Using Indoor and Outdoor Measurements to Understand Building Protectiveness against Wildfire, Atmospheric Inversion, and Firework PM2.5 Pollution Events
Abstract
:1. Introduction
- 1.
- Are all indoor areas in buildings equally protective from outdoor pollution events?
- 2.
- Are indoor environments protective across a range of extreme pollution events?
- 3.
- Are the impacts of local versus distant wildfire PM2.5 pollution the same for indoor air quality?
2. Materials and Methods
2.1. Study Period and Location
2.2. Equipment
2.3. Identifying Elevated Air Pollution Events
- 4 July 2020: Fireworks—Provo hosted the largest fireworks event in its history.
- 27 December 2020–4 January 2021: Wintertime PCAP or inversion.
2.3.1. Satellite and Source Imagery
2.3.2. STILT Modeling
2.4. Statistical Analysis
3. Results
3.1. Time Series Results
3.2. Elevated Pollution Events
3.3. Indoor Air Quality Comparison
4. Discussion
4.1. Study Outcomes
4.2. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Color | PM2.5 (µg/m3) | Level of Concern | AQI Range | Description of Air Quality |
---|---|---|---|---|
Green | 0.0–12.0 | Good | 0 to 50 | Air quality is satisfactory, and air pollution poses little or no risk. |
Yellow | 12.1–35.4 | Moderate | 51 to 100 | Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution. |
Orange | 35.5–55.4 | Unhealthy for Sensitive Groups | 101 to 150 | Members of sensitive groups may experience health effects. The general public is less likely to be affected. |
Red | 55.5–150.4 | Unhealthy | 151 to 200 | Some members of the general public may experience health effects; members of sensitive groups may experience serious health effects. |
Purple | 150.5–250.4 | Very Unhealthy | 201 to 300 | Health alert: The risk of health effects is increased for everyone. |
Maroon | 250.5+ | Hazardous | 301 and higher | Health warning of emergency conditions: Everyone is more likely to be affected. |
References
- Morawska, L.; Zhu, T.; Liu, N.; Torkmahalleh, M.A.; de Fatima Andrade, M.; Barratt, B.; Broomandi, P.; Buonanno, G.; Ceron, L.C.B.; Chen, J. The state of science on severe air pollution episodes: Quantitative and qualitative analysis. Environ. Int. 2021, 156, 106732. [Google Scholar] [CrossRef] [PubMed]
- Shaddick, G.; Thomas, M.; Mudu, P.; Ruggeri, G.; Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Clim. Atmos. Sci. 2020, 3, 23. [Google Scholar] [CrossRef]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Martin, J.; Kraakman, N.; Perez, C.; Lebrero, R.; Munoz, R. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2020, 262, 128376. [Google Scholar] [CrossRef]
- Kaewrat, J.; Janta, R.; Sichum, S.; Kanabkaew, T. Indoor Air Quality and Human Health Risk Assessment in the Open-Air Classroom. Sustainability 2021, 13, 8302. [Google Scholar] [CrossRef]
- Pirouz, B.; Palermo, S.A.; Naghib, S.N.; Mazzeo, D.; Turco, M.; Piro, P. The Role of HVAC Design and Windows on the Indoor Airflow Pattern and ACH. Sustainability 2021, 13, 7931. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Boll, S. Long-term analysis of the relationships between indoor and outdoor fine particulate pollution: A case study using research grade sensors. Sci. Total Environ. 2021, 776, 145778. [Google Scholar] [CrossRef]
- Liang, Y.; Sengupta, D.; Campmier, M.J.; Lunderberg, D.M.; Apte, J.S.; Goldstein, A.H. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. USA 2021, 118, e2106478118. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Turpin, B.J.; Korn, L.; Weisel, C.P.; Morandi, M.; Colome, S.; Zhang, J.; Stock, T.; Spektor, D.; Winer, A. Influence of ambient (outdoor) sources on residential indoor and personal PM2. 5 concentrations: Analyses of RIOPA data. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 17–28. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Jones, P.J.; Reisen, F.; Melody, S.M.; Williamson, G.; Strandberg, B.; Hinwood, A.; Almerud, P.; Blizzard, L.; Chappell, K. Roof cavity dust as an exposure proxy for extreme air pollution events. Chemosphere 2020, 244, 125537. [Google Scholar] [CrossRef] [PubMed]
