Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories
Abstract
:1. Introduction
2. Methods
2.1. Rationale
2.2. The Urban Biodiversity Index for Trees (UBI4T)
3. Results
3.1. Applicability Test in the City of Amsterdam
3.2. Policy Perspectives for the City of Barcelona
4. Discussion
4.1. A Multi-Scale and Multi-Frame Indicator to Monitor Adaptation to Extreme Atmospheric Events
4.2. Tree Species Diversity: A Way to Avert Maladaptation
4.3. Another Urban Stressor?—On the Criticality of Species Toxicity
4.4. On the Importance of In Situ Data
4.5. How Do Cities Perceive the Significance of Tree Inventories?
4.6. The Biodiversity Loss–Climate Change Nexus
4.7. Constraints
4.8. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genovese, D.; Candiloro, S.; D’Anna, A.; Dettori, M.; Restivo, V.; Amodio, E.; Casuccio, A. Urban sprawl and health: A review of the scientific literature. Environ. Res. Lett. 2023, 18, 083004. [Google Scholar] [CrossRef]
- Dearborn, D.C.; Kark, S. Motivations for conserving urban biodiversity. Biol. Conserv. 2010, 24, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Garrard, G.E.; Williams, N.S.; Mata, L.; Thomas, J.; Bekessy, S.A. Biodiversity sensitive urban design. Conserv. Lett. 2018, 11, e12411. [Google Scholar] [CrossRef]
- Cities and Biodiversity Outlook; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2012.
- Gilbert, O. The Ecology of Urban Habitats; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gillner, S.; Korn, S.; Hofmann, M.; Roloff, A. Contrasting strategies for tree species to cope with heat and dry conditions at urban sites. Urban Ecosyst. 2017, 20, 853–865. [Google Scholar] [CrossRef]
- Huang, L.; Wu, J.; Yan, L. Defining and measuring urban sustainability: A review of indicators. Landsc. Ecol. 2015, 30, 1175–1193. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Hiremath, R.B.; Balachandra, P.; Kumar, B.; Bansode, S.S.; Murali, J. Indicator-based urban sustainability—A review. Energy Sustain. Dev. 2013, 17, 555–563. [Google Scholar] [CrossRef]
- Frank, B.; Delano, D.; Caniglia, B.S. Urban systems: A socio-ecological system perspective. Sociol. Int. J. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Pintér, L.; Swanson, D.A.; Barr, J. Use of Indicators in Policy Analysis: Annotated Training Module Prepared for the World Bank Institute; IISD: Winnipeg, MB, Canada, 2014; Available online: https://policycommons.net/artifacts/615724/use-of-indicators-in-policy-analysis/1596317/ (accessed on 13 August 2023).
- Pereira, E.; Queiroz, C.; Pereira, H.M.; Vicente, L. Ecosystem services and human well-being: A participatory study in a mountain community in Portugal. Ecol. Soc. 2005, 10, 14. [Google Scholar] [CrossRef]
- Walpole, M.; Almond, R.E.; Besançon, C.; Butchart, S.H.; Campbell-Lendrum, D.; Carr, G.M.; Collen, B.; Collette, L.; Davidson, N.C.; Dulloo, E.; et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 2009, 325, 1503–1504. [Google Scholar] [CrossRef]
- Scholes, R.J.; Walters, M.; Turak, E.; Saarenmaa, H.; Heip, C.H.; Tuama, É.Ó.; Faith, D.P.; Mooney, H.A.; Ferrier, S.; Jongman, R.H.G.; et al. Building a global observing system for biodiversity. Curr. Opin. Environ. Sustain. 2012, 4, 139–146. [Google Scholar] [CrossRef]
- Chan, Y.K.; Kwan, C.C.A.; Shek, T.L.D. Quality of life in Hong Kong: The CUHK Hong Kong quality of life index. Soc. Indic. Res. 2005, 71, 259–289. [Google Scholar] [CrossRef]
- CBI. User’s Manual for the City Biodiversity Index. Secretariat of the Convention on Biological Diversity. 2012. Available online: https://www.cbd.int/ (accessed on 13 August 2023).
- European Environment Agency. Europe’s Environment: An Assessment of Assessments; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Wieldmann, T.; Barrett, J. A review of the ecological footprint indicator—Perceptions and methods. Sustainability 2010, 2, 1645–1693. [Google Scholar] [CrossRef]
- Ruf, K.; Gregor, M.; Davis, M.; Naumann, S.; McFarland, K. The European Urban Biodiversity Index (EUBI): A Composite Indicator for Biodiversity in Cities; ETC/BD Report to the EEA, ETC/BD Working paper N° B/2018; European Topic Centre on Biological Diversity c/o Muséum National d’Histoire Naturelle: Paris, France, 2018. [Google Scholar]
- Talberth, J.; Cobb, C.; Slattery, N. (Eds.) The Genuine Progress Indicator 2006: A Tool for Sustainable Development. Redefining Progress. The Nature of Economics. 2006. Available online: http://www.rprogress.org (accessed on 13 August 2023).
