | Granite | Limestone | Calcrete | Diatomite | Ignimbrite |
---|---|---|---|---|---|---|
Y | 3.43 | n.a. | 2.9 | 15.2 | 20.2 | 14.7 |
La | 2.81 | 22.2 | 3.5 | 19.8 | 30.8 | 32.1 |
Ce | 6.48 | 55.7 | 4.9 | 31.5 | 52.8 | 52.7 |
Pr | 0.80 | 6.5 | 0.6 | 3.9 | 6.73 | 4.43 |
Nd | 3.46 | 25.2 | 3.1 | 14.5 | 25.5 | 14.5 |
Sm | 0.67 | 5.6 | 0.5 | 2.4 | 4.23 | 2.41 |
Eu | 0.30 | 0.7 | 0.1 | 0.6 | 0.93 | 0.43 |
Gd | 0.68 | 4.7 | 0.6 | 2.3 | 3.77 | 2.02 |
Tb | 0.11 | 0.7 | 0.1 | 0.4 | 0.61 | n.a. |
Dy | 0.68 | 3.8 | 0.6 | 2.3 | 3.36 | 2.05 |
Ho | 0.14 | 0.7 | 0.2 | 0.5 | 0.67 | 0.50 |
Er | 0.36 | 1.7 | 0.4 | 1.5 | 2.03 | 1.53 |
Tm | 0.05 | 0.2 | 0.1 | 0.2 | 0.28 | 0.40 |
Yb | 0.33 | 1.4 | 0.4 | 1.6 | 2.12 | 1.74 |
Lu | 0.05 | 0.2 | 0.1 | 0.2 | 0.32 | 0.28 |
Element (mg/kg) | Post-Archean Australian Shale | North American Shale Composite | Mud from Queensland | European Shale | Upper Crust | Lower Crust |
---|---|---|---|---|---|---|
Y | 27.3 | 27 | 31.8 | 31.9 | 20.7 | 27.2 |
La | 44.6 | 32 | 32.5 | 44.3 | 32.3 | 26.8 |
Ce | 88.2 | 73 | 71.1 | 88.5 | 65.7 | 53.1 |
Pr | 10.1 | 7.9 | 8.5 | 10.6 | 6.3 | 7.4 |
Nd | 37.3 | 33 | 32.9 | 39.5 | 25.9 | 28.9 |
Sm | 6.88 | 5.7 | 6.88 | 7.30 | 4.7 | 6.0 |
Eu | 1.21 | 1.24 | 1.57 | 1.48 | 0.95 | 1.6 |
Gd | 6.04 | 5.2 | 6.36 | 6.34 | 2.8 | 5.4 |
Tb | 0.89 | 0.85 | 0.99 | 0.94 | 0.50 | 0.81 |
Dy | 5.32 | 5.8 | 5.89 | 5.86 | 2.9 | 4.7 |
Ho | 1.05 | 1.04 | 1.22 | 1.17 | 0.62 | 0.99 |
Er | 3.07 | 3.4 | 3.37 | 3.43 | n.a. | n.a. |
Tm | 0.45 | 0.5 | 0.51 | 0.49 | n.a. | n.a. |
Yb | 3.01 | 3.1 | 3.25 | 3.26 | 1.5 | 2.5 |
Lu | 0.44 | 0.48 | 0.49 | 0.49 | 0.27 | 0.43 |
Ce | La | |||
---|---|---|---|---|
Median | Range | Median | Range | |
Andesites | 50 | 20–88 | 28 | 11–61 |
Basic metavolcanites | 24 | 5–60 | 15 | 2–39 |
Acid metavolcanites | 60 | 14–123 | 34 | 9–89 |
Metapelites | 70 | 29–126 | 41 | 10–71 |
Granites | 62 | 10–147 | 33 | 1–83 |
Carbonates paleozoic | <10 | <10–40 | 3 | 1–17 |
Carbonates mesozoic | 20 | <10–60 | 20 | 2–60 |
Clays | 55 | 17–93 | 37 | 18–48 |
Sandstones | 36 | 5–71 | 25 | 8–44 |
Element | Aswan Lake | China’s Large Rivers | Vistula River | Rhine River | Ganges | |||
---|---|---|---|---|---|---|---|---|
Location | n.a. | n.a. | upper | lower | main central | Porphyroids | Proterozoic | |
Fraction | Total, unsieved | HNO3 < 2 mm | Total < 0.02 mm | Total < 0.063 mm | Total < 0.18 mm | |||