- Hagan, D.H.; Kroll, J.H. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 2020, 13, 6343–6355. [Google Scholar] [CrossRef]
- Molina Rueda, E.; Carter, E.; L’Orange, C.; Quinn, C.; Volckens, J. Size-Resolved Field Performance of Low-Cost Sensors for Particulate Matter Air Pollution. Environ. Sci. Technol. Lett. 2023, 10, 247–253. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Holder, A.L.; Frederick, S.G.; Clements, A.L. Correction and Accuracy of PurpleAir PM2. 5 Measurements for Extreme Wildfire Smoke. Sensors 2022, 22, 9669. [Google Scholar] [CrossRef]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2. 5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, D.; Cisneros, R.; Shaw, G. A comparative analysis of temporary and permanent beta attenuation monitors: The importance of understanding data and equipment limitations when creating PM2. 5 air quality health advisories. Atmos. Pollut. Res. 2016, 7, 865–875. [Google Scholar] [CrossRef]
- Di, Q.; Dai, L.; Wang, Y.; Zanobetti, A.; Choirat, C.; Schwartz, J.D.; Dominici, F. Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA 2017, 318, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.L.; Pirozzi, C.S.; Crosman, E.T.; Liou, T.G.; Zhang, Y.; Cleeves, J.J.; Bannister, S.C.; Anderegg, W.R.; Paine, R., III. Impact of low-level fine particulate matter and ozone exposure on absences in K-12 students and economic consequences. Environ. Res. Lett. 2020, 15, 114052. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Muhlestein, J.B.; Anderson, J.L.; Cannon, J.B.; Hales, N.M.; Meredith, K.G.; Le, V.; Horne, B.D. Short-term exposure to fine particulate matter air pollution is preferentially associated with the risk of ST-segment elevation acute coronary events. J. Am. Heart Assoc. 2015, 4, e002506. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Austin, E.; Xiang, J.; Gould, T.; Larson, T.; Seto, E. Health impact assessment of the 2020 Washington State wildfire smoke episode: Excess health burden attributable to increased PM2.5 exposures and potential exposure reductions. GeoHealth 2021, 5, e2020GH000359. [Google Scholar] [CrossRef]
- Balmes, J.R. The Changing Nature of Wildfires: Impacts on the Health of the Public. Clin. Chest Med. 2020, 41, 771–776. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Abukhalaf, A.A.; Alomar, A.A.; Alessa, O.M.; Sami, W.; Klonoff, D.C. Effect of environmental pollutants PM2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. Sci. Total Environ. 2021, 757, 143948. [Google Scholar] [CrossRef]
- Zhou, X.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789. [Google Scholar] [CrossRef]
- Black, C.; Tesfaigzi, Y.; Bassein, J.A.; Miller, L.A. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 2017, 55, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Zhao, D.; Stephens, B. Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Atmos. Environ. 2014, 98, 337–346. [Google Scholar] [CrossRef]
- Lin, C.-C. A review of the impact of fireworks on particulate matter in ambient air. J. Air Waste Manag. Assoc. 2016, 66, 1171–1182. [Google Scholar] [CrossRef]
- Mousavi, A.; Yuan, Y.; Masri, S.; Barta, G.; Wu, J. Impact of 4th of July Fireworks on Spatiotemporal PM2. 5 Concentrations in California Based on the PurpleAir Sensor Network: Implications for Policy and Environmental Justice. Int. J. Environ. Res. Public Health 2021, 18, 5735. [Google Scholar] [CrossRef]
