Can Agriculture Conserve Biodiversity? Structural Biodiversity Analysis in a Case Study of Wild Bird Communities in Southern Europe
Abstract
:1. Introduction
1.1. The Decline in Biodiversity: Historical Background and Current Situation
1.2. Avian Diversity
1.3. Farmland Birds
1.4. High Nature Value Farmland
2. Materials and Methods
2.1. Study Area
2.2. Field Bird Surveys
2.3. Land-Use/Land-Cover Classification
- Crisp logic is based on a two-value criterion, which means that membership of a category is complete, absolute and exclusive (i.e., it has the value 1 or, alternatively, the value 0);
- Fuzzy logic, on the other hand, is based on the notion that membership of a category can be partial, i.e., between the value 0 (completely false) and the value 1 (completely true), according to intermediate and continuous degrees of membership.
2.4. Distribution of Bird Species by Land/Ecosystem Category
2.5. Biodiversity Indices
- -
- Species richness (R): the number of species detected;
- -
- Species abundance (Q): the total number of bird individuals observed regardless of their taxonomic classification (i.e., species);
- -
- Shannon–Wiener diversity index (H), that is calculated as follows:
- -
- Simpson diversity index (S), that is calculated as follows:
2.6. Statistical Data Processing
2.6.1. Considering Bird Species
2.6.2. Considering Bird Survey Sites
3. Results
3.1. Bird Community Composition as a Whole (γ-Diversity)
3.2. Beta Diversity Analysis Across Bird Species
3.3. Beta Diversity Analysis Across Bird Survey Sites
4. Discussion
5. Conclusions
- Protect natural habitats: Strengthening the protection of existing natural habitats is essential. This can be achieved by expanding protected areas and implementing strict land-use regulations that prevent habitat destruction and degradation [87]. Another important aspect is to strengthen ecological connectivity between habitats through the design and implementation of an effective ecological network, properly linked to the EU’s Natura 2000.
- Promotion of agroecological practices: Encourage farmers to adopt agroecological practices that maintain habitat diversification and heterogeneity, such as agroforestry, cover crops, maintenance of natural vegetation buffers, and organic farming, to mitigate the negative impacts of agricultural intensification [88]. These practices would also lead to an increase in high nature value farming (HNVF) areas.
- Support mixed land use: Policies that support and incentivize the incorporation of natural elements into agricultural land can help conserve biodiversity. For example, sustainable land management that integrates natural (HDLFs) and agricultural elements, and the development of spatial planning frameworks that promote ecological connectivity to improve habitat connection between natural areas in the agricultural matrix [89]. In addition, the implementation of the regional planning of the Apulia Sheep-Tracks Park, with the associated restoration measures for farmers aimed at the recognition of sheep-tracks, can significantly contribute to the increase in MIX areas, which is closely linked to the concept of ecological corridors as linear elements.
- Monitoring and research: Continued monitoring of biodiversity and further research on the effects of different land-use practices on different taxa, are needed to inform adaptive management strategies. This can help identify the most effective practices for conserving and enhancing biodiversity [90].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AES | Agri-environmental schemes |
BIs | Biodiversity indices |
CAP | Common Agricultural Policy |
CLC | CORINE Land Cover |
EFAs | Ecological focus areas |
EU-BDS | EU Biodiversity Strategy 2030 |
FBI | Farmland bird index |
GAEC 8 | Good Agricultural and Environmental Conditions |
HDLFs | High-diversity landscape features |
HNVF | High nature value farmland |
IUCN | International Union for Conservation of Nature |
NRL | Nature Restoration Law |
NUTS | Nomenclature des unités territoriales statistiques |
REN | Regional Ecological Network |
STN | Sheep Track Network |
Appendix A
Site ID | Bird Survey Sites | Land Use/Land Cover/Ecosystem Description | Geographical Coordinates * |
---|---|---|---|
St1 | Ponte Cervaro SS16 | Section of the Cervaro torrent with remnants of hygrophilous riparian woods of Salix alba and Populus alba, natural pastures, grasslands and annual crops (wheat). | 15.653200 41.408700 |