- Greasley, D.; Hanley, N.; Kunnas, J.; McLaughlin, E.; Oxley, L.; Warde, P. Testing genuine savings as a forward-looking indicator of future well-being over the (very) long-run. J. Environ. Econ. Manag. 2014, 67, 171–188. [Google Scholar] [CrossRef]
- The Happy Planet Index 2.0. New Economics Foundation, 21 June 2009. Available online: https://neweconomics.org/2009/06/happy-planet-index-2-0(accessed on 13 August 2023).
- Prescott-Allen, R. The Wellbeing of Nations: A Country-by-Country Index of Quality of Life and the Environment; Island Press: Washington, DC, USA; Covelo, CA, USA; London, UK, 2001. [Google Scholar]
- Uchiyama, Y.; Kohsaka, R. Indicators and Practices of Urban Biodiversity and Sustainability. In Sustainable Cities and Communities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 300–308. [Google Scholar]
- Hylander, K.; Greiser, C.; Christiansen, D.M.; Koelemeijer, I.A. Climate adaptation of biodiversity conservation in managed forest landscapes. Conserv. Biol. 2022, 36, e13847. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; MacKinnon, M.; Varshney, K.; Bakshi, N. Regenerative living cities and the urban climate–biodiversity–wellbeing nexus. Nat. Clim. Chang. 2022, 12, 601–604. [Google Scholar] [CrossRef]
- Wilby, R.L.; Perry, G.L. Climate change, biodiversity and the urban environment: A critical review based on London, UK. Prog. Phys. Geogr. 2006, 30, 73–98. [Google Scholar] [CrossRef]
- Butt, N.; Shanahan, D.F.; Shumway, N.; Bekessy, S.A.; Fuller, R.A.; Watson, J.E.; Maggini, R.; Hole, D.G. Opportunities for biodiversity conservation as cities adapt to climate change. Geo Geogr. Environ. 2018, 5, e00052. [Google Scholar] [CrossRef]
- National Research Council. Adapting to the Impacts of Climate Change; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Convention of Biological Diversity. Climate Change and Biodiversity. Available online: https://www.cbd.int/climate (accessed on 13 August 2023).
- United Nations Framework on Climate Change. Biodiversity—Our Strongest Natural Defense against Climate Change. Available online: https://www.un.org/en/climatechange/science/climate-issues/biodiversity (accessed on 13 August 2023).
- Pierce, J.R.; Barton, M.A.; Tan, M.M.J.; Oertel, G.; Halder, M.D.; Lopez-Guijosa, P.A.; Nuttall, R. Actions, indicators, and outputs in urban biodiversity plans: A multinational analysis of city practice. PLoS ONE 2020, 15, e0235773. [Google Scholar] [CrossRef] [PubMed]
- Hermy, M.; Cornelis, J. Towards a monitoring method and a number of multifaceted and hierarchical biodiversity indicators for urban and suburban parks. Landsc. Urban Plan. 2000, 49, 149–162. [Google Scholar] [CrossRef]
- Report of the AHTEG on Indicators for the Strategic Plan for Biodiversity 2011–2020; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2011.
- Pereira, H.M.; Cooper, H.D. Towards the global monitoring of biodiversity change. Trends Ecol. Evol. 2006, 2, 123–129. [Google Scholar] [CrossRef]
- Van den Hove, S. A rationale for science–policy interfaces. Futures 2007, 39, 807–826. [Google Scholar] [CrossRef]
- Pascual, U.; McElwee, P.D.; Diamond, S.E.; Ngo, H.T.; Bai, X.; Cheung, W.W.; Lim, Μ.; Steiner, N.; Agard, J.; Donatti, C.I.; et al. Governing for transformative change across the biodiversity–climate–society nexus. BioScience 2022, 72, 684–704. [Google Scholar] [CrossRef]
- Watson, J.E.; Rao, M.; Ai-Li, K.; Yan, X. Climate change adaptation planning for biodiversity conservation: A review. Adv. Clim. Chang. Res. 2012, 3, 1–11. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Adaptation in Europe: How Cities and Towns Respond to Climate Change; Report No. 12; European Environment Agency: Copenhagen, Denmark, 2020; Available online: https://www.eea.europa.eu/publications/urban-adaptation-in-europe (accessed on 13 August 2023).