- Rindelaub, J.D.; Davy, P.K.; Talbot, N.; Pattinson, W.; Miskelly, G.M. The contribution of commercial fireworks to both local and personal air quality in Auckland, New Zealand. Environ. Sci. Pollut. Res. 2021, 28, 21650–21660. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Cooper, O.R.; Fiore, A.M.; Henderson, B.H.; Tonnesen, G.S.; Russell, A.G.; Henze, D.K.; Langford, A.O.; Lin, M.; Moore, T. Scientific assessment of background ozone over the US: Implications for air quality management. Elem. Sci. Anthr. 2018, 6, 56. [Google Scholar] [CrossRef]
- Yu, P.; Toon, O.B.; Bardeen, C.G.; Zhu, Y.; Rosenlof, K.H.; Portmann, R.W.; Thornberry, T.D.; Gao, R.-S.; Davis, S.M.; Wolf, E.T.; et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science 2019, 365, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Miño, L.; Taboada-Montoya, R. Effects of climate change on Public Health 2015–2020. A systematic review. Rev. Esp. Salud Publica 2021, 95, e202103042. [Google Scholar]
- Mendoza, D.L.; Benney, T.M.; Bares, R.; Fasoli, B.; Anderson, C.; Gonzales, S.A.; Crosman, E.T.; Hoch, S. Investigation of Indoor and Outdoor Fine Particulate Matter Concentrations in Schools in Salt Lake City, Utah. Pollutants 2022, 2, 82–97. [Google Scholar] [CrossRef]
- Junghenn Noyes, K.; Kahn, R.; Sedlacek, A.; Kleinman, L.; Limbacher, J.; Li, Z. Wildfire smoke particle properties and evolution, from space-based multi-angle imaging. Remote Sens. 2020, 12, 769. [Google Scholar] [CrossRef]
- SCHäFER, K.; Elsasser, M.; Arteaga-Salas, J.M.; Gu, J.; Pitz, M.; Schnelle-Kreis, J.; Cyrys, J.; Emeis, S.; Prevot, A.S.; Zimmermann, R. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time. Meteorol. Z. 2016, 25, 267–279. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef] [PubMed]
- Horel, J.; Crosman, E.T.; Jacques, A.; Blaylock, B.; Arens, S.; Long, A.; Sohl, J.; Martin, R. Summer ozone concentrations in the vicinity of the Great Salt Lake. Atmos. Sci. Lett. 2016, 17, 480–486. [Google Scholar] [CrossRef]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Balmes, J.R. Where There’s Wildfire, There’s Smoke. N. Engl. J. Med. 2018, 378, 881–883. [Google Scholar] [CrossRef]
- United States Census Bureau. State & County QuickFacts; United States Census Bureau: Suitland, MD, USA. Available online: https://www.census.gov/quickfacts/fact/table/provocityutah,US/INC110219 (accessed on 24 August 2021).
- Google. Utah State Hospital in Provo; Google: Mountain View, CA, USA, 2021. [Google Scholar]
- United States Geological Survey. Elevation Point Query Service; United States Geological Survey: Reston, VA, USA, 2024. [Google Scholar]
- Li, Y. Variable frequency drive applications in HVAC systems. New Appl. Electr. Drives 2015, 167–185. [Google Scholar]
- Mendoza, D.L.; Crosman, E.T.; Mitchell, L.E.; Jacques, A.; Fasoli, B.; Park, A.M.; Lin, J.C.; Horel, J. The TRAX Light-Rail Train Air Quality Observation Project. Urban Sci. 2019, 3, 108. [Google Scholar] [CrossRef]
- Bulot, F.M.J.; Russell, H.S.; Rezaei, M.; Johnson, M.S.; Ossont, S.J.J.; Morris, A.K.R.; Basford, P.J.; Easton, N.H.C.; Foster, G.L.; Loxham, M. Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution. Sensors 2020, 20, 2219. [Google Scholar] [CrossRef]
- Met One Instruments Inc. ES-642 Dust Monitor Operation Manual; Met One Instruments Inc.: Grants Pass, OR, USA, 2013. [Google Scholar]
- United States Environmental Protection Agency. Air Quality Index (AQI) Basics. Available online: https://www.airnow.gov/aqi/aqi-basics/ (accessed on 12 December 2023).
- Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B.A.; Koutrakis, P.; Melly, S.J.; Schwartz, J.D. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2016, 124, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.; Saldiva, P.H.; Lavigne, E.; Matus, P. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Silcox, G.D.; Kelly, K.E.; Crosman, E.T.; Whiteman, C.D.; Allen, B.L. Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley. Atmos. Environ. 2012, 46, 17–24. [Google Scholar] [CrossRef]
- Lin, J.C.; Gerbig, C.; Wofsy, S.C.; Andrews, A.E.; Daube, B.C.; Davis, K.J.; Grainger, C.A. A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Fasoli, B.; Lin, J.C.; Bowling, D.R.; Mitchell, L.; Mendoza, D. Simulating atmospheric tracer concentrations for spatially distributed receptors: Updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2). Geosci. Model Dev. 2018, 11, 2813–2824. [Google Scholar] [CrossRef]
- Loughner, C.P.; Fasoli, B.; Stein, A.F.; Lin, J.C. Incorporating Features from the Stochastic Time-Inverted Lagrangian Transport (STILT) Model into the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model: A Unified Dispersion Model for Time-Forward and Time-Reversed Applications. J. Appl. Meteorol. Climatol. 2021, 60, 799–810. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A. A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- Koster, R.D.; Darmenov, A.S.; da Silva, A.M. The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4; Technical Report Series on Global Modeling and Data Assimilation; Goddard Space Flight Center, NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2015; Volume 38. [Google Scholar]
- Mallia, D.V.; Kochanski, A.K.; Urbanski, S.P.; Lin, J.C. Optimizing smoke and plume rise modeling approaches at local scales. Atmosphere 2018, 9, 166. [Google Scholar] [CrossRef]
- Mallia, D.V.; Lin, J.C.; Urbanski, S.; Ehleringer, J.; Nehrkorn, T. Impacts of upwind wildfire emissions on CO, CO2, and PM2.5 concentrations in Salt Lake City, Utah. J. Geophys. Res. Atmos. 2015, 120, 147–166. [Google Scholar] [CrossRef]
- Dowell, D.C.; Alexander, C.R.; James, E.P.; Weygandt, S.S.; Benjamin, S.G.; Manikin, G.S.; Blake, B.T.; Brown, J.M.; Olson, J.B.; Hu, M. The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description. Weather. Forecast. 2022, 37, 1371–1395. [Google Scholar] [CrossRef]
- Kelly, J.T.; Koplitz, S.N.; Baker, K.R.; Holder, A.L.; Pye, H.O.; Murphy, B.N.; Bash, J.O.; Henderson, B.H.; Possiel, N.C.; Simon, H. Assessing PM2.5 model performance for the conterminous US with comparison to model performance statistics from 2007–2015. Atmos. Environ. 2019, 214, 116872. [Google Scholar] [CrossRef] [PubMed]
- Avery, A.M.; Waring, M.S.; DeCarlo, P.F. Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environ. Sci. Process. Impacts 2019, 21, 528–547. [Google Scholar] [CrossRef] [PubMed]
