Next Issue
Volume 12, September
Previous Issue
Volume 12, July
 
 

Environments, Volume 12, Issue 8 (August 2025) – 40 articles

Cover Story (view full-size image): A comprehensive One Health approach integrates animal health and environmental health. This study uses a Life Cycle Assessment (LCA) to bridge nutritional and environmental considerations of zinc supplementation in weaned pigs. High-dose therapeutic zinc oxide, commonly used to decrease morbidity and mortality, leads to mixed environmental burdens. Our findings highlight the importance of balancing pig performance with environmental stewardship, advocating for sustainable strategies that consider the full lifecycle impacts of nutritional interventions in livestock. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 1781 KB  
Article
Small-Scale Farming, Pesticide Exposure, and Respiratory Health: A Cross-Sectional Study in Bolivia
by Maria Teresa Solís-Soto, Jonas Walber, Armando Basagoitia, Ondine S. von Ehrenstein and Katja Radon
Environments 2025, 12(8), 290; https://doi.org/10.3390/environments12080290 - 21 Aug 2025
Viewed by 712
Abstract
This study analyzed the relationship between pesticide exposure with respiratory symptoms and lung function among small-scale farm workers in rural communities of Sucre, Bolivia. A cross-sectional study was conducted including 277 farmers and 214 non-farmers ≥ 16 years. Pesticide exposure and respiratory symptoms [...] Read more.
This study analyzed the relationship between pesticide exposure with respiratory symptoms and lung function among small-scale farm workers in rural communities of Sucre, Bolivia. A cross-sectional study was conducted including 277 farmers and 214 non-farmers ≥ 16 years. Pesticide exposure and respiratory symptoms were assessed by questionnaire, and lung function was assessed by spirometry. Logistic regression models were used to estimate odds ratios and 95% confidence intervals for associations between pesticide exposure and respiratory symptoms, while multiple linear regression was employed to estimate associations with lung function. The adjusted regression models indicated a positive association between pesticide exposure and chronic cough or phlegm (aOR 1.22; 95% CI 1.0 to 1.5), chest tightness (1.14; 1.0 to 1.3), and nasal allergies (1.21; 1.0 to 1.4). Also, pesticide exposure showed a slight positive association with FVC (β = 0.04; 95% CI = 0.01 to 0.07). Agricultural work (vs. non-agricultural work) showed a dual effect; on the one hand, it showed a negative association with lung function (FEV1/FVC (%): −1.57; 95% CI = −3.25 to −0.11); on the other hand, it seemed to be a protective factor for nasal allergies (aOR 0.31; 95% CI 0.1–0.8). Our study suggests an association between pesticide exposure and respiratory symptoms and farm work with lung function parameters. The results underscore the need to enhance programs that regulate and train farmers on the use of pesticides, thereby reducing health effects on workers and agricultural and neighboring communities. Full article
Show Figures

Graphical abstract

21 pages, 2738 KB  
Article
Multivariate and Machine Learning-Based Assessment of Soil Elemental Composition and Pollution Analysis
by Wael M. Badawy, Fouad I. El-Agawany, Maksim G. Blokhin, Elsayed S. Mohamed, Alexander Uzhinskiy and Tarek M. Morsi
Environments 2025, 12(8), 289; https://doi.org/10.3390/environments12080289 - 21 Aug 2025
Viewed by 687
Abstract
The present study provides a comprehensive characterization of soil elemental composition in the Nile Delta, Egypt. The soil samples were analyzed using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), highly appropriative for the major element determination and Inductively Coupled Plasma Mass Spectrometry (ICP–MS), [...] Read more.
The present study provides a comprehensive characterization of soil elemental composition in the Nile Delta, Egypt. The soil samples were analyzed using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), highly appropriative for the major element determination and Inductively Coupled Plasma Mass Spectrometry (ICP–MS), outstanding for the trace element analysis. A total of 55 elements were measured across 53 soil samples. A variety of statistical and analytical techniques, including both descriptive and inferential methods, were employed to assess the elemental composition of the soil. Bivariate and multivariate statistical analyses, discriminative ternary diagrams, ratio biplots, and unsupervised machine learning algorithms—such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and Hierarchical Agglomerative Clustering (HAC)—were utilized to explore the geochemical similarities between elements in the soil. The application of t-SNE for soil geochemistry is still emerging and is characterized by the fact that it preserves the local distribution of elements and reveals non-linear relationships in geochemical research compared to PCA. Geochemical background levels were estimated using Bayesian inference, and the impact of outliers was analyzed. Pollution indices were subsequently calculated to assess potential contamination. The findings suggest that the studied areas do not exhibit significant pollution. Variations in background levels were primarily attributed to the presence of outliers. The clustering results from PCA and t-SNE were consistent in terms of accuracy and the number of identified groups. Four distinct groups were identified, with soil samples in each group sharing similar geochemical properties. While PCA is effective for linear data, t-SNE proved more suitable for nonlinear dimensionality reduction. These results provide valuable baseline data for future research on the studied areas and for evaluating their environmental situation. Full article
Show Figures