- Boland, B.; Charchenko, E.; Knupfer, S.; Sahdev, S.; Farhad, N.; Garg, S.; Huxley, R. Focused Adaptation: A Strategic Approach to Climate Adaptation in Cities; C40 Cities and McKinsey Sustainability: New York, NY, USA, 2021. [Google Scholar]
- Abella, S.; Fisichelli, N.A.; Schmid, S.M.; Embrey, T.M.; Hughson, D.; Cipra, J. Status and management of non-native plant invasion in three of the largest national parks in the United States. Nat. Conserv. 2015, 10, 71–79. [Google Scholar] [CrossRef]
- Invasive Alien Plant Species, Habitat Types Important for Pollinators, and the Possible Risks in the European Union; Technical Report No. 2; European Topic Centre on Biological Diversity c/o Muséum National d’Histoire Naturelle: Paris, France, 2021.
- Pérez, G.; Vila, M.; Gallardo, B. Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosyst. Serv. 2022, 56, 101459. [Google Scholar] [CrossRef]
- Garland, T.; Barr, A.C. (Eds.) Toxic Plants and Other Natural Toxicants; CABI: Wallingford, UK, 1998. [Google Scholar]
- Currie, J.; Davis, L.; Greenstone, M.; Walker, R. Environmental health risks and housing values: Evidence from 1600 toxic plant openings and closings. Am. Econ. Rev. 2015, 105, 678–709. [Google Scholar] [CrossRef]
- Serrano, R. Toxic plants: Knowledge, medicinal uses and potential human health risks. Environ. Ecol. Res 2018, 6, 487–492. [Google Scholar] [CrossRef]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Oduor, A.M. Evolutionary responses of native plant species to invasive plants: A review. New Phytol. 2013, 200, 986–992. [Google Scholar] [CrossRef]
- Colombo, M.L.; Assisi, F.; Della Puppa, T.; Moro, P.; Sesana, F.M.; Bissoli, M.; Borghini, R.; Perego, S.; Galasso, G.; Banfi, E.; et al. Most commonly plant exposures and intoxications from outdoor toxic plants. J. Pharm. Sci. Res. 2010, 2, 417. [Google Scholar]
- Dearing, M.D.; Orr, T.J.; Klure, D.M.; Greenhalgh, R.; Weinstein, S.B.; Stapleton, T.E.; Yamada, K.Y.H.; Nelson, M.D.; Doolin, M.L.; Nielsen, D.P.; et al. Toxin tolerance across landscapes: Ecological exposure not a prerequisite. Funct. Ecol. 2022, 36, 2119–2131. [Google Scholar] [CrossRef]
- Dümpelmann, S. Urban trees in times of crisis: Palliatives, mitigators, and resources. One Earth 2020, 2, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Meza Prado, K.A.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.; Kroeger, T.; Boucher, T.; Longzhu, W.; Salem, R.; Adams, J.; Bassett, S.; Edgecomb, M.; Garg, S. Planting Healthy Air: A Global Analysis of the Role of Urban Trees in Addressing Particulate Matter Pollution and Extreme Heat; The Nature Conservancy: Arlington, USA, VA, 2016. [Google Scholar]
- McPherson, E.G.; Kendall, A. A life cycle carbon dioxide inventory of the Million Trees Los Angeles program. Int. J. Life Cycle Assess. 2014, 19, 1653–1665. [Google Scholar] [CrossRef]
- Lehmann, S. Growing biodiverse urban futures: Renaturalization and rewilding as strategies to strengthen urban resilience. Sustainability 2021, 13, 2932. [Google Scholar] [CrossRef]
- Staddon, C.; Ward, S.; De Vito, L.; Zuniga-Teran, A.; Gerlak, A.K.; Schoeman, Y.; Hart, A.; Booth, G. Contributions of green infrastructure to enhancing urban resilience. Environ. Syst. Decis. 2018, 38, 330–338. [Google Scholar] [CrossRef]
- Pamukcu-Albers, P.; Ugolini, F.; La Rosa, D.; Grădinaru, S.R.; Azevedo, J.C.; Wu, J. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Mincey, S.K.; Montoya, R.D.; Hamlin, S.; Sullivan, A.; Thapa, B.; Wilson, J.; Rosing, H.; Jarzen, J.; Grove, M. Green infrastructure for urban resilience: A trait-based framework. Front. Ecol. Environ. 2022, 20, 231–239. [Google Scholar] [CrossRef]
- Werner, P.; Zahner, R. Biodiversity and Cities. A Review and Bibliography; BfN-Skripten: Bonn, Germany, 2009; p. 245. [Google Scholar]