St2 | Pineta | Reforestation of Pinus pinea with large specimens and sparse undergrowth. Former clearing with Quercus coccifera. Patches of deciduous woodland with Fraxinus angustifolia. Orchards and annual arable crops (wheat). | 15.651100 41.395600 |
St3 | Frassino orientale | Natural Fraxinus angustifolia forest with dense undergrowth. | 15.649900 41.396100 |
St4 | Eucalipteto | Reforestation in Eucalyptus sp. with undergrowth in Pistacia lentiscus. Patches of arable land and olive groves. | 15.648600 41.389200 |
St5 | Querceto giovane | Stand of young specimens of Quercus pubescens/virgiliana with moderately dense undergrowth. | 15.641900 41.390300 |
St6 | Gazebo | Mature lowland forest of Quercus pubescens/virgiliana with dense undergrowth. Riparian gallery wood with Salix alba and Populus alba (bend of the Cervaro stream). Annual crop strips (wheat). | 15.639500 41.396200 |
St7 | Steppa | Mediterranean steppe grassland of the Thero-Brachipodietea type with Laurus nobilis shrubs and patches of Eucalyptus sp. | 15.639300 41.386400 |
St8 | Masseria Giardino | Mediterranean steppe grassland of the Thero-Brachipodietea type and annual crop strips (wheat). | 15.589600 41.365500 |
St9 | Gufo Serra | Annual crops (wheat) with Eucalyptus sp. reforestation belt and greenhouse crops. | 15.693200 41.493100 |
St10 | Contessa | Annual crops (wheat) with a strip of reforestation of Eucalyptus sp., natural grasslands and patches of hygrophilous vegetation with Phragmites australis (Canale della Contessa). | 15.709300 41.515200 |
St11 | Eucalipti filare olmi | Annual crops (wheat) with rows of Eucalyptus sp. and Ulmus sp., natural grasslands and patches of olive groves. | 15.715800 41.522200 |
St12 | Amendola Sud | Mediterranean steppe grassland of the Thero-Brachipodietea with shrubs and annual crops (wheat) sometimes alternating with vegetable crops. | 15.698200 41.529500 |
St13 | Stazione Candelaro | Annual arable land (wheat) with patches of natural pasture and tree rows of Ulmus sp.. | 15.807500 41.552000 |
St14 | Frattarolo | Natural wet meadows with Juncus acutus, Salicornia sp. and Tamarix sp., annual crops (wheat) and olive groves. | 15.849200 41.570300 |
St15 | Oasi Laguna del Re 1 | Coastal salt marshes, natural wetlands with Salicornia sp. and Juncus acutus and hygrophilous vegetation with Phragmites australis. | 15.879300 41.580000 |
St16 | Oasi Laguna del Re 2 | Natural wet meadows with Salicornia sp. and Juncus acutus, hygrophilous vegetation with Phragmites australis, natural grasslands, annual crops (vegetables) and olive groves. | 15.883000 41.580700 |
St17 | Amendola Nord | Annual crops (wheat), sometimes alternating with vegetable crops. | 15.734800 41.551400 |
St18 | Stazione Frattarolo | Olive groves and annual crops (wheat). | 15.867200 41.587700 |
St19 | SP 71 Cervaro | Annual cropland (wheat) with Pinus halepensis nearby. | 15.799400 41.483500 |
St20 | Podere 14 | Annual crop (wheat) with former rows of Cupressus sp. | 15.675400 41.459000 |
ID | Latin Name | Common Name EN | Abundances | (%) | BD (a) | IUCN (b) |
---|---|---|---|---|---|---|
1 | Columba palumbus | Wood Pigeon | 107 | 9.07 | - | LC(EU) |
2 | Hirundo rustica | Barn Swallow | 106 | 8.98 | - | LC(EU) |
3 | Apus apus | Common Swift | 93 | 7.88 | - | NT(EU) |
4 | Columba livia | Rock Dove | 73 | 6.19 | - | LC(EU) |
5 | Coloeus monedula | Western Jackdaw | 72 | 6.10 | - | LC(EU) |
6 | Pica pica | Eurasian Magpie | 44 | 3.73 | - | LC(EU) |
7 | Delichon urbicum | House Martin | 41 | 3.47 | - | LC(EU) |
8 | Bubulcus ibis | Western Cattle Egret | 40 | 3.39 | - | LC(EU) |
9 | Carduelis carduelis | European Goldfinch | 40 | 3.39 | - | LC(EU) |
10 | Larus michahellis | Yellow-legged Gull | 36 | 3.05 | R | LC(EU) |
11 | Passer italiae | Italian Sparrow | 34 | 2.88 | R | VU(MED) |
12 | Cisticola juncidis | Zitting Cisticola | 33 | 2.80 | - | LC(GL) |
13 | Falco naumanni | Lesser Kestrel | 33 | 2.80 | I, * | LC(MED) |
14 | Galerida cristata | Crested Lark | 26 | 2.20 | - | LC(EU) |
15 | Sylvia atricapilla | Eurasian Blackcap | 22 | 1.86 | - | LC(EU) |
16 | Merops apiaster | European Bee-eater | 18 | 1.53 | - | LC(EU) |
17 | Plegadis falcinellus | Glossy Ibis | 18 | 1.53 | I | LC(EU) |
18 | Curruca melanocephala | Sardinian Warbler | 17 | 1.44 | - | LC(EU) |
19 | Cettia cetti | Cetti’s Warbler | 16 | 1.36 | - | LC(EU) |
20 | Corvus cornix | Hooded Crow | 16 | 1.36 | - | LC(EU) |
21 | Burhinus oedicnemus | Eurasian Stone-curlew | 15 | 1.27 | I | LC(EU) |
22 | Cyanistes caeruleus | Eurasian Blue Tit | 14 | 1.19 | - | LC(EU) |
23 | Parus major | Great Tit | 14 | 1.19 | - | LC(EU) |
