Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia)
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sampling Strategy
2.3. Laboratory Methods
3. Results and Discussion
Molecular Structure of HAs Isolated from Soils and Relict Organic Matter of the Ice Complex
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Soil organic matter |
RTS | Retrogressive thaw slump |
HAs | Humic acids |
WRB | World reference base |
PCA | Principal component analysis |
References
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, C.; Huntingford, C.; Tarolli, P.; Li, D.; Panagos, P.; Yue, Y.; Borrelli, P.; Van Oost, K. The Impacts of Erosion on the Carbon Cycle. Rev. Geophys. 2025, 63, e2023RG000829. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef]
- Zondervan, J.R.; Hilton, R.G.; Dellinger, M.; Clubb, F.J.; Roylands, T.; Ogrič, M. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature 2023, 623, 329–333. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Bristol, E.M.; Behnke, M.I.; Spencer, R.G.M.; McKenna, A.; Jones, B.M.; Bull, D.L.; McClelland, J.W. Eroding Permafrost Coastlines Release Biodegradable Dissolved Organic Carbon to the Arctic Ocean. J. Geophys. Res. Biogeosci. 2024, 129, e2024JG008233. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Walter Anthony, K.; Schneider von Deimling, T.; Nitze, I.; Frolking, S.; Emond, A.; Daanen, R.; Anthony, P.; Lindgren, P.; Jones, B.; Grosse, G. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 2018, 9, 3262. [Google Scholar] [CrossRef] [PubMed]
- Tanski, G.; Bröder, L.; Wagner, D.; Knoblauch, C.; Lantuit, H.; Beer, C.; Sachs, T.; Fritz, M.; Tesi, T.; Koch, B.P.; et al. Permafrost Carbon and CO2 Pathways Differ at Contrasting Coastal Erosion Sites in the Canadian Arctic. Front. Earth Sci. 2021, 9, 630493. [Google Scholar] [CrossRef]
- Murton, J.B.; Edwards, M.E.; Lozhkin, A.V.; Anderson, P.M.; Savvinov, G.N.; Bakulina, N.; Bondarenko, O.V.; Cherepanova, M.V.; Danilov, P.P.; Boeskorov, V.; et al. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quat. Res. 2017, 87, 314–330. [Google Scholar] [CrossRef]
- Murton, J.; Opel, T.; Wetterich, S.; Ashastina, K.; Savvinov, G.; Danilov, P.; Boeskorov, V. Batagay megaslump: A review of the permafrost deposits, Quaternary environmental history, and recent development. Permafr. Periglac. Process. 2023, 34, 399–416. [Google Scholar] [CrossRef]
- Strauss, J.; Schirrmeister, L.; Grosse, G.; Wetterich, S.; Ulrich, M.; Herzschuh, U.; Hubberten, H.-W. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 2013, 40, 6165–6170. [Google Scholar] [CrossRef]
- Grosse, G.; Harden, J.; Turetsky, M.; McGuire, A.D.; Camill, P.; Tarnocai, C.; Frolking, S.; Schuur, E.A.G.; Jorgenson, T.; Marchenko, S.; et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Strauss, J.; Schirrmeister, L.; Grosse, G.; Fortier, D.; Hugelius, G.; Knoblauch, C.; Romanovsky, V.; Schädel, C.; Schneider von Deimling, T.; Schuur, E.A.G.; et al. Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 2017, 172, 75–86. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Beer, C.; Sosnin, A.; Wagner, D.; Pfeiffer, E.M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 2013, 19, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Kizyakov, A.I.; Wetterich, S.; Günther, F.; Opel, T.; Jongejans, L.L.; Courtin, J.; Meyer, H.; Shepelev, A.G.; Syromyatnikov, I.I.; Fedorov, A.N.; et al. Landforms and degradation pattern of the Batagay thaw slump, Northeastern Siberia. Geomorphology 2023, 420, 108501. [Google Scholar] [CrossRef]
