Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning
Abstract
:1. Introduction
2. Methods
2.1. Study Watershed
2.2. SWAT Input Data and Overview
2.3. Machine Learning for Spatiotemporal Alpha Factor Estimation in SWAT: A TPOT-Based Approach
2.4. Web-Based Program for Spatiotemporal Alpha Factor Estimation in SWAT Using Automated Machine Learning (TPOT)
2.5. Assessment of Recession and Baseflow Estimation in Case 1 and Case 2
3. Results and Discussion
3.1. Development and Evaluation of a Web-Based Program for Spatiotemporal Alpha Factor Estimation in SWAT Using Automated Machine Learning (TPOT)
3.2. Comparison of Recessions Estimation in Case 1 and Case 2
3.3. Comparison of Baseflow Estimation in Case 1 and Case 2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, G.; Zhang, J.; Li, Y.; Liu, Y.; Ren, H.; Yang, M. Revealing temporal variation of baseflow and its underlying causes in the source region of the Yangtze River (China). Hydrol. Res. 2024, 55, 392–411. [Google Scholar] [CrossRef]
- Miller, O.L.; Miller, M.P.; Longley, P.C.; Alder, J.R.; Bearup, L.A.; Pruitt, T.; Jones, D.K.; Putman, A.L.; Rumsey, C.A.; Mckinney, T. How Will Baseflow Respond to Climate Change in the Upper Colorado River Basin. Geophys. Res. Lett. 2021, 48, e2021GL095085. [Google Scholar] [CrossRef]
- Kang, H.; Hyun, Y.J.; Jun, S.M. Regional estimation of baseflow index in Korea and analysis of baseflow effects according to urbanization. J. Korea Water Resour. Assoc. 2019, 52, 97–105. [Google Scholar]
- Cochand, M.; Christe, P.; Ornstein, P.; Hunkeler, D. Groundwater storage in high alpine catchments and its contribution to streamflow. Water Resour. Res. 2019, 55, 2613–2630. [Google Scholar] [CrossRef]
- Lyu, S.; Zhai, Y.; Zhang, Y.; Cheng, L.; Paul, K.P.; Song, J. Baseflow signature behaviour of mountainous catchments around the North China Plain. J. Hydrol. 2022, 606, 127450. [Google Scholar] [CrossRef]
- Mo, C.; Ruan, Y.; Xiao, X.; Lan, H.; Jin, J. Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecol. Indic. 2021, 126, 107628. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.; Teegavarapu, R.V.; Guo, Y.; Nie, H.; Xie, H. Using Baseflow Ensembles for Hydrologic Hysteresis Characterization in Humid Basins of Southeastern China. Water Resour. Res. 2023, 60, e2023WR036195. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.; Teegavarapu, R.V.; Guo, Y.; Nie, H.; Xie, H.; Zhang, L. River ecological flow early warning forecasting using baseflow separation and machine learning in the Jiaojiang River Basin, Southeast China. Sci. Total Environ. 2023, 882, 163571. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Flow duration curve integration into digital filtering algorithms for simulating climate variability based on river baseflow. Hydrol. Sci. J. 2018, 63, 1558–1573. [Google Scholar] [CrossRef]
- Rumsey, C.A.; Miller, M.P.; Sexstone, G.A. Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015. J. Hydrol. 2020, 584, 124715. [Google Scholar] [CrossRef]
- Lin, F.; Chen, X.; Yao, H.; Lin, F. SWAT model-based quantification of the impact of land-use change on forest-regulated water flow. Catena 2022, 211, 105975. [Google Scholar] [CrossRef]
- Lee, J.; Han, J.; Lee, S.; Kim, J.; Na, E.H.; Engel, B.; Lim, K.J. Enhancing sustainability in watershed management: Spatiotemporal assessment of baseflow alpha factor in SWAT. Sustainability 2024, 16, 9189. [Google Scholar] [CrossRef]
- Lee, J.; Park, M.; Min, J.H.; Na, E.H. Integrated assessment of the land use change and climate change impact on baseflow by using hydrologic model. Sustainability 2023, 15, 12465. [Google Scholar] [CrossRef]
- Singh, A.; Jha, S.K. Identification of sensitive parameters in daily and monthly hydrological simulations in small to large catchments in Central India. J. Hydrol. 2021, 601, 126632. [Google Scholar] [CrossRef]