Sc | 25.7 ± 3.4 | 11.6 (1.32–23.1) | 5.74 | n.a. | n.a. | n.a. | n.a. | n.a. |
Y | n.a. | 14.6 (3.31–24.8) | 12.7 | n.a. | n.a. | n.a. | n.a. | n.a. |
La | 34.2 ± 6.5 | 31.1 (7.56–57.3) | 19.4 | 29 | 72 | 86.1 | 40.5 | 30.2 |
Ce | 81 ± 14 | 65.3 (16.5–123) | 41.1 | 54 | 94 | 195 | 87.1 | 61.6 |
Pr | n.a. | 7.57 (1.59–14.3) | 4.79 | 6.2 | 10.5 | n.a. | n.a. | n.a. |
Nd | n.a. | 29.3 (5.6–58.5) | 18.9 | 23 | 39 | 46 | 28.2 | 26.8 |
Sm | 8.7 ± 1.4 | 5.33 (1.09–11.0) | 3.84 | 6.5 | 7.8 | 12.23 | 6.52 | 5.59 |
Eu | 2.1 ± 0.5 | 0.87 (0.05–1.72) | 0.82 | 1.17 | 1.29 | 1.86 | 1.41 | 1.40 |
Gd | n.a. | 8.86 (1.64–16.8) | 3.65 | 5.4 | 6.2 | 9.87 | 5.40 | 4.39 |
Tb | n.a. | 0.65 (0.12–1.16) | 0.51 | 0.75 | 0.76 | 1.68 | 0.93 | 0.75 |
Dy | n.a. | 3.20 (0.53–4.96) | 2.85 | 4.2 | 4.3 | 9.45 | 5.27 | 4.11 |
Ho | n.a. | 0.57 (0.09–0.99) | 0.50 | 0.79 | 0.81 | 1.88 | 1.05 | 0.80 |
Er | n.a. | 1.40 (0.26–2.44) | 1.29 | 2.18 | 2.26 | 5.77 | 3.07 | 2.32 |
Tm | n.a. | 0.18 (0.06–0.38) | 0.17 | 0.31 | 0.32 | 0.85 | 0.42 | 0.32 |
Yb | 0.75 ± 0.14 | 0.96 (0.22–2.89) | 1.03 | 2.00 | 2.12 | 5.05 | 2.38 | 1.84 |
Lu | 0.45 ± 0.07 | 1.15 (<0.02–0.42) | 0.15 | 0.28 | 0.31 | 0.77 | 0.34 | 0.27 |
Element | Earth Crust 1,2 | World Soil Average 3 | Baltic Soils 4 | Topsoils Sweden 5 | Topsoils Austria 6 | Soils of Europe 7 | China 8 | Andosols Japan 9 | Cambisols Japan 9 | Acrisols Japan 9 | Soils of Brazil 10 | Lateritic Soils Cameroon 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 14 | 11.7 | n.a. | 4.9–17.6 | 12 (7–18) | 9.1 ± 5.6 | n.a. | 28 (10–51) | 17 (7–41) | 13 (2–37) | 31 ± 15 | n.a. |
Y | 31 | 33.0 | n.a. | 5.5–33.2 | 23 (15–34) | n.a. | n.a. | 24 (12–72) | 16 (7–67) | 9 (3–28) | 28 ± 8 | 17 ± 10 |
La | 35 | 27 | 33 (2.3–113) | 11–68 | 47 (30–69) | 26 ± 16 | 35 (7–184) | 19 (3.8–51) | 23 (10–120) | 21 (4–55) | 38 ± 14 | 12 ± 6 |
Ce | 66 | 56.7 | 37 (3.7–167) | 1.3–7.5 | 5.8 (4.3–7.9) | 52 ± 31 | 75 (16–454) | 42 (10–100) | 66 (2–140) | 58 (7–150) | 96 ± 38 | 23 ± 13 |
Pr | 9.1 | 7.0 | 4.3 (0.4–24) | 9.3–53 | 22 (16–29) | 6.3 ± 3.6 | n.a. | 4.8 (1.1–11) | 5.0 (2–31) | 4.1 (0.7–9.9) | 9.1 ± 3.4 | 2.6 ± 1.5 |
Nd | 40 | 26 | 16 (1.7–86) | 0.9–4.6 | 4.1 (3.1–5.8) | 22 ± 14 | 33 (7.6–62) | 22 (6–45) | 20 (8–120) | 15 (3–36) | 34 ± 13 | 9.9 ± 6.0 |