- Kunitsky, V.V.; Syromyatnikov, I.I.; Schirrmeister, L. Ice-rich permafrost and thermal denudation in the batagay area (Yana Upland, East Siberia). Earth Cryosphere 2013, 17, 56–68. [Google Scholar]
- Vasil’chuk, Y.K.; Vasil’chuk, D.Y.; Ginzburg, A.P. Cryogenic soils in the area of Batagai crater in Northern Yakutia. Arctika I. Antarkt 2020, 3, 52–98. [Google Scholar]
- Lupachev, A.V.; Tananaev, N.I.; Murton, J.B.; Kalinin, P.I.; Malyshev, V.V.; Danilov, P.P. Microstructure and geochemical properties of modern and buried soils and hosting permafrost sediments of the Batagay retrogressive thaw slump. Quat. Res. 2025, 125, 35–55. [Google Scholar] [CrossRef]
- Kizyakov, A.I.; Korotaev, M.V.; Wetterich, S.; Opel, T.; Pravikova, N.V.; Fritz, M.; Lupachev, A.V.; Günther, F.; Shepelev, A.G.; Syromyatnikov, I.I.; et al. Characterizing Batagay megaslump topography dynamics and matter fluxes at high spatial resolution using a multidisciplinary approach of permafrost field observations, remote sensing and 3D geological modeling. Geomorphology 2024, 455, 109183. [Google Scholar] [CrossRef]
- Serikova, S.; Pokrovsky, O.S.; Ala-Aho, P.; Kazantsev, V.; Kirpotin, S.N.; Kopysov, S.G.; Krickov, I.V.; Laudon, H.; Manasypov, R.M.; Shirokova, L.S.; et al. High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nat. Geosci. 2018, 11, 825–829. [Google Scholar] [CrossRef]
- Lodygin, E.; Abakumov, E. The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review. Agronomy 2024, 14, 1003. [Google Scholar] [CrossRef]
- Chukov, S.N.; Lodygin, E.D.; Abakumov, E.V. Application of 13C NMR Spectroscopy to the Study of Soil Organic Matter: A Review of Publications. Eurasian Soil Sci. 2018, 51, 889–900. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E. Assessments of Organic Carbon Stabilization Using the Spectroscopic Characteristics of Humic Acids Separated from Soils of the Lena River Delta. Separations 2021, 8, 87. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The Molecular Composition of Humic Acids in Permafrost Peats in the European Arctic as Paleorecord of the Environmental Conditions of the Holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- Alekseev, I.; Abakumov, E. Soil organic carbon stocks and stability of organic matter in permafrost-affected soils of Yamal region, Russian Arctic. Geoderma Reg. 2022, 28, e00454. [Google Scholar] [CrossRef]
- Murton, J.B.; Opel, T.; Toms, P.; Blinov, A.; Fuchs, M.; Wood, J.; Gärtner, A.; Merchel, S.; Rugel, G.; Savvinov, G.; et al. A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia. Quat. Res. 2021, 105, 1–22. [Google Scholar] [CrossRef]
- Günther, F.; Grosse, G.; Jones, B.M.; Schirrmeister, L.; Romanovsky, V.E.; Kunitsky, V.V. Unprecedented permafrost thaw dynamics on a decadal time scale: Batagay mega thaw slump development, Yana Uplands, Yakutia, Russia. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; p. 12. [Google Scholar]
- Savvinov, G.N.; Danilov, P.P.; Petrov, A.A. Environmental Problems of the Verkhoyansky Region. Vestn. North-East. Fed. Univ. 2018, 6, 18–33. [Google Scholar]
- Gavrilov, A.V. Yano-Oymyakonskiy Region. Geocryology of USSR, Eastern Siberia and Far East; Nedra: Moscow, Russia, 1989. [Google Scholar]