Figure 1

30 pages, 8812 KB  
Article
Efficient and Sustainable Removal of Phosphates from Wastewater Using Autoclaved Aerated Concrete and Pumice
by Oanamari Daniela Orbuleț, Cristina Modrogan, Magdalena Bosomoiu, Mirela Cișmașu (Enache), Elena Raluca Cîrjilă (Mihalache), Adina-Alexandra Scarlat (Matei), Denisa Nicoleta Airinei, Adriana Miu (Mihail), Mădălina Grinzeanu and Annette Madelene Dăncilă
Environments 2025, 12(8), 288; https://doi.org/10.3390/environments12080288 - 21 Aug 2025
Viewed by 637
Abstract
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions [...] Read more.
Phosphates are key pollutants involved in the eutrophication of water bodies, creating the need for efficient and low-cost strategies for their removal in order to meet environmental quality standards. This study presents a comparative thermodynamic evaluation of phosphate ion adsorption from aqueous solutions using two sustainable and readily available materials: autoclaved aerated concrete (AAC) and pumice stone (PS). Batch experiments were conducted under acidic (pH 3) and alkaline (pH 9) conditions to determine equilibrium adsorption capacities, and kinetic experiments were carried out for the best-performing adsorbent. Adsorption data were fitted to the Langmuir and the Freundlich isotherm models, while kinetic data were evaluated using pseudo-first-order and pseudo-second-order models. The Freundlich model showed the best correlation (R2 = 0.90 − 0.97), indicating the heterogeneous nature of the adsorbent surfaces, whereas the Langmuir parameters suggested monolayer adsorption, with maximum capacities of 1006.69 mg/kg for PS and 859.20 mg/kg for AAC at pH 3. Kinetic results confirmed a pseudo-second-order behavior, indicating chemisorption as the main mechanism and the rate-limiting step in the adsorption process. To the best of our knowledge, this is the first study to compare the thermodynamic performance of AAC and PS for phosphate removal under identical experimental conditions. The findings demonstrate the potential of both materials as efficient, low-cost, and thermodynamically favorable adsorbents. Furthermore, the use of AAC, an industrial by-product, and PS, a naturally abundant volcanic material, supports resource recovery and waste valorization, aligning with the principles of the circular economy and sustainable water management. Full article
Show Figures

Graphical abstract

19 pages, 3120 KB  
Article
Changes in Microbial Communities After Lettuce Cultivation in Sihwa Reclaimed Soils, Korea
by Dong-Ryeol Yu, Tae Seok Oh, Youn Jin Park and Myoung-Jun Jang
Environments 2025, 12(8), 287; https://doi.org/10.3390/environments12080287 - 20 Aug 2025
Viewed by 559
Abstract
Reclaimed land refers to artificially created soil formed by filling in seawater, leading to rapid ecological changes. Undeveloped reclaimed areas offer opportunities to explore previously unknown soil ecological resources. The Shihwa reclaimed land is an undeveloped area where microbiome-based studies of the microbial [...] Read more.
Reclaimed land refers to artificially created soil formed by filling in seawater, leading to rapid ecological changes. Undeveloped reclaimed areas offer opportunities to explore previously unknown soil ecological resources. The Shihwa reclaimed land is an undeveloped area where microbiome-based studies of the microbial community have not yet been conducted. The soil from the Sihwa reclaimed land (SR, SL) showed higher pH (8.9), EC (7.5 dS/m), and Na+ content (13.4 cmol+/kg), but lower levels of organic matter and phosphorus compared to typical agricultural soils (NL, NS). These unfavorable conditions had a negative effect on lettuce growth, as both fresh and dry weights in the SL treatment (32.5 g and 0.39 g, respectively) were significantly lower than those in the NL treatment (40.4 g and 0.45 g). At the phylum level, Actinobacteria (51.6%) dominated the original reclaimed soil (SR), but after lettuce cultivation (SL), there was an increase in Cyanobacteria (25.3%) and Proteobacteria (29.4%). At the order level, Streptomycetales (35.2%) and Bacillales (13.5%) were predominant in SR, whereas in SL, Oscillatoriales (23.5%)—which have photosynthetic ability—as well as organic matter-degrading orders such as Rhodobacterales and Flavobacteriales, became dominant. For the eukaryotic community at the phylum level, Ascomycota was predominant in all samples; however, in NL, the relative proportions of Chlorophyta (22%) and Mucoromycota (8.9%) were higher, indicating increased diversity. At the order level, Eurotiales (28.5%), Hypocreales (20.2%), and Wallemiales (14.4%) were predominant in SR, but after lettuce cultivation, Wallemiales disappeared and Eurotiales increased to 40.0%. Additionally, Glomerellales and Sordariomycetes_o were detected only in SL and NL, suggesting that symbiotic fungal activity in the rhizosphere was promoted. Full article
Show Figures