Sm | 7.0 | 4.6 | 3.0 (<0.2–15) | 0.2–0.8 | 0.9 (0.6–1.2) | 4.3 ± 2.6 | 5.6 (1.6–26) | 4.6 (1.4–9.7) | 4.1 (1.4–26) | 2.8 (0.4–5.9) | 6.9 ± 2.7 | 1.9 ± 1.0 |
Eu | 2.0 | 1.4 | 0.6 (0.06–2.3) | 1.0–4.8 | 3.7 (2.6–5.4) | 0.9 ± 0.5 | 1.1 (0.2–7.0) | 1.3 (0.7–2.2) | 1.2 (0.6–8.1) | 0.8 (0.2–1.3) | 1.6 ± 0.7 | 1.2 ± 0.3 |
Gd | 6.1 | 3.9 | 2.8 (0.24–13) | 0.15–0.65 | 0.5 (0.4–0.8) | 4.2 ± 2.7 | n.a. | 4.7 (1.6–9.5) | 3.7 (1.4–22) | 2.1 (0.5–5.9) | 5.7 ± 2.3 | 1.7 ± 0.7 |
Tb | 1.2 | 0.63 | 0.4 (<0.05–2.0) | 0.90–3.76 | n.a. | 0.6 ± 0.4 | 0.77 (0.2–2.7) | 0.8 (0.3–1.4) | 0.7 (0.3–3.0) | 0.4 (0.1–1.0) | 1.0 ± 0.4 | 0.3 ± 0.1 |
Dy | 4.5 | 3.6 | 2.3 (0.24–10) | 0.20–0.74 | 0.5 (0.3–0.7) | 3.6 ± 2.4 | n.a. | 4.5 (1.7–9.4) | 3.3 (1.4–15) | 1.5 (0.5–5.0) | 5.7 ± 2.2 | 2.5 ± 0.9 |
Ho | 1.3 | 0.72 | 0.4 (0.05–2.0) | 0.63–2.2 | 1.3 (0.9–2.0) | 0.7 ± 0.5 | n.a. | 0.8 (0.4–1.7) | 0.6 (0.3–2.4) | 0.3 (0.1–0.9) | 1.1 ± 0.3 | 0.7 ± 0.4 |
Er | 4.9 | 2.2 | 1.3 (<0.15–5.0) | 0.09–0.33 | n.a. | 2.1 ± 1.4 | n.a. | 2.5 (1.1–5.9) | 1.7 (0.8–5.7) | 1.0 (0.4–2.9) | 3.2 ± 1.1 | 1.9 ± 1.4 |
Tm | 0.4 | 0.37 | 0.2 (<0.05–1.0) | 0.60–2.3 | n.a. | 0.3 ± 0.2 | n.a. | 0.3 (0.2–1.1) | 0.3 (0.1–0.7) | 0.2 (0.1–0.4) | 0.5 ± 0.2 | 0.4 ± 0.3 |
Yb | 3.1 | 2.6 | n.a. | 0.09–0.34 | 0.2 (0.1–0.3) | 2.1 ± 1.3 | 2.6 (0.7–8.5) | 2.3 (1.1–6.3) | 1.7 (0.7–4.4) | 1.1 (0.5–2.7) | 3.4 ± 1.1 | 2.6 ± 2.2 |
Lu | 0.8 | 0.37 | 0.2 (<0.05–1.0) | 4.9–17.6 | n.a. | 0.3 ± 0.2 | 0.45 (0.1–1.2) | 0.4 (0.2–1.1) | 0.3 (0.1–0.6) | 0.2 (0.1–0.4) | 0.5 ± 0.2 | 0.4 ± 0.3 |
Bryophytes | Lichen | |||||
---|---|---|---|---|---|---|
Species | H. splendens | P. commune | P. formosum | Sphagnum spec. | H. physodes | |
Region | South Sweden 1 | Russia 2 | Germany 2 | Russia 2 | Germany 2 | Russia 2 |
Sc | n.a. | 27.9 | 25 | 37.7 | 36 | 196 |
Y | 120–134 | 91 | 250 | 230 | 590 | 580 |
La | 248–285 | 240 | 260 | 265 | 720 | 910 |
Ce | 466–519 | 260 | 510 | 440 | 1410 | 1870 |
Pr | 53–59 | 29 | 58 | 61 | 100 | 180 |
Nd | 373–431 | 95 | 220 | 20 | 600 | 580 |
Sm | 35–37 | 18 | 39 | 40 | 110 | 110 |
Eu | 93–105 | 9 | 8 | 10 | 13 | 30 |
Gd | 36–039 | 20 | 54 | 50 | 130 | 120 |
Tb | 4.7–5.2 | 3 | 11 | 9 | 26 | 22 |
Dy | 23.5–25.3 | 17 | 41 | 42 | 99 | 100 |
Ho | 4.5–4.9 | 3 | 11 | 8 | 25 | 20 |
Er | 12.7–13.7 | 10 | 28 | 25 | 66 | 62 |
Tm | 1.6–1.9 | 2 | 5 | 5 | 11 | 12 |
Yb | 10.1–12.0 | 10 | 27 | 24 | 65 | 62 |