- Collins, S.L.; Glenn, S.M.; Briggs, J.M. Effect of local and regional processes on plant species richness in tallgrass prairie. Oikos 2002, 99, 571–579. [Google Scholar] [CrossRef]
- Parra-Tabla, V.; Arceo-Gómez, G. Impacts of plant invasions in native plant–pollinator networks. New Phytol. 2021, 230, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.M.; Cochran, C.; Chapman, J.; Gilland, K. Plant community development following restoration treatments on a legacy reclaimed mine site. Ecol. Eng. 2015, 83, 521–528. [Google Scholar] [CrossRef]
- Krigas, N.; Tsiafouli, M.A.; Katsoulis, G.; Votsi, N.E.; van Kleunen, M. Investigating the invasion pattern of the alien plant Solanum elaeagnifolium Cav. (silverleaf nightshade): Environmental and human-induced drivers. Plants 2021, 10, 805. [Google Scholar] [CrossRef]
- Raj, D.; Maiti, S.K. Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: A case study from a thermal power plant, Chandrapura, India. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 649–665. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez-Larrañaga, M.R.; Ares, I.; Martínez, M.A. Chapter 62—Poisonous Plants of the Europe. In Veterinary Toxicology, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 891–909. [Google Scholar]
- Soga, M.; Gaston, K.J. Extinction of experience: The loss of human-nature interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef]
- Giménez, N.; Magro, N.; Cortés, N.; Guitart, R. Poisoning after Ingestion of Spartium junceum Seeds: Dose-Dependent Effects in Three Boys. Int. J. Emerg. Med. 2017, 53, e41–e44. [Google Scholar] [CrossRef]
- Mirakbari, S.M.; Shirazi, M.H. Poisoning with Tasty and Sweet Seed Pods of Bird of Paradise Plant Caesalpinia gilliessii. Wilderness Environ. Med. 2019, 30, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, D.; Orozco, J.P.; Mirón, C.; Real, T.; Hernández-Moreno, D.; Soler, F.; Pérez-López, M. Chinaberry Tree (Melia azedarach) Poisoning in Dog: A Case Report. Top. Companion Anim. Med. 2010, 25, 64–67. [Google Scholar] [CrossRef]
- Konca, C.; Kahramaner, Z.; Bosnak, M.; Kocamaz, H. Hemlock (Conium maculatum) Poisoning in A Child. Turk. J. Emerg. Med. 2014, 14, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Gault, G.; Berny, P.; Lorgue, G. Plantes toxiques pour les animaux de compagnie. Rev. Med. Vet. 1995, 171, 171–176. [Google Scholar]
- Schwartz, K.R.; Parsons, E.C.M.; Rockwood, L.; Wood, T.C. Integrating in-situ and ex-situ data management processes for biodiversity conservation. Front. Ecol. Evol. 2017, 5, 120. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Quintans, D.; Rymer, P.D. Urban tree inventories as a tool to assess tree growth and failure: The case for Australian cities. Landsc. Urban Plan. 2023, 233, 104705. [Google Scholar] [CrossRef]
- Östberg, J. Tree Inventories in the Urban Environment. Ph.D. Thesis, Faculty of Landscape Planning, Horticulture and Agricultural Science, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2013. [Google Scholar]
- Solecki, W.; Marcotullio, P.J. Climate Change and Urban Biodiversity Vulnerability. In Climate change and Urban Biodiversity Vulnerability. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Berlin/Heidelberg, Germany, 2013; pp. 485–504. [Google Scholar]
Indicator Name (Source) | Frame | Purpose and Use | Biodiversity Dimension |
---|---|---|---|
Genuine Progress Indicator [20] | 20 separate environmental, economic, and social indices. | Sustainable development | Loss of wetlands, farmland, primary forests and damage from logging roads |
Genuine Saving [21] | Computation of various factors of economic development (e.g., produced assets, natural resources, environmental quality, human resources, and foreign assets). | Sustainable development | Forestry |