24 | Falco tinnunculus | Kestrel | 13 | 1.10 | - | LC(MED) |
25 | Oriolus oriolus | Eurasian Golden Oriole | 13 | 1.10 | - | LC(EU) |
26 | Phasianus colchicus | Common Pheasant | 13 | 1.10 | - | LC(EU) |
27 | Streptopelia decaocto | Eurasian Collared Dove | 12 | 1.02 | - | LC(EU) |
28 | Anas platyrhynchos | Mallard | 10 | 0.85 | - | LC(EU) |
29 | Coturnix coturnix | Common Quail | 9 | 0.76 | - | NTEU) |
30 | Emberiza calandra | Corn Bunting | 9 | 0.76 | - | LC(EU) |
31 | Turdus merula | Blackbird | 9 | 0.76 | - | LC(EU) |
32 | Acrocephalus arundinaceus | Great Reed Warbler | 8 | 0.68 | - | LC(EU) |
33 | Ardeola ralloides | Squacco Heron | 8 | 0.68 | I | LC(EU) |
34 | Ciconia ciconia | White Stork | 8 | 0.68 | I | LC(EU) |
35 | Melanocorypha calandra | Calandra Lark | 8 | 0.68 | I | LC(EU) |
36 | Motacilla flava | Western Yellow Wagtail | 8 | 0.68 | R | LC(EU) |
37 | Sturnus vulgaris | Starling | 8 | 0.68 | - | LC(EU) |
38 | Upupa epops | Eurasian Hoopoe | 8 | 0.68 | - | LC(EU) |
39 | Garrulus glandarius | Eurasian Jay | 7 | 0.59 | - | LC(EU) |
40 | Acrocephalus scirpaceus | Common Reed Warbler | 6 | 0.51 | - | LC(EU) |
41 | Egretta garzetta | Little Egret | 6 | 0.51 | I | LC(EU) |
42 | Emberiza citrinella | Yellowhammer | 6 | 0.51 | - | LC(EU) |
43 | Falco vespertinus | Red-footed Falcon | 6 | 0.51 | I | CR(MED) |
44 | Ardea cinerea | Grey Heron | 5 | 0.42 | - | LC(EU) |
45 | Buteo buteo | Common Buzzard | 5 | 0.42 | - | LC(MED) |
46 | Fringilla coelebs | Eurasian Chaffinch | 5 | 0.42 | - | LC(EU) |
47 | Charadrius hiaticula | Common Ringed Plover | 4 | 0.34 | - | LC(EU) |
48 | Himantopus himantopus | Black-winged Stilt | 4 | 0.34 | I | LC(EU) |
49 | Luscinia megarhynchos | Common Nightingale | 4 | 0.34 | - | LC(EU) |
50 | Milvus migrans | Black Kite | 4 | 0.34 | I | LC(MED) |
51 | Serinus serinus | European Serin | 4 | 0.34 | - | LC(EU) |
52 | Aegithalos caudatus | Long-tailed Tit | 3 | 0.25 | - | LC(GL) |
53 | Fulica atra | Eurasian Coot | 3 | 0.25 | - | NT(EU) |
54 | Remiz pendulinus | Eurasian Penduline Tit | 3 | 0.25 | R | LC(EU) |
55 | Circus pygargus | Montagu’s Harrier | 2 | 0.17 | I | VU(MED) |
56 | Dendrocopos major | Great Spotted Woodpecker | 2 | 0.17 | - | LC(EU) |
57 | Microcarbo pygmeus | Pygmy Cormorant | 2 | 0.17 | I, * | LC(EU) |
58 | Muscicapa striata | Spotted Flycatcher | 2 | 0.17 | - | LC(EU) |
59 | Spatula querquedula | Garganey | 2 | 0.17 | - | LC(EU) |
60 | Streptopelia turtur | European Turtle Dove | 2 | 0.17 | - | VU(EU) |
61 | Troglodytes troglodytes | Eurasian Wren | 2 | 0.17 | - | LC(EU) |
62 | Acrocephalus palustris | Marsh Warbler | 1 | 0.08 | - | LC(EU) |
63 | Actitis hypoleucos | Common Sandpiper | 1 | 0.08 | - | LC(EU) |
64 | Ardea alba | Great White Egret | 1 | 0.08 | R | LC(EU) |
65 | Ardea purpurea | Purple Heron | 1 | 0.08 | R | LC(EU) |
66 | Asio otus | Long-eared Owl | 1 | 0.08 | - | LC(MED) |
67 | Calandrella brachydactyla | Greater Short-toed Lark | 1 | 0.08 | I | LC(EU) |
68 | Chloris chloris | European Greenfinch | 1 | 0.08 | - | LC(EU) |
69 | Coracias garrulus | European Roller | 1 | 0.08 | I, * | LC(EU) |
70 | Cuculus canorus | Common Cuckoo | 1 | 0.08 | - | LC(EU) |
71 | Curruca cantillans | Eastern Subalpine Warbler | 1 | 0.08 | - | LC(EU) |
72 | Emberiza schoeniclus | Common Reed Bunting | 1 | 0.08 | - | LC(EU) |
73 | Erithacus rubecula | European Robin | 1 | 0.08 | - | LC(EU) |
74 | Falco columbarius | Merlin | 1 | 0.08 | - | VU(EU) |
75 | Gallinula chloropus | Common Moorhen | 1 | 0.08 | - | LC(EU) |
76 | Numenius arquata | Eurasian Curlew | 1 | 0.08 | R | NT(EU) |
77 | Passer hispaniolensis | Spanish Sparrow | 1 | 0.08 | R | LC(EU) |
78 | Saxicola torquatus | African Stonechat | 1 | 0.08 | R | LC(EU) |
79 | Sylvia borin | Garden Warbler | 1 | 0.08 | - | LC(EU) |
80 | Tyto alba | Barn Owl | 1 | 0.08 | - | LC(MED) |
Total | 1180 | 100.00 |
Site ID | Land Cover | Land Category Membership | |||
---|---|---|---|---|---|
AGR | NAT | AGR | MIX | NAT | |
(%) | (%) | (%) | (%) | (%) | |
St1 | 39.6 | 60.4 | 0.00 | 0.76 | 0.24 |
St2 | 9.9 | 90.1 | 0.00 | 0.00 | 1.00 |
St3 | 0.0 | 100.0 | 0.00 | 0.00 | 1.00 |
St4 | 3.7 | 96.3 | 0.00 | 0.00 | 1.00 |
St5 | 0.0 | 100.0 | 0.00 | 0.00 | 1.00 |
St6 | 13.6 | 86.4 | 0.00 | 0.00 | 1.00 |
St7 | 0.0 | 100.0 | 0.00 | 0.00 | 1.00 |
St8 | 47.8 | 52.2 | 0.00 | 0.96 | 0.04 |
St9 | 80.1 | 19.9 | 0.23 | 0.77 | 0.00 |
St10 | 81.0 | 19.0 | 0.27 | 0.73 | 0.00 |
St11 | 79.0 | 21.0 | 0.18 | 0.82 | 0.00 |
St12 | 50.2 | 49.8 | 0.00 | 0.98 | 0.02 |
St13 | 82.8 | 17.2 | 0.37 | 0.63 | 0.00 |