- Duan, H.; Li, L.; Kong, Z.; Ye, X. Combining the digital filtering method with the SWAT model to simulate spatiotemporal variations of baseflow in a mountainous river basin. J. Hydrol. Reg. Stud. 2024, 56, 101972. [Google Scholar] [CrossRef]
- Yeo, M.H.; Chang, A.; Pangelinan, J. Application of a SWAT model for supporting a ridge-to-reef framework in the Pago watershed in Guam. Water 2021, 13, 3351. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Jimeno-Sáez, P.; Bueno-Crespo, A.; Pérez-Sánchez, J.; Pulido-Velázquez, D. Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction. Biosyst. Eng. 2019, 177, 67–77. [Google Scholar] [CrossRef]
- Yin, M.; Wu, Z.; Zhang, Q.; Su, Y.; Hong, Q.; Jia, Q.; Wang, X.; Wang, K.; Cheng, J. Combining SWAT with Machine Learning to Identify Primary Controlling Factors and Their Impacts on Non-Point Source Pollution. Water 2024, 16, 3026. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Hou, J. Soil and Water Assessment Tool (SWAT)-Informed Deep Learning for Streamflow Forecasting with Remote Sensing and In Situ Precipitation and Discharge Observations. Remote Sens. 2024, 16, 3999. [Google Scholar] [CrossRef]
- Guglielmo, G.; Montessori, A.; Tucny, J.-M.; La Rocca, M.; Prestininzi, P. A priori physical information to aid generalization capabilities of neural networks for hydraulic modeling. Front. Complex Syst. 2025, 2, 1508091. [Google Scholar] [CrossRef]
- Jiao, S.; Li, W.; Li, Z.; Gai, J.; Zou, L.; Su, Y. Hybrid physics-machine learning models for predicting rate of penetration in the Halahatang oil field, Tarim Basin. Sci. Rep. 2024, 14, 5957. [Google Scholar] [CrossRef] [PubMed]
- Zubelzu, S.; Ghalkha, A.; Ben Issaid, C.; Zanella, A.; Bennis, M. Coupling machine learning and physical modelling for predicting runoff at catchment scale. J. Environ. Manag. 2024, 354, 120404. [Google Scholar] [CrossRef] [PubMed]
- Salehin, I.; Islam, M.S.; Saha, P.; Noman, S.M.; Tuni, A.; Hasan, M.M.; Baten, M.A. AutoML: A systematic review on automated machine learning with neural architecture search. J. Inf. Intell. 2024, 2, 52–81. [Google Scholar] [CrossRef]
- Kiala, Z.; Odindi, J.; Mutanga, O. Determining the capability of the Tree-Based Pipeline Optimization Tool (TPOT) in mapping parthenium weed using multi-date sentinel-2 image data. Remote Sens. 2022, 14, 1687. [Google Scholar] [CrossRef]
- Radzi, S.F.M.; Karim, M.K.A.; Saripan, M.I.; Rahman, M.A.A.; Isa, I.N.C.; Ibahim, M.J. Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction. J. Pers. Med. 2021, 11, 978. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Z.; Li, P.; Zhou, Z.; Li, W.; Zheng, T.; Liu, J.; Wu, W.; Shi, Z.; Liu, J. Prediction of rural domestic water and sewage production based on automated machine learning in northern China. J. Clean. Prod. 2024, 434, 140016. [Google Scholar] [CrossRef]
- McDonald, S.; Mohammed, I.N.; Bolten, J.; Pulla, S.; Meechaiya, C.; Markert, A.; Nelson, E.J.; Srinivasan, R.; Lakshmi, V. Web-based decision support system tools: The Soil and Water Assessment Tool Online visualization and analyses (SWATOnline) and NASA earth observation data downloading and reformatting tool. Environ. Model. Softw. 2019, 120, 104499. [Google Scholar] [CrossRef]
- Jung, Y.; Shin, Y.; Won, N.; Lim, K.J. Web-Based BFlow System for the Assessment of Streamflow Characteristics at National Level. Water 2016, 8, 384. [Google Scholar] [CrossRef]