- Shestakova, A.A.; Fedorov, A.N.; Torgovkin, Y.I.; Konstantinov, P.Y.; Vasyliev, N.F.; Kalinicheva, S.V.; Samsonova, V.V.; Hiyama, T.; Iijima, Y.; Park, H.; et al. Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS. Land 2021, 10, 462. [Google Scholar] [CrossRef]
- Isaev, A.P.; Protopopov, A.V.; Protopopova, V.V.; Egorova, A.A.; Timofeyev, P.A.; Nikolaev, A.N.; Shurduk, I.F.; Lytkina, L.P.; Ermakov, N.B.; Nikitina, N.V.; et al. Vegetation of Yakutia: Elements of Ecology and Plant Sociology. In The Far North: Plant Biodiversity and Ecology of Yakutia; Troeva, E.I., Isaev, A.P., Cherosov, M.M., Karpov, N.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 143–260. [Google Scholar]
- Ashastina, K.; Kuzmina, S.; Rudaya, N.; Troeva, E.; Schoch, W.H.; Römermann, C.; Reinecke, J.; Otte, V.; Savvinov, G.; Wesche, K.; et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quat. Sci. Rev. 2018, 196, 38–61. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 234. [Google Scholar]
- Gubin, S.V. Late Pleistocene pedogenesis on the territory of North-East Eurasia. Dokl. Akad. Nauk. SSSR 1996, 351, 544–547. [Google Scholar]
- Gubin, S.V. Pedogenesis as the element of the formation mechanism of the Late Pleistocene Ice Complex. Earth’s Cryosphere 2002, 6, 82–91. [Google Scholar]
- Vorobyova, L.A. Theory and Practice of Chemical Analysis of Soils; GEOS: Moscow, Russia, 2006; p. 400. [Google Scholar]
- Vasilevich, R.S.; Beznosikov, V.A.; Lodygin, E.D. Molecular Structure of Humus Substances in Permafrost Peat Mounds in Forest-Tundra. Eurasian Soil Sci. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Schädel, C.; Schuur, E.A.G.; Bracho, R.; Elberling, B.; Knoblauch, C.; Lee, H.; Luo, Y.; Shaver, G.R.; Turetsky, M.R. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 2014, 20, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.; Orlova, K.; Abakumov, E. Soils of the Lena River Delta, Yakutia, Russia: Diversity, Characteristics and Humic Acids Molecular Composition. Polarforschung 2018, 88, 135–150. [Google Scholar]
- Dergacheva, M.I.; Nekrasova, O.A.; Okoneshnikova, M.V.; Vasileva, D.I.; Gavrilov, D.A.; Ochur, K.O.; Ondar, E.E. Ratio of elements in humic acids as a source of information on the environment of soil formation. Contemp. Probl. Ecol. 2012, 5, 497–504. [Google Scholar] [CrossRef]
- Polyakov, V.; Lupachev, A.; Gubin, S.; Abakumov, E. Soil Organic Matter of Tidal Marsh Permafrost-Affected Soils of Kolyma Lowland. Agronomy 2023, 13, 48. [Google Scholar] [CrossRef]
- Sycheva, S.A.; Anisyutkin, N.K.; Khokhlova, O.S.; Pushkina, P.R.; Ukrainsky, P.A. Paleoecology of a Multilayered Early Paleolithic Site Bairaki in Transnistria. Izv. Ross. Akad. Nauk. Seriâ Geogr. 2023, 87, 1238–1257. [Google Scholar] [CrossRef]
- Chen, J.; Gu, B.; LeBoeuf, E.J.; Pan, H.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Semenov, V.M.; Ivannikov, L.A.; Tulina, A.S. Stabilization of organic matter in the soil. Agrochimia 2009, 10, 77–96. [Google Scholar]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Carey, M.P.; Koch, J.C.; Baughman, C.; Hill, K.; Zimmerman, C.E.; Sullivan, P.F.; Dial, R.; Lyons, T.; Cooper, D.J.; et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 2024, 5, 268. [Google Scholar] [CrossRef]
- Revich, B.A.; Eliseev, D.O.; Shaposhnikov, D.A. Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere 2022, 13, 532. [Google Scholar] [CrossRef]