St14 | 32.0 | 68.0 | 0.00 | 0.32 | 0.68 |
St15 | 0.0 | 100.0 | 0.00 | 0.00 | 1.00 |
St16 | 32.6 | 67.4 | 0.00 | 0.35 | 0.65 |
St17 | 100.0 | 0.0 | 0.98 | 0.02 | 0.00 |
St18 | 98.0 | 2.0 | 0.96 | 0.04 | 0.00 |
St19 | 90.4 | 9.6 | 0.79 | 0.21 | 0.00 |
St20 | 95.2 | 4.8 | 0.93 | 0.07 | 0.00 |
Obs | Exp | Obs-Exp | ||
---|---|---|---|---|
AGR | 0 | 0 | 0 | |
MIX | 10 | 0 | 10 | |
NAT | 22 | 19 | 3 | |
AGR-MIX | 4 | 0 | 4 | |
AGR-NAT | 0 | 0 | 0 | |
MIX-NAT | 22 | 0 | 22 | |
AGR-MIX-NAT | 22 | 61 | −39 | |
total | 80 | 80 | 0 | |
Chi-square | 625.4 | |||
Probability | <0.0001 |
References
- Blaxter, K.; Robertson, N. From Dearth to Plenty: The Second Agricultural Revolution; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Krebs, J.R.; Wilson, J.D.; Bradbury, R.B.; Siriwardena, G.M. The Second Silent Spring? Nature 1999, 400, 611–612. [Google Scholar] [CrossRef]
- Gardner, B. European Agriculture: Policies, Production and Trade; Taylor and Francis: Hoboken, NJ, USA, 2006; ISBN 978-0-415-08532-8. [Google Scholar]
- European Commission. Statistical Office of the European Union. Agriculture, Forestry and Fishery Statistics: 2020 Edition; Publications Office: Luxembourg, 2020. [Google Scholar]
- Halada, L.; Evans, D.; Romão, C.; Petersen, J.-E. Which Habitats of European Importance Depend on Agricultural Practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Price, M. High Nature Value Farming in Europe: 35 European Countries—Experiences and Perspectives. Mt. Res. Dev. 2013, 33, 480. [Google Scholar] [CrossRef]
- European Court of Auditors. Biodiversity on Farmland: CAP Contribution Has Not Halted the Decline. Special Report No 13, 2020; Publications Office: Luxembourg, 2020. [Google Scholar]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 56p. [Google Scholar]
- European Commission; Joint Research Centre. Classification and Quantification of Landscape Features in Agricultural Land Across the EU: A Brief Review of Existing Definitions, Typologies, and Data Sources for Quantification.; Publications Office: Luxembourg, 2022. [Google Scholar]
- Davies, Z.G.; Pullin, A.S. Are Hedgerows Effective Corridors between Fragments of Woodland Habitat? An Evidence-Based Approach. Landsc. Ecol. 2007, 22, 333–351. [Google Scholar] [CrossRef]
- Sklenicka, P.; Hladík, J.; Střeleček, F.; Kottová, B.; Lososová, J.; Číhal, L.; Šálek, M. Historical, Environmental and Socio-Economic Driving Forces on Land Ownership Fragmentation, the Land Consolidation Effect and Project Costs. Agric. Econ.-Czech 2009, 55, 571–582. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The Role of Agri-environment Schemes in Conservation and Environmental Management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Hauck, J.; Schindler, S.; Dittrich, A.; Zingg, S.; Tscharntke, T.; Oppermann, R.; Sutcliffe, L.M.E.; Sirami, C.; et al. Adding Some Green to the Greening: Improving the EU’s Ecological Focus Areas for Biodiversity and Farmers. Conserv. Lett. 2017, 10, 517–530. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A Greener Path for the EU Common Agricultural Policy. Science 2019, 365, 449–451. [Google Scholar] [CrossRef] [PubMed]
- European Court of Auditors. Organic Farming in the EU: Gaps and Inconsistencies Hamper the Success of the Policy. Special Report 19, 2024; Publications Office: Luxembourg, 2024. [Google Scholar]
- European Court of Auditors. Common Agricultural Policy Plans: Greener, but Not Matching the EU’s Ambitions for the Climate and the Environment. Special Report 20, 2024; Publications Office: Luxembourg, 2024. [Google Scholar]
- Princé, K.; Moussus, J.-P.; Jiguet, F. Mixed Effectiveness of French Agri-Environment Schemes for Nationwide Farmland Bird Conservation. Agric. Ecosyst. Environ. 2012, 149, 74–79. [Google Scholar] [CrossRef]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does Conservation on Farmland Contribute to Halting the Biodiversity Decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef]
- Calvi, G.; Campedelli, T.; Tellini Florenzano, G.; Rossi, P. Evaluating the Benefits of Agri-Environment Schemes on Farmland Bird Communities through a Common Species Monitoring Programme. A Case Study in Northern Italy. Agric. Syst. 2018, 160, 60–69. [Google Scholar] [CrossRef]
- Jeanneret, P.; Lüscher, G.; Schneider, M.K.; Pointereau, P.; Arndorfer, M.; Bailey, D.; Balázs, K.; Báldi, A.; Choisis, J.-P.; Dennis, P.; et al. An Increase in Food Production in Europe Could Dramatically Affect Farmland Biodiversity. Commun. Earth Environ. 2021, 2, 183. [Google Scholar] [CrossRef]