Happy Planet Index [22] | Ratio of happy life years (happiness adjusted to life expectancy) to environmental impact (measured by the Ecological Footprint). | Ecological efficiency of human well-being | Ecological footprint |
Wellbeing Index [23] | The Wellbeing Index (WI) combines the Human Wellbeing Index (HWI) and the Ecosystem Wellbeing Index (EWI) on the Barometer of Sustainability, a graphic scale that shows how far each country is from the goal of high levels of human and ecosystem wellbeing. | Sustainable development | Ecosystem status, impacts on humans, improvements |
City Sustainability Index [24] | Sustainability range (from weak to strong). | Sustainable development | Ecosystems and ecosystem services |
Contributor/User | Number of Frames | Percentage of Contribution (%) |
---|---|---|
International Organizations | 69 | 50.0 |
Governmental Organizations | 27 | 19.6 |
Projects | 9 | 6.5 |
Academia (University and Research Centers) | 14 | 10.1 |
Individuals | 19 | 13.8 |
First Dataset | 70,000 Trees with 591 Species (865—1.2% Excluded) |
---|---|
Native | 37,307 (54%) trees with 72 species (12.2%) |
Alien | 31,828 (46%) trees with 519 species (87.8%) |
Invasive | 846 (2.6%) trees with 2 species (1.2%) |
Toxic | 17,462 (25.3%) trees with 134 species (22. 7%) |
Administrative Unit Code | Number of Native Trees—Species (N) | Number of Alien Trees—Species (A) | Number of Invasive Trees—Species (I) | Number of Toxic Native Trees | Number of Toxic Alien Trees | Number of Toxic Total Trees—Species (T) | UBI4T1 (N/A) | UBI4T2 (I/A) | UBI4T3 (T/A) |
---|---|---|---|---|---|---|---|---|---|
GE03 | 27-4 | 57-5 | 0-0 | 1-1 | 4-1 | 5-2 | 0.47 | 0.00 | 0.09 |
GE04 | 9-6 | 66-12 | 6-1 | 3-2 | 39-2 | 42-4 | 0.14 | 0.09 | 0.64 |
GE05 | 13-4 | 11-8 | 0-0 | 2-2 | 1-1 | 3-3 | 1.18 | 0.00 | 0.27 |
GK11 | 2193-21 | 3530-106 | 233-2 | 385-3 | 542-22 | 927-25 | 0.62 | 0.07 | 0.26 |
GK12 | 12,315-30 | 7295-229 | 98-2 | 3975-5 | 1171-62 | 5146-67 | 1.69 | 0.01 | 0.71 |
GK13 | 1983-24 | 3196-102 | 51-2 | 416-3 | 377-24 | 793-27 | 0.62 | 0.02 | 0.25 |
GM14 | 7-4 | 5-5 | 1-1 | 1-1 | 1-1 | 2-2 | 1.40 | 0.20 | 0.40 |
GM15 | 8-6 | 47-9 | 0-0 | 0-0 | 0-0 | 0-0 | 0.17 | 0.00 | 0.00 |
GM16 | 1047-29 | 1596-331 | 7-4 | 254-8 | 332-71 | 586-79 | 0.66 | 0.00 | 0.37 |
GM17 | 2-2 | 13-7 | 0-0 | 1-1 | 1-1 | 2-2 | 0.15 | 0.00 | 0.15 |
GS25 | 684-10 | 166-42 | 7-1 | 336-3 | 19-8 | 355-11 | 4.12 | 0.04 | 2.14 |
GT21 | 1528-11 | 1222-23 | 0-0 | 888-3 | 36-3 | 924-6 | 1.25 | 0.00 | 0.76 |
GT22 | 4035-20 | 3020-86 | 101-2 | 1454-6 | 556-18 | 2010-24 | 1.34 | 0.03 | 0.67 |
GT23 | 6535-21 | 4516-110 | 210-2 | 2538-4 | 687-22 | 3225-26 | 1.45 | 0.05 | 0.71 |
GT24 | 5442-22 | 6626-128 | 132-2 | 1988-5 | 979-31 | 2967-36 | 0.82 | 0.02 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Votsi, N.-E.; Speyer, O.; Michailidou, D.-E.; Koukoulis, A.; Chatzidiakos, C.; Vandecasteele, I.; Photiadou, C.; Iglesias, J.M.R.; Aurambout, J.-P.; Gerasopoulos, E. Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories. Environments 2024, 11, 144. https://doi.org/10.3390/environments11070144
Votsi N-E, Speyer O, Michailidou D-E, Koukoulis A, Chatzidiakos C, Vandecasteele I, Photiadou C, Iglesias JMR, Aurambout J-P, Gerasopoulos E. Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories. Environments. 2024; 11(7):144. https://doi.org/10.3390/environments11070144
Chicago/Turabian StyleVotsi, Nefta-Eleftheria, Orestis Speyer, Danai-Eleni Michailidou, Athanasios Koukoulis, Charalampos Chatzidiakos, Ine Vandecasteele, Christiana Photiadou, Jose Miguel Rubio Iglesias, Jean-Philippe Aurambout, and Evangelos Gerasopoulos. 2024. "Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories" Environments 11, no. 7: 144. https://doi.org/10.3390/environments11070144