Hydrological Modeling and Sustainable Water Resources Management

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: 20 January 2025 | Viewed by 2280

Special Issue Editors


E-Mail
Guest Editor
Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
Interests: hydrological modeling; wastewater modeling; uncertainty analysis; machine learning; life cycle assessment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Management, Chengdu University of Information Technology, Chengdu, China
Interests: environmental risk analysis; water quality management; uncertainty analysis; data-driven modeling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Beijing, China
2. CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
Interests: hydrology; ground water; surface water; geology; water quality assessment; geochemistry; chemical weathering
Special Issues, Collections and Topics in MDPI journals
Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
Interests: uncertainty analysis; risk management; stochastic modelling; water resources management; climate change impacts; environmental systems analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydrological modeling and the sustainable management of water resources play a vital role in addressing the complicated challenges related to water availability, quality, and sustainability. For instance, hydrological models are essential for flood control, while the management of water resources facilitates sustainable socio-economic development.

In the era of increasing water stress, this Special Issue, entitled ‘Hydrological Modeling and Sustainable Water Resources Management’ serves as a platform for researchers to demonstrate problem-solving wisdom in this critical field. Our aim is to present innovative solutions and share cutting-edge research that can inspire, enhance and transform the way we model and manage water resources.

This Special Issue welcomes contributions that push the boundaries of hydrological modeling and offer insights into the effective management of water resources. We encourage submissions that explore emerging trends such as machine learning, remote sensing, digital twins, and data assimilation techniques to enhance our understanding of hydrological processes. Additionally, studies of computer simulation, risk analysis, and decision support for water resources are welcomed. Complementing these topics, this Special Issue seeks to encompass the latest developments in environmental modeling and technology, delve into environmental management, and highlight the critical role of environmental impact and risk assessment.

You may choose our Joint Special Issue in Hydrology.

Dr. Pengxiao Zhou
Dr. Qianqian Zhang
Dr. Fei Zhang
Dr. Zoe Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrological modeling
  • data-driven models
  • human activity impacts on water quantity and quality
  • nonstationary rainfall runoff
  • runflow prediction
  • extreme event causality, impact and prediction
  • climate change impacts and adaptation
  • water resource management
  • flood and drought risks
  • risk analysis and management

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

87 pages, 41602 KiB  
Review
The Cultural Ecohydrogeology of Mediterranean-Climate Springs: A Global Review with Case Studies
by Roger Pascual, Lucia Piana, Sami Ullah Bhat, Pedro Fidel Castro, Jordi Corbera, Dion Cummings, Cristina Delgado, Eugene Eades, Roderick J. Fensham, Marcos Fernández-Martínez, Verónica Ferreira, Maria Filippini, Guillermo García, Alessandro Gargini, Stephen D. Hopper, Lynette Knapp, Ian D. Lewis, Josep Peñuelas, Catherine Preece, Vincent H. Resh, Estela Romero, Boudjéma Samraoui, Farrah Samraoui, Stefano Segadelli, Nikolaos Th. Skoulikidis, Cüneyt N. Solak, Jaume Solé, Karen G. Villholth, Huma Khurshid Wani, Marco Cantonati and Lawrence E. Stevensadd Show full author list remove Hide full author list
Environments 2024, 11(6), 110; https://doi.org/10.3390/environments11060110 - 27 May 2024
Viewed by 1249
Abstract
Cultures in Mediterranean climate zones (MCZs) around the world have long been reliant on groundwater and springs as freshwater sources. While their ecology and cultural sustainability are recognized as critically important, inter-relationships between springs and culture in MCZs have received less attention. Here [...] Read more.
Cultures in Mediterranean climate zones (MCZs) around the world have long been reliant on groundwater and springs as freshwater sources. While their ecology and cultural sustainability are recognized as critically important, inter-relationships between springs and culture in MCZs have received less attention. Here we augmented a global literature review with case studies in MCZ cultural landscapes to examine the diversity and intensity of cultural and socio-economic relationships on spring ecohydrogeology. MCZs are often oriented on western and southern coasts in tectonically active landscapes which control aquifer structure, the prevalence of westerly winds, and aridity, and generally expose associated habitats and cultures to harsh afternoon sunlight. Cultural appreciation and appropriation of springs ranges widely, from their use as subsistence water supplies to their roles in profound traditions such as Greco-Roman nymphalea as well as Asian and Abrahamic spiritual cleansing and baptism. The abandonment of traditional ways of life, such as rural livestock production, for urban ones has shifted impacts on aquifers from local to regional groundwater exploitation. The commoditization of water resources for regional agricultural, industrial (e.g., mining, water bottling, geothermal resorts), and urban uses is placing ever-increasing unsustainable demands on aquifers and spring ecosystems. When the regional economic value of springs approaches or exceeds local cultural values, these irreplaceable aquatic ecosystems are often degraded, over-looked, and lost. Sustainable stewardship of springs and the aquifers that support them is a poorly recognized but central conservation challenge for modern Mediterranean societies as they face impending impacts of global climate change. Solutions to this crisis require education, societal dialogue, and improved policy and implementation. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

Back to TopTop