- Pe’er, G.; Finn, J.A.; Díaz, M.; Birkenstock, M.; Lakner, S.; Röder, N.; Kazakova, Y.; Šumrada, T.; Bezák, P.; Concepción, E.D.; et al. How Can the European Common Agricultural Policy Help Halt Biodiversity Loss? Recommendations by over 300 Experts. Conserv. Lett. 2022, 15, e12901. [Google Scholar] [CrossRef]
- Baráth, L.; Bakucs, Z.; Benedek, Z.; Fertő, I.; Nagy, Z.; Vígh, E.; Debrenti, E.; Fogarasi, J. Does Participation in Agri-Environmental Schemes Increase Eco-Efficiency? Sci. Total Environ. 2024, 906, 167518. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The New Common Agricultural Policy: 2023–27; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- European Commission; Joint Research Centre. Landscape Features in the EU Member States: A Review of Existing Data and Approaches; Publications Office: Luxembourg, 2022. [Google Scholar]
- European Commission. Safeguarding Food Security and Reinforcing the Resilience of Food Systems; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Morales, M.B.; Díaz, M.; Giralt, D.; Sardà-Palomera, F.; Traba, J.; Mougeot, F.; Serrano, D.; Mañosa, S.; Gaba, S.; Moreira, F.; et al. Protect European Green Agricultural Policies for Future Food Security. Commun. Earth Environ. 2022, 3, 217. [Google Scholar] [CrossRef]
- Sietz, D.; Klimek, S.; Dauber, J. Tailored Pathways toward Revived Farmland Biodiversity Can Inspire Agroecological Action and Policy to Transform Agriculture. Commun. Earth Environ. 2022, 3, 211. [Google Scholar] [CrossRef]
- Gregory, R.D.; Skorpilova, J.; Vorisek, P.; Butler, S. An Analysis of Trends, Uncertainty and Species Selection Shows Contrasting Trends of Widespread Forest and Farmland Birds in Europe. Ecol. Indic. 2019, 103, 676–687. [Google Scholar] [CrossRef]
- Williams-Guillén, K.; Olimpi, E.; Maas, B.; Taylor, P.J.; Arlettaz, R. Bats in the Anthropogenic Matrix: Challenges and Opportunities for the Conservation of Chiroptera and Their Ecosystem Services in Agricultural Landscapes. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 151–186. ISBN 978-3-319-25218-6. [Google Scholar]
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and Climate Change Are Reshaping Insect Biodiversity Worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Doxa, A.; Paracchini, M.L.; Pointereau, P.; Devictor, V.; Jiguet, F. Preventing Biotic Homogenization of Farmland Bird Communities: The Role of High Nature Value Farmland. Agric. Ecosyst. Environ. 2012, 148, 83–88. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Fuller, R.A.; Brooks, T.M.; Watson, J.E.M. Biodiversity: The Ravages of Guns, Nets and Bulldozers. Nature 2016, 536, 143–145. [Google Scholar] [CrossRef]
- Butler, S.J.; Vickery, J.A.; Norris, K. Farmland Biodiversity and the Footprint of Agriculture. Science 2007, 315, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batáry, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How Agricultural Intensification Affects Biodiversity and Ecosystem Services. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 55, pp. 43–97. ISBN 978-0-08-100935-2. [Google Scholar]
- Jeliazkov, A.; Bas, Y.; Kerbiriou, C.; Julien, J.-F.; Penone, C.; Le Viol, I. Large-Scale Semi-Automated Acoustic Monitoring Allows to Detect Temporal Decline of Bush-Crickets. Glob. Ecol. Conserv. 2016, 6, 208–218. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin Harcourt: Boston, MA, USA; New York, NY, USA, 1962. [Google Scholar]
- Siriwardena, G.M.; Baillie, S.R.; Buckland, S.T.; Fewster, R.M.; Marchant, J.H.; Wilson, J.D. Trends in the Abundance of Farmland Birds: A Quantitative Comparison of Smoothed Common Birds Census Indices. J. Appl. Ecol. 1998, 35, 24–43. [Google Scholar] [CrossRef]
- Donald, P.F.; Green, R.E.; Heath, M.F. Agricultural Intensification and the Collapse of Europe’s Farmland Bird Populations. Proc. R. Soc. Lond. B 2001, 268, 25–29. [Google Scholar] [CrossRef]
- Morrison, C.A.; Auniņš, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; Escandell, V.; Eskildsen, D.P.; Gamero, A.; Herrando, S.; et al. Bird Population Declines and Species Turnover Are Changing the Acoustic Properties of Spring Soundscapes. Nat. Commun. 2021, 12, 6217. [Google Scholar] [CrossRef] [PubMed]
- Tucker, G.; Heath, M.F. (Eds.) Birds in Europe: Their Conservation Status; BirdLife Conservation Series; BirdLife International: Cambridge, UK, 1995; ISBN 978-0-946888-29-0. [Google Scholar]
- BirdLife International. European Birds of Conservation Concern: Populations, Trends and National Responsibilities; BirdLife International: Cambridge, UK, 2017. [Google Scholar]