Figure 1

4 pages, 159 KB  
Editorial
Healthy and Safe Environments Across Occupational and Environmental Contexts: A Holistic Perspective
by Carlos Carvalhais, Cristiana C. Pereira and Joana Santos
Environments 2025, 12(8), 286; https://doi.org/10.3390/environments12080286 - 20 Aug 2025
Viewed by 485
Abstract
According to the World Health Organization (WHO), “good health depends on clean air, a stable climate, and a preserved natural environment, as well as access to adequate water, sanitation, and hygiene [...] Full article
20 pages, 3687 KB  
Article
From Aerosol Optical Depth to Risk Assessment: A Novel Framework for Environmental Impact Statistics of Air Quality Using AERONET
by Ioana Tanasa, Marius Cazacu, Dumitru Botan, John D. Atkinson, Viktor Sebestyen and Brindusa Sluser
Environments 2025, 12(8), 285; https://doi.org/10.3390/environments12080285 - 20 Aug 2025
Viewed by 653
Abstract
The implementation of European Union policies contributed to substantial air pollution reductions in recent years, but atmospheric aerosols remain a key pollutant class with environmental and public health risks. This study develops a novel method for assessing environmental impact and the risk associated [...] Read more.
The implementation of European Union policies contributed to substantial air pollution reductions in recent years, but atmospheric aerosols remain a key pollutant class with environmental and public health risks. This study develops a novel method for assessing environmental impact and the risk associated with urban atmospheric aerosols. The integrated approach for air quality evaluation and prediction of the effects and risk of certain pollutants is based on Aerosol Optical Depth (AOD) analysis, considering the Aerosol Robotic Network (AERONET) database. To validate the method, it was applied using monitored air quality data for two cities in Romania, with 13 years (from 2011 to 2023) in one case and 12 years (from 2012 to 2023) in the other. The results demonstrated that an AOD risk index can be developed and utilized for air quality evaluation and prediction, enabling estimation of impacts and risks. In this case, aerosols measured by AERONET (Aerosol Robotic Network) over Cluj-Napoca (2011–2023) were dominated (46%) by a mixture of elemental (EC) and organic carbon (OC), while measurements over Iasi (2012–2023) showed 55% of the EC/OC mixture. The impacts and risks, as calculated by the AOD index for EC, show few significant ones, with an AOD range of 0.88 to 1.05 for Iasi and 0.73 to 0.88 for Cluj-Napoca. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

17 pages, 4318 KB  
Article
Valorization of Pinecones as Biosorbents for Environmental Remediation of Zn-Contaminated Wastewaters
by Morgana Macena, Luísa Cruz-Lopes, Lucas Grosche, Bruno Esteves, Isabel Santos-Vieira and Helena Pereira
Environments 2025, 12(8), 284; https://doi.org/10.3390/environments12080284 - 17 Aug 2025
Viewed by 677
Abstract
Empty pinecones are a largely available byproduct of Pinus pinea L. nut production, mostly concentrated in the Mediterranean area; e.g., in Portugal, around 70,000 tons of pinecones are produced annually. One valorization line for residual biomass is its use as biosorbents for the [...] Read more.
Empty pinecones are a largely available byproduct of Pinus pinea L. nut production, mostly concentrated in the Mediterranean area; e.g., in Portugal, around 70,000 tons of pinecones are produced annually. One valorization line for residual biomass is its use as biosorbents for the removal of contaminants in effluents and water courses which are an increasing environmental problem. This study explores the biosorbent potential of pinecones to remove zinc ions from aqueous solutions. We analyzed the morphology and chemical composition of pinecones (9.4% extractives, 37.0% lignin, 68.6% holocellulose, 1.4% ash). The effect of pH and adsorbent dose on the adsorption process was studied, as were the sorption kinetics and isotherms. The pinecones showed good potential to remove Zn ions, with 96% removal at pH 7 and a maximum adsorption capacity of 7.92 mg g−1. The process followed the Freundlich isotherm model, indicating a heterogeneous surface and multilayer adsorption, and the pseudo-second-order kinetic model, suggesting chemisorption as the dominant mechanism. The use of pinecones as bio-adsorbent is therefore a green and low-cost alternative for environmental