- Sharabiani, A.M.; Mousavi, S.M. A Web-Based Decision Support System for Project Evaluation with Sustainable Development Considerations Based on Two Developed Pythagorean Fuzzy Decision Methods. Sustainability 2023, 15, 16477. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srubuvasan, R.; Muttiah, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment, part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report; Texas A&M University: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Arnold, J.G.; Moriash, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensvan, A.V.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree based pipeline optimization tool for automating data science. In Proceedings of the Genetic and Evolutionary Computation Conference, Denver, CO, USA, 20–24 July 2016; pp. 485–492. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Gomez, M.; Nölscher, M.; Hartmann, A.; Broda, S. Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): Linking model performances to geospatial and time series features. Hydrol. Earth Syst. Sci. 2024, 28, 4407–4425. [Google Scholar] [CrossRef]
- Hlaing, P.T.; Humphries, U.W.; Waqas, M. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand. MethodX 2024, 13, 102792. [Google Scholar] [CrossRef]
- Jimeno-Saez, P.; Martínez-Espana, R.; Casali, J.; Perez-Sanchez, J.; Senent-Aparicio, J. A comparison of performance of SWAT and machine learning models for predicting sediment load in a forested Basin, Northern Spain. Catena 2022, 212, 105953. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Hong, S.; Yun, D.; Kwon, D.; Hill, R.L.; Gao, F.; Zhang, X.; Cho, K.; Lee, S.; et al. Comparative efficiency of the SWAT model and a deep learning model in estimating nitrate loads at the Tuckahoe creek watershed, Maryland. Sci. Total Environ. 2024, 954, 176256. [Google Scholar] [CrossRef]
- Tamiru, H.; Dinka, M.O. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. J. Hydrol. Reg. Stud. 2021, 36, 100855. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual. Eawag; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2015; pp. 1–100. [Google Scholar]
- Lee, J.; Shin, Y.; Park, Y.S.; Kum, D.; Lim, K.J.; Lee, S.O.; Kim, H.; Jung, Y. Estimation and assessment of baseflow at an ungauged watershed according to landuse change. J. Wetl. Res. 2014, 16, 303–318. [Google Scholar]
- Chen, Y.; Faramarzi, M.; Gan, T.Y.; She, Y. Evaluation and uncertainty assessment of weather data and model calibration on daily streamflow simulation in a large-scale regulated and snow-dominated river basin. J. Hydrol. 2023, 617, 129103. [Google Scholar] [CrossRef]
- Taia, S.; Scozzari, A.; Erraioui, L.; Kili, M.; Mridekh, A.; Haida, S.; Chao, J.; Mansouri, B.E. Comparing the ability of different remotely sensed evapotranspiration products in enhancing hydrological model performance and reducing prediction uncertainty. Ecol. Inform. 2023, 78, 102352. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Hristopulos, D.T.; Nikolaidis, N.P. Estimation of the uncertainty of hydrologic predictions in a karstic Mediterranean watershed. Sci. Total Environ. 2020, 717, 137131. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, S.H.; Ashofteh, P.-S.; Loáiciga, H.A. Investigating the performance of data mining, lumped, and distributed models in runoff projected under climate change. J. Hydrol. 2023, 617, 128992. [Google Scholar] [CrossRef]
Year | Annual Precipitation (mm) | Monthly Precipitation (mm) | Annual Temperature (°C) | ||
---|---|---|---|---|---|
Max. | Min. | Max. | Min. | ||
2010 | 1419.7 | 376.4 | 16.4 | 24.7 | 1.3 |
2011 | 1943.4 | 587.3 | 4.0 | 23.4 | 2.4 |
2012 | 1409.5 | 463.6 | 2.5 | 24.2 | 2.3 |
2013 | 1120.2 | 218.7 | 19.9 | 25.9 | 2.0 |
2014 | 1117.7 | 240.9 | 6.5 | 24.8 | 3.1 |
2015 | 822.7 | 145.6 | 27.0 | 25.4 | 2.7 |
2016 | 1228.4 | 367.9 | 11.6 | 26.4 | 2.6 |
2017 | 1127.5 | 434.5 | 11.6 | 25.3 | 2.3 |
Data Type | Name | Source |
---|---|---|
Spatial data | Digital Elevation Model (DEM) | National Geographic Information Institute |
Land use | Korea Ministry of Environment | |
Soil type | Korea Rural Development Administration | |
Meteorological data | Precipitation, wind speed, maximum and minimum temperature, relative humidity, and solar radiation (daily timeseries, 2010–2017) | Korea Meteorological Administration |