- Chamberlain, D.E.; Fuller, R.J.; Garthwaite, D.G.; Impey, A.J. A Comparison of Farmland Bird Density and Species Richness in Lowland England between Two Periods of Contrasting Agricultural Practice. Bird Study 2001, 48, 245–251. [Google Scholar] [CrossRef]
- Gregory, R.D.; Van Strien, A.; Vorisek, P.; Gmelig Meyling, A.W.; Noble, D.G.; Foppen, R.P.B.; Gibbons, D.W. Developing Indicators for European Birds. Phil. Trans. R. Soc. B 2005, 360, 269–288. [Google Scholar] [CrossRef]
- Rigal, S.; Dakos, V.; Alonso, H.; Auniņš, A.; Benkő, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; De Carli, E.; Del Moral, J.C.; et al. Farmland Practices Are Driving Bird Population Decline across Europe. Proc. Natl. Acad. Sci. USA 2023, 120, e2216573120. [Google Scholar] [CrossRef]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Carvalho, C.R.; de Snoo, G.R.; Eden, P. Ecological Impacts of Arable Intensification in Europe. J. Environ. Manag. 2001, 63, 337–365. [Google Scholar] [CrossRef]
- Newton, I. The Recent Declines of Farmland Bird Populations in Britain: An Appraisal of Causal Factors and Conservation Actions. Ibis 2004, 146, 579–600. [Google Scholar] [CrossRef]
- Wilson, J.D.; Whittingham, M.J.; Bradbury, R.B. The Management of Crop Structure: A General Approach to Reversing the Impacts of Agricultural Intensification on Birds? Ibis 2005, 147, 453–463. [Google Scholar] [CrossRef]
- Rete Rurale Nazionale, Lipu. Uccelli Comuni delle Zone Agricole in Italia. Aggiornamento degli Andamenti di Popolazione e del Farmland Bird Index per la Rete Rurale Nazionale dal 2000 al 2022; Parma: Roma, Italy, 2023; Available online: https://www.reterurale.it/flex/cm/pages/ServeAttachment.php/L/IT/D/1%252F6%252F2%252FD.75b4b7d47d8592697930/P/BLOB%3AID%3D25243/E/pdf (accessed on 31 January 2025).
- Campedelli, T.; Tellini Florenzano, G.; Sorace, A.; Mini, L.; Campedelli, T.; Tellini, F.G.; Sorace, A.; Fornasari, L.; Londi, G.; Mini, L. Species Selection to Develop an Italian Farmland Bird Index. Avocetta 2009, 33, 87–91. [Google Scholar]
- Rete Rurale Nazionale, LIPU. Farmland Bird Index Nazionale e Andamenti di Popolazione delle Specie in Italia nel Periodo 2000–2023; Metodologie e Database; Parma: Roma, Iyaly, 2024. [Google Scholar]
- Eurostat. Statistic Explained: Agri-Environmental Indicator—High Nature Value Farmland. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_High_Nature_Value_farmland (accessed on 31 January 2025).
- IEEP. Guidance Document to the Member States on the Application of the High Nature Value Indicator. Report for DG Agriculture.Contract Notice 2006-G4-04; IEEP: Bruxelles, Belgium, 2007. [Google Scholar]
- Kikas, T.; Bunce, R.G.H.; Kull, A.; Sepp, K. New High Nature Value Map of Estonian Agricultural Land: Application of an Expert System to Integrate Biodiversity, Landscape and Land Use Management Indicators. Ecol. Indic. 2018, 94, 87–98. [Google Scholar] [CrossRef]
- Lomba, A.; Alves, P.; Jongman, R.H.G.; McCracken, D.I. Reconciling Nature Conservation and Traditional Farming Practices: A Spatially Explicit Framework to Assess the Extent of High Nature Value Farmlands in the European Countryside. Ecol. Evol. 2015, 5, 1031–1044. [Google Scholar] [CrossRef]
- Lomba, A.; Guerra, C.; Alonso, J.; Honrado, J.P.; Jongman, R.; McCracken, D. Mapping and Monitoring High Nature Value Farmlands: Challenges in European Landscapes. J. Environ. Manag. 2014, 143, 140–150. [Google Scholar] [CrossRef]
- Bozzo, F.; Fucilli, V.; Petrontino, A.; Girone, S. Identification of High Nature Value Farmland: A Methodological Proposal. Ital. Rev. Agric. Econ. 2019, 74, 29–41. [Google Scholar] [CrossRef]
- Li, C.; Lin, F.; Aizezi, A.; Zhang, Z.; Song, Y.; Sun, N. Identification and Mapping of High Nature Value Farmland in the Yellow River Delta Using Landsat-8 Multispectral Data. ISPRS Int. J. Geo-Inf. 2022, 11, 604. [Google Scholar] [CrossRef]
- Campedelli, T.; Calvi, G.; Rossi, P.; Trisorio, A.; Tellini Florenzano, G. The Role of Biodiversity Data in High Nature Value Farmland Areas Identification Process: A Case Study in Mediterranean Agrosystems. J. Nat. Conserv. 2018, 46, 66–78. [Google Scholar] [CrossRef]
- Andersen, E.; Baldock, D.; Bennett, H.; Beaufoy, G.; Bignal, E.; Brouwer, F.; Elbersen, B.; Eiden, G.; Godeschalk, F.; Jones, G.; et al. Developing a High Nature Value Indicator; IEEP: Bruxelles, Belgium, 2004; Available online: https://ieep.eu/publications/developing-a-high-nature-value-farming-area-indicator/ (accessed on 31 January 2025).