Lu | 1.5–1.7 | 1 | 4 | 4 | 10 | 10 |
Amanita citrina | Hydnum repandum | Lactarius biennius | Clitocybe odora | Collybia butyracea | Collybia peronata | |
---|---|---|---|---|---|---|
Y | 1.6–4.7 | 1.3–1.6 | 2.2–2.5 | 2.8–5.6 | 1.7–2.1 | 4.8–7.6 |
La | 2.1–3.2 | 1.6–2.2 | 2.6–3.2 | 2.8–4.0 | 1.9–2.6 | 6.7–10.8 |
Ce | 4.1–5.2 | 2.8–3.6 | 5.0–6.2 | 4.5–6.7 | 3.6–4.9 | 12.7–20.0 |
Pr | 0.5–0.7 | 0.4–0.5 | 0.6–0.8 | 0.7–0.9 | 0.4–0.6 | 1.5–2.4 |
Nd | 3.7–4.3 | 2.3–3.5 | 4.2–5.5 | 5.0–6.3 | 3.5–5.0 | 10.9–18.5 |
Sm | 0.3–0.6 | 0.2–0.3 | 0.5–0.6 | 0.5–0.8 | 0.3–0.5 | 1.0–1.8 |
Eu | 0.1–0.2 | <0.1 | <0.1 | <0.1 | 0.1–0.2 | 0.3–0.5 |
Gd | 0.4–0.6 | 0.3 | 0.5–0.6 | 0.5–0.8 | 0.4–0.6 | 1.1–1.9 |
Tb | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Dy | 0.3–0.7 | 0.2–0.3 | 0.4–0.5 | 0.4–0.8 | 0.3–0.4 | 0.9–1.4 |
Ho | 0.1–0.2 | <0.1 | 0.1 | 0.1–0.2 | <0.1 | 0.2–0.3 |
Er | 0.2–0.3 | 0.1–0.2 | 0.2 | 0.1–0.2 | 0.1–0.2 | 0.5–0.8 |
Tm | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Yb | 0.2–0.3 | 0.1–0.2 | 0.2 | 0.2–0.4 | 0.3 | 0.4–0.8 |
Lu | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Fertilizer | La | Ce | Sm | Eu | Yb |
---|---|---|---|---|---|
N-only | <0.5–1.2 | <3 | <0.1 | <0.2 | <0.2 |
K-only | <0.5 | <3 | <0.1 | <0.2 | <0.2 |
Mg-only | <0.5–0.8 | <3 | <0.1 | <0.2 | <0.2 |
Ca-carbonates | 6.1–19.5 | 10.4–16.9 | 1.3–1.7 | 0.2–0.4 | 0.1–7.6 |
Mg-carbonates | 3.0–7.6 | 5–21.8 | 0.5–1.7 | 0.1–0.3 | 0.1–1.3 |
Fe-carbonatite | 27 | 51 | 1.3 | 0.3 | 0.2 |
Phosphorite | 74–147 | 104–142 | 20–63 | 3.2–65 | 0.1–34 |
Superphosphate | 18–1011 | 9–2240 | 145 | 0.3–30.3 | – |
P-fertilizers | 29–149 | 61–408 | 17–34 | 0.7–10.5 | 6.7–8.7 |
Product | Type | Unit | Y | La | Ce | Nd |
---|---|---|---|---|---|---|
Milk powder (Infant) | Informal market | µg/kg dw | <1 | <2 | 2 (<3–6) | <1 |
Formal market | 4 (<1–14) | 5 (<2–14) | 4 (<2–10) | 1.2 (<1–5) | ||
Milk powder (skimmed) | 2 (1–2) | 3 (3–6) | 9 (7–11) | 2 (1–2) | ||
Milk powder (full cream) | 2 (1–2) | 2 (<2–10) | <2 | 1.2 (<1–4) | ||
Cheese | Hard cheese | µg/kg fw | 0.3 (0.1–1.2) | 3.8 (0.8–60) | 0.5 (0.4–1.0) | n.a. |
Semi-hard cheese | 0.2 (0.1–1.3) | 2 (0.2–16) | 0.4 (0.4–0.8) | n.a. | ||
Soft cheese | <0.1 | 1.3 (0.2–17) | <0.4 | n.a. | ||
Curdled milk Cheese | 0.5 (0.1–5.6) | 2.6 (1.6–40) | 1.1 (0.5–2.5) | n.a. | ||
Processed cheese | 3.2 (0.6–7.1) | 7.7 (0.2–24) | 1.2 (0.4–4.1) | n.a. | ||