Hydrological data | Streamflow (daily timeseries, 2010–2017) | Water resource Management Information System |
Study Watershed | R2 | NSE | IOA | MAPE (%) | PBIAS (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | |
Yongchon | 0.58 | 0.58 | 0.57 | 0.56 | 0.83 | 0.83 | 66.17 | 65.87 | 21.54 | 21.48 |
Dugye | 0.78 | 0.78 | 0.73 | 0.74 | 0.93 | 0.93 | 65.47 | 65.34 | 35.26 | 35.28 |
Munam | 0.56 | 0.57 | 0.56 | 0.56 | 0.84 | 0.83 | 68.97 | 67.15 | 9.51 | 9.02 |
Inchang | 0.57 | 0.58 | 0.56 | 0.56 | 0.81 | 0.83 | 72.51 | 70.13 | 9.66 | 9.14 |
Gasuwon | 0.63 | 0.63 | 0.62 | 0.63 | 0.88 | 0.88 | 57.71 | 56.98 | −8.36 | −7.67 |
Boksu | 0.66 | 0.67 | 0.62 | 0.63 | 0.90 | 0.91 | 68.63 | 66.91 | −8.82 | −8.03 |
Hanbat | 0.57 | 0.58 | 0.58 | 0.57 | 0.86 | 0.86 | 63.02 | 61.53 | 12.92 | 12.14 |
Mannyeon | 0.66 | 0.66 | 0.64 | 0.65 | 0.86 | 0.85 | 65.16 | 64.75 | 7.25 | 7.13 |
Daedoek | 0.64 | 0.64 | 0.57 | 0.57 | 0.83 | 0.64 | 76.63 | 75.02 | 43.98 | 41.72 |
Wonchon | 0.54 | 0.54 | 0.53 | 0.54 | 0.84 | 0.83 | 67.32 | 66.81 | −0.63 | 1.44 |
Study Watershed | R2 | NSE | IOA | MAPE (%) | PBIAS (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | |
Yongchon | 0.78 | 0.66 | 0.44 | 0.57 | 0.79 | 0.83 | 46.66 | 37.84 | 40.45 | 22.12 |
Dugye | 0.33 | 0.62 | 0.17 | 0.60 | 0.77 | 0.86 | 64.93 | 50.23 | −20.24 | −11.46 |
Munam | 0.71 | 0.73 | 0.49 | 0.54 | 0.78 | 0.78 | 33.03 | 30.26 | 35.94 | 25.69 |
Inchang | 0.85 | 0.75 | 0.61 | 0.64 | 0.81 | 0.85 | 39.45 | 20.17 | 13.73 | 9.19 |
Gasuwon | 0.68 | 0.76 | 0.62 | 0.72 | 0.88 | 0.90 | 43.46 | 35.15 | −23.04 | −12.50 |
Boksu | 0.63 | 0.74 | 0.53 | 0.62 | 0.76 | 0.83 | 35.87 | 33.90 | 32.23 | 17.40 |
Hanbat | 0.76 | 0.72 | 0.62 | 0.65 | 0.84 | 0.87 | 34.32 | 30.67 | 24.57 | 19.54 |
Mannyeon | 0.56 | 0.78 | 0.51 | 0.66 | 0.78 | 0.86 | 45.21 | 32.18 | −11.48 | −8.93 |
Daedoek | 0.51 | 0.78 | 0.42 | 0.51 | 0.72 | 0.76 | 51.20 | 40.16 | −54.28 | −25.08 |
Wonchon | 0.78 | 0.80 | 0.68 | 0.74 | 0.86 | 0.90 | 35.56 | 33.20 | 12.31 | 16.70 |
Study Watershed | R2 | NSE | IOA | MAPE (%) | PBIAS (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | Case 1 | Case 2 | |
Yongchon | 0.63 | 0.61 | 0.46 | 0.57 | 0.81 | 0.86 | 58.09 | 54.21 | 46.58 | 22.72 |
Dugye | 0.50 | 0.56 | 0.40 | 0.52 | 0.82 | 0.85 | 57.94 | 50.58 | 30.48 | 18.02 |
Munam | 0.64 | 0.66 | 0.58 | 0.64 | 0.82 | 0.86 | 71.57 | 61.62 | 31.63 | 21.19 |
Inchang | 0.65 | 0.67 | 0.63 | 0.64 | 0.88 | 0.89 | 65.14 | 64.27 | 26.92 | 30.28 |
Gasuwon | 0.67 | 0.67 | 0.51 | 0.52 | 0.89 | 0.88 | 57.51 | 45.65 | 14.60 | −5.46 |
Boksu | 0.60 | 0.63 | 0.59 | 0.62 | 0.86 | 0.87 | 61.96 | 56.28 | 21.85 | 14.51 |
Hanbat | 0.56 | 0.58 | 0.48 | 0.53 | 0.84 | 0.86 | 59.95 | 40.32 | 33.96 | 26.14 |
Mannyeon | 0.61 | 0.62 | 058 | 0.60 | 0.87 | 0.88 | 59.95 | 51.22 | 15.55 | −1.05 |
Daedoek | 0.55 | 0.72 | 0.48 | 0.51 | 0.83 | 0.90 | 60.59 | 27.77 | 31.59 | −27.41 |
Wonchon | 0.66 | 0.76 | 0.65 | 0.74 | 0.89 | 0.93 | 58.65 | 38.73 | 16.57 | −6.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Han, J.; Engel, B.; Lim, K.J. Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning. Environments 2025, 12, 94. https://doi.org/10.3390/environments12030094
Lee J, Han J, Engel B, Lim KJ. Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning. Environments. 2025; 12(3):94. https://doi.org/10.3390/environments12030094
Chicago/Turabian StyleLee, Jimin, Jeongho Han, Bernard Engel, and Kyoung Jae Lim. 2025. "Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning" Environments 12, no. 3: 94. https://doi.org/10.3390/environments12030094
APA StyleLee, J., Han, J., Engel, B., & Lim, K. J. (2025). Web-Based Baseflow Estimation in SWAT Considering Spatiotemporal Recession Characteristics Using Machine Learning. Environments, 12(3), 94. https://doi.org/10.3390/environments12030094