- De Natale, F.; Pignatti, G.; Trisorio, A. Aree Agricole ad Alto Valore Naturale. Approccio della Copertura del Suolo; Rete Rurale Nazionale, Task Force Monitoraggio e Valutazione: Roma, Italy, 2014; Available online: https://www.reterurale.it/flex/cm/pages/ServeAttachment.php/L/IT/D/u%252Fn%252Fi%252FD.2437fe3f61f29ffae186/P/BLOB%3AID%3D13563/E/pdf (accessed on 31 January 2025).
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
- CREA. L’agricoltura Pugliese Conta 2024; CREA Centro di ricerca Politiche e Bioeconomia: Roma, Italy, 2024. Available online: https://www.crea.gov.it/documents/68457/0/Regioconta_Puglia_+2024_DEF_WEB.pdf/19fdeb2c-a382-d3fc-bc7a-36bcb85b4db6?t=1711474199633 (accessed on 31 January 2025).
- Sigismondi, A.; Tedesco, N. Natura in Puglia. Flora, Fauna e Ambienti Naturali; Mario Adda Editore: Bari, Italy, 1990. [Google Scholar]
- Ntona, M.M.; Chalikakis, K.; Busico, G.; Mastrocicco, M.; Kalaitzidou, K.; Kazakis, N. Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water 2023, 15, 4018. [Google Scholar] [CrossRef]
- Bibby, C.; Burgess, N.; Hill, D.; Mustoe, S. Bird Census Techniques, 2nd ed.; Academic Press: London, UK, 2000; ISBN 9780120958313. [Google Scholar]
- Blondel, J.; Ferry, C.; Frochot, B. Point Counts with Unlimited Distance. Stud. Avian Ecol. 1981, 6, 414–420. [Google Scholar]
- Regione Puglia. Uso Del Suolo 2011—UDS; Regione Puglia: Bari, Italy, 2011. [Google Scholar]
- Whittaker, R.H. Communities and Ecosystems, 2nd Revise ed.; MacMillan Publishing Co.: New York, NY, UA, 1975. [Google Scholar]
- Regione Puglia. Delibe razione Della Giunta Regionale 21 dicembre 2018, n. 2442 DGR 2442/2018. Natura 2000 Network. Identification of Habitats and Plant and Animal Species of Community Interest in the Apulia Region; Regione Puglia: Bari, Italy, 2018. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2023-1; IUCN: Gland, Switzerland, 2024. [Google Scholar]
- Rete Rurale Nazionale, Lipu. Puglia—Farmland Bird Index e Andamenti di Popolazione delle Specie 2000–2024; Parma: Roma, Italy, 2024; Available online: https://www.reterurale.it/flex/cm/pages/ServeAttachment.php/L/IT/D/d%252F3%252Fc%252FD.c3aad6b80d6102caed13/P/BLOB%3AID%3D26413/E/pdf (accessed on 31 January 2025).
- Bussenschutt, M.; Pahl-Wostl, C. Diversity Patterns in Climax Communities. Oikos 1999, 87, 531. [Google Scholar] [CrossRef]
- He, F.; Tang, D. Estimating the Niche Preemption Parameter of the Geometric Series. Acta Oecologica 2008, 33, 105–107. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing Crop Heterogeneity Enhances Multitrophic Diversity across Agricultural Regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed]
- Flohre, A.; Fischer, C.; Aavik, T.; Bengtsson, J.; Berendse, F.; Bommarco, R.; Ceryngier, C.; Clement, L.W.; Dennis, C.; Eggers, S.; et al. Agricultural Intensification and Biodiversity Partitioning in European Landscapes Comparing Plants, Birds and Arthropods. Ecol. Appl. 2020, 30, 1772–1781. [Google Scholar]
- Thompson, G.; Perez, J.; Miller, T. Impacts of Land Use Changes on Avian Diversity. Ecol. Appl. 2023, 33. [Google Scholar]
- Chamberlain, D.E.; Arlettaz, R.; Caprio, E.; Maggini, R.; Pedrini, P.; Rolando, A.; Zbinden, N. The Influence of Agricultural Intensification on Bird Conservation in Europe: Current Knowledge and Future Directions. Conserv. Biol. 2020, 4, 833–843. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- BirdLife International. Falco Vespertinus. The IUCN Red List of Threatened Species 2021; BirdLife International: Cambridge, UK, 2022. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2024-2; IUCN: Gland, Switzerland, 2024. [Google Scholar]
- Kremen, C.; Merenlender, A.M. Landscapes That Work for Biodiversity and People. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming—Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Fischer, J.; Riechers, M.; Loos, J.; Martin-Lopez, B.; Temperton, V.M. Making the UN Decade on Ecosystem Restoration a Social-Ecological Endeavour. Trends Ecol. Evol. 2021, 36, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Davis, A.; White, S. Conservation Strategies in Mixed-Use Landscapes. Conserv. Biol. 2020, 4, 545–558. [Google Scholar]
- Anderson, R.; Johnson, L.; Lee, M. Enhancing Habitat Heterogeneity through Mixed Land-Use Practices. Biodivers. Conserv. J. 2022, 45, 321–336. [Google Scholar]
- Perez, J.; Thompson, G. Land Use Planning for Biodiversity Conservation. Environ. Manag. 2023, 60, 98–112. [Google Scholar]
- Davis, R.; Smith, R.; Brown, A. Protecting Natural Habitats: Policy Implications and Strategies. Environ. Policy Rev. 2021, 29, 87–103. [Google Scholar]
- Johnson, L.; Thompson, G.; Perez, J. Agroecological Practices for Biodiversity Conservation. Sustain. Agric. J. 2020, 38, 789–805. [Google Scholar]
- Lee, M.; Ramirez, R.; Anderson, R. Incentivizing Sustainable Land Management. Land Use Policy 2021, 47, 215–229. [Google Scholar]
- Morgan, K.; White, S. Continuous Biodiversity Monitoring for Adaptive Management. Biodivers. Sci. 2023, 29, 456–472. [Google Scholar]
- Gill, F.; Donsker, D.; Rasmussen, P. (Eds.) IOC World Bird List (v13.2); IOC: New Delhi, India, 2023. [Google Scholar]
- HBW and BirdLife International. Handbook of the Birds of the World and BirdLife International Digital Checklist of the Birds of the World. Version 9. 2024. Available online: http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v9_Oct24.zip (accessed on 31 January 2025).