Cream cheese (cows) | 0.1 (0.1–1.3) | 2.4 (0.8–62) | <0.4 | n.a. | ||
Sheep + goat cheese | 0.1 (0.1–0.9) | 4.8 (0.5–29) | <0.4 | n.a. |
Infant Formulas 1 | Cow Milk 2 | Goat Milk 2 | Sheep Milk 2 | Soy Drink 2 | Apples 3 | Tomatoes 4 | |
---|---|---|---|---|---|---|---|
H2O (%) | 85.6 ± 2.2 | 86.7 ± 2.2 | 80.8 ± 2.9 | 88.5 ± 3.9 | 83.3 ± 2.4 | 93.3 ± 1.1 | |
Y | 5 (<1–14) | <1 (1–4) | n.a. | n.a. | n.a. | 3.4 (1.3–14) | <1 |
La | 4 (<2–9) | 2 (<2–19) | <2 (<2–23) | <2 | 9 (2–30) | 8.4 (1.2–58) | <4 |
Ce | 5 (<2–10) | 3 (<2–10) | <2 (<2–46) | <2 (<2–69) | 11 (5–59) | 9.1 (2–218) | <8 |
Pr | <1 (<1–1) | <1 (<1–8) | <1 (<1–5) | <1 (<1–7) | 2 (1–8) | 1.2 (0.2–25) | <1 |
Nd | 2 (<1–5) | <1 (<1–23) | <2 (<2–20) | <2 | 8 (2–30) | 4.9 (<1–88) | <5 |
Sm | <1 | 1 (<1–6) | 1 (<1–4) | <1 (<1–5) | 2 (1–6) | <2 (<2–5) | <2 |
Eu | 0.1 (0.1–0.2) | 0.1 (0.1–1.2) | <0.1 (<0.1–0.4) | <0.1 (<0.1–0.7) | 1.3 (0.3–1.8) | 0.5 (0.1–3.2) | <0.2 |
Gd | <1 (<1–1) | <1 | <1 (<1–1.5) | <1 (<1–2.9) | 4 (1.7–7.8) | 0.8 (0.2–12) | <1 |
Tb | <0.1 (<0.1–1) | <0.1 (<0.1–0.6 | < 0.1 | <0.1 | 0.6 (0.2–1.0) | <0.1 (0.1–2.4) | <0.2 |
Dy | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Ho | 0.1 (<0.1–0.3) | <0.1 (0.1–0.4) | <0.1 | <0.1 | 0.3 (<0.1–0.5) | 0.1 (<0.1–1.1) | < 0.1 |
Er | <0.3 | < 0.3 | <0.3 | <0.3(<0.3–0.7) | 2.1 (0.7–4.4) | 0.3 (<0.3–3.4) | < 0.3 |
Tm | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Yb | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Lu | <0.3 | <0.1 | <0.1 | <0.1 | 0.7 (<0.1–1.4) | < 0.1 (<0.1–0.5) | <0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sager, M.; Wiche, O. Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review. Environments 2024, 11, 24. https://doi.org/10.3390/environments11020024
Sager M, Wiche O. Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review. Environments. 2024; 11(2):24. https://doi.org/10.3390/environments11020024
Chicago/Turabian StyleSager, Manfred, and Oliver Wiche. 2024. "Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review" Environments 11, no. 2: 24. https://doi.org/10.3390/environments11020024
APA StyleSager, M., & Wiche, O. (2024). Rare Earth Elements (REE): Origins, Dispersion, and Environmental Implications—A Comprehensive Review. Environments, 11(2), 24. https://doi.org/10.3390/environments11020024