ID | Index | Marine Isotope Stage | Horizon | Depth | Location | Name (WRB [36]) |
---|---|---|---|---|---|---|
1 | BTG-23-08 | Modern soil | He | 1–9 cm | Undisturbed soil, formed to the east relatively from Batagay RTS. Histic Cryosol. N 67.578406, E 134.783202 | Histic Cryosol |
2 | Bh | 9–50 cm | ||||
3 | BTG-23-11 | MIS 5e | [He] | 20–25 m | Buried paleosol. Histic Gleyic Cryosol. N 67.577686, E 134.777580 (BTG-23-11), N 67.578988, E 134.762130 (BTG 23-07) | Buried Histic Spodic Cryosol |
4 | [Bs] | |||||
5 | BTG-23-07 | [He] | Paleoerosional cuts | |||
6 | BTG-23-06 | MIS 7 or 15-17 | [O] | More than 60 m | Visible foot of the Ice Complex. Histic Gleyic Cryosol. N 67.577284, E 134.762860 | Buried Histic Reductaquic Cryosol |
7 | [He] | |||||
8 | [Bl] |
ID | Index | Horizon | N, % | C, % | H, % | O, % | C/N | H/C | O/C | w |
---|---|---|---|---|---|---|---|---|---|---|
1 | BTG-23-08 | He | 2.36 ± 0.01 | 54.91 ± 0.11 | 5.14 ± 0.19 | 37.59 ± 0.31 | 27.16 | 1.11 | 0.51 | −0.08 |
2 | Bh | 2.9 ± 0.06 | 54.88 ± 0.16 | 5.04 ± 0.05 | 37.18 ± 0.19 | 22.09 | 1.09 | 0.51 | −0.08 | |
3 | BTG-23-11 | [He] | 3.15 ± 0.03 | 52.07 ± 0.15 | 5.17 ± 0.09 | 39.61 ± 0.21 | 19.28 | 1.18 | 0.57 | −0.04 |
4 | [Bs] | 2.17 ± 0.15 | 54.02 ± 2.46 | 5.39 ± 0.38 | 38.42 ± 2.92 | 29.08 | 1.18 | 0.54 | −0.11 | |
5 | BTG-23-07 | [He] | 2.32 ± 0.05 | 53.94 ± 0.04 | 5.15 ± 0.12 | 38.59 ± 0.14 | 27.10 | 1.14 | 0.54 | −0.06 |
6 | BTG-23-06 | [O] | 1.79 ± 0.11 | 52.45 ± 0.41 | 4.61 ± 0.07 | 41.15 ± 0.55 | 34.32 | 1.04 | 0.59 | 0.13 |
7 | [He] | 1.76 ± 0.03 | 56.21 ± 0.16 | 4.87 ± 0.12 | 37.16 ± 0.28 | 37.31 | 1.03 | 0.5 | −0.04 | |
8 | [Bl] | 2.48 ± 0.07 | 55.72 ± 0.04 | 4.94 ± 0.07 | 36.86 ± 0.11 | 26.22 | 1.05 | 0.5 | −0.06 |
ID | Horizon | Chemical Shifts, % of 13C | AR * | AL ** | AR/AL | AL h,r + AR h,r | C,H-AL/O,N—AL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C,H-Al | O,N-Al | CH2OH | C,H-Ar | O,N-Ar | COO-R | Ar=O | C=O | |||||||
1 | He | 32 | 7 | 15 | 23 | 8 | 11 | 1 | 3 | 32 | 68 | 0.47 | 55 | 1.45 |
2 | Bh | 35 | 7 | 12 | 24 | 7 | 12 | 1 | 2 | 32 | 68 | 0.47 | 59 | 1.84 |
3 | [He] | 29 | 8 | 17 | 22 | 7 | 14 | 1 | 2 | 30 | 70 | 0.43 | 51 | 1.16 |
4 | [Bs] | 36 | 7 | 13 | 22 | 7 | 12 | 1 | 2 | 30 | 70 | 0.43 | 58 | 1.8 |
5 | [He] | 28 | 8 | 16 | 23 | 9 | 12 | 1 | 3 | 33 | 67 | 0.49 | 51 | 1.16 |
6 | [O] | 25 | 6 | 14 | 29 | 10 | 12 | 1 | 3 | 40 | 60 | 0.67 | 54 | 1.25 |
7 | [He] | 26 | 7 | 18 | 24 | 10 | 11 | 1 | 3 | 35 | 65 | 0.54 | 50 | 1.04 |
8 | [Bl] | 28 | 7 | 16 | 26 | 9 | 12 | 1 | 1 | 36 | 64 | 0.56 | 54 | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Lupachev, A.; Abakumov, E.; Danilov, P. Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia). Environments 2025, 12, 282. https://doi.org/10.3390/environments12080282
Polyakov V, Lupachev A, Abakumov E, Danilov P. Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia). Environments. 2025; 12(8):282. https://doi.org/10.3390/environments12080282
Chicago/Turabian StylePolyakov, Vyacheslav, Alexey Lupachev, Evgeny Abakumov, and Petr Danilov. 2025. "Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia)" Environments 12, no. 8: 282. https://doi.org/10.3390/environments12080282
APA StylePolyakov, V., Lupachev, A., Abakumov, E., & Danilov, P. (2025). Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia). Environments, 12(8), 282. https://doi.org/10.3390/environments12080282