Regional Land-Use Map # | Present Work | ||
---|---|---|---|
CLC Classes | Description | Land Macro Classes | Area * (ha) |
Utilized agricultural areas | Arable land, vineyards, olive groves, orchards, etc. | AGR | 29.5 |
Wooded areas and semi-natural environments | Presence of forests, natural pasture areas, various types of vegetation, beaches, dunes and sands. | NAT | 26.4 |
Wetlands | Wetlands, marshes, coastal lagoons | NAT | 5.5 |
Water bodies | Rivers, streams, canals. | NAT | 1.4 |
Total | 62.8 |
AGR | MIX | NAT | |
---|---|---|---|
1. Species abundance | 277 | 419 | 484 |
2. Species richness | 26 | 58 | 66 |
2.a Exclusive species | 0 | 10 | 22 |
2.b Shared species | 26 | 48 | 44 |
3. Abundance/richness | 10.65 | 7.22 | 7.33 |
4. Species redundancy | 0.98 | 2.18 | 2.48 |
Land | N. | Q (Sp. Abundance) | R (Sp. Richness) | H (Shannon–Wiener) | S (Simpson) | ||||
---|---|---|---|---|---|---|---|---|---|
Category | Sites | Mean | Std Err. | Mean | Std Err. | Mean | Std Err. | Mean | Std Err. |
AGR | 4.70 | 58.96 | ±11.74 | 9.87 | ±1.50 A | 1.83 | ±0.11 A | 0.549 | ±0.020 |
MIX | 6.68 | 62.72 | ±9.86 | 16.42 | ±1.26 B | 2.37 | ±0.09 B | 0.542 | ±0.017 |
NAT | 8.62 | 56.14 | ±8.68 | 17.16 | ±1.11 B | 2.41 | ±0.08 B | 0.558 | ±0.015 |
20.00 | p = 0.88; n.s. | p = 0.001; ** | p = 0.0002; *** | p = 0.77; n.s. |
Model Term | Q | Std Err | R | Std Err | H | Std Err | S | Std Err | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGR vs. MIX | ||||||||||||
Intercept | −0.182 | ±1.157 | n.s. | 6.600 | ±4.28 | ** | 10.86 | ±6.50 | ** | 1.34 | ±5.37 | n.s |
Slope | −0.002 | ±0.016 | n.s. | −0.55 | ±0.34 | ** | −5.34 | ±3.12 | ** | −1.81 | ±9.78 | n.s. |
MIX vs. NAT | ||||||||||||
Intercept | −0.579 | 1.028 | n.s. | 0.27 | ±1.88 | n.s. | 0.72 | ±3.95 | n.s. | 2.25 | ±4.88 | n.s. |
Slope | 0.005 | 0.015 | n.s. | −0.03 | ±0.11 | n.s. | −0.41 | ±1.64 | n.s. | 4.55 | ±8.85 | n.s. |
p = 0.935 n.s. | p = 0.007 ** | p = 0.0145 * | p = 0.869 n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioiosa, M.; Spada, A.; Cammerino, A.R.B.; Ingaramo, M.; Monteleone, M. Can Agriculture Conserve Biodiversity? Structural Biodiversity Analysis in a Case Study of Wild Bird Communities in Southern Europe. Environments 2025, 12, 129. https://doi.org/10.3390/environments12040129
Gioiosa M, Spada A, Cammerino ARB, Ingaramo M, Monteleone M. Can Agriculture Conserve Biodiversity? Structural Biodiversity Analysis in a Case Study of Wild Bird Communities in Southern Europe. Environments. 2025; 12(4):129. https://doi.org/10.3390/environments12040129
Chicago/Turabian StyleGioiosa, Maurizio, Alessia Spada, Anna Rita Bernadette Cammerino, Michela Ingaramo, and Massimo Monteleone. 2025. "Can Agriculture Conserve Biodiversity? Structural Biodiversity Analysis in a Case Study of Wild Bird Communities in Southern Europe" Environments 12, no. 4: 129. https://doi.org/10.3390/environments12040129
APA StyleGioiosa, M., Spada, A., Cammerino, A. R. B., Ingaramo, M., & Monteleone, M. (2025). Can Agriculture Conserve Biodiversity? Structural Biodiversity Analysis in a Case Study of Wild Bird Communities in Southern Europe. Environments, 12(4), 129. https://doi.org/10.3390/environments12040129