- Kuprov, R.; Eatough, D.J.; Cruickshank, T.; Olson, N.; Cropper, P.M.; Hansen, J.C. Composition and secondary formation of fine particulate matter in the Salt Lake Valley: Winter 2009. J. Air Waste Manag. Assoc. 2014, 64, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Wang, N.; Ma, S.; Su, F.; Zhang, R. Formation of droplet-mode secondary inorganic aerosol dominated the increased PM2.5 during both local and transport haze episodes in Zhengzhou, China. Chemosphere 2021, 269, 128744. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, A.J., III; Lewis, E.R.; Onasch, T.B.; Zuidema, P.; Redemann, J.; Jaffe, D.; Kleinman, L.I. Using the black carbon particle mixing state to characterize the lifecycle of biomass burning aerosols. Environ. Sci. Technol. 2022, 56, 14315–14325. [Google Scholar] [CrossRef]
- Okoshi, R.; Rasheed, A.; Reddy, G.C.; McCrowey, C.J.; Curtis, D.B. Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires. Atmos. Environ. 2014, 89, 392–402. [Google Scholar] [CrossRef]
- Mullen, C.; Grineski, S.E.; Collins, T.W.; Mendoza, D.L. Effects of PM2.5 on Third Grade Students’ Proficiency in Math and English Language Arts. Int. J. Environ. Res. Public Health 2020, 17, 6931. [Google Scholar] [CrossRef]
- Tang, C.-S.; Wan, G.-H. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan. PLoS ONE 2013, 8, e61093. [Google Scholar] [CrossRef] [PubMed]
- Afful, A.E.; Osei Assibey Antwi, A.D.D.; Ayarkwa, J.; Acquah, G.K.K. Impact of improved indoor environment on recovery from COVID-19 infections: A review of literature. Facilities 2022, 40, 719–736. [Google Scholar] [CrossRef]
Event | Mean Out (µg/m3) | Mean Dorm µg/m3 (% Out) | Mean Daycare µg/m3 (% Out) | p-Value | t-Statistic | CI Low, High |
---|---|---|---|---|---|---|
Complex Wildfire | 21.71 | 15.18 (70%) | 13.52 (62%) | 1.24 × 10−45 | 14.25 | 1.43, 1.89 |
Ether Wildfire | 20.80 | 13.64 (66%) | 14.17 (68%) | 0.000 | −5.581 | −0.72, −0.34 |
4 July Fireworks | 32.68 | 17.16 (53%) | 18.99 (58%) | 0.001 | −3.208 | −2.95, −0.71 |
Inversion | 18.07 | 3.99 (22%) | 2.30 (13%) | 0.000 | 53.69 | 1.62, 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, D.L.; Benney, T.M.; Crosman, E.T.; Bares, R.; Mallia, D.V.; Pirozzi, C.S.; Freeman, A.L.; Boll, S. Using Indoor and Outdoor Measurements to Understand Building Protectiveness against Wildfire, Atmospheric Inversion, and Firework PM2.5 Pollution Events. Environments 2024, 11, 186. https://doi.org/10.3390/environments11090186
Mendoza DL, Benney TM, Crosman ET, Bares R, Mallia DV, Pirozzi CS, Freeman AL, Boll S. Using Indoor and Outdoor Measurements to Understand Building Protectiveness against Wildfire, Atmospheric Inversion, and Firework PM2.5 Pollution Events. Environments. 2024; 11(9):186. https://doi.org/10.3390/environments11090186
Chicago/Turabian StyleMendoza, Daniel L., Tabitha M. Benney, Erik T. Crosman, Ryan Bares, Derek V. Mallia, Cheryl S. Pirozzi, Andrew L. Freeman, and Sarah Boll. 2024. "Using Indoor and Outdoor Measurements to Understand Building Protectiveness against Wildfire, Atmospheric Inversion, and Firework PM2.5 Pollution Events" Environments 11, no. 9: 186. https://doi.org/10.3390/environments11090186
APA StyleMendoza, D. L., Benney, T. M., Crosman, E. T., Bares, R., Mallia, D. V., Pirozzi, C. S., Freeman, A. L., & Boll, S. (2024). Using Indoor and Outdoor Measurements to Understand Building Protectiveness against Wildfire, Atmospheric Inversion, and Firework PM2.5 Pollution Events. Environments, 11(9), 186. https://doi.org/10.3390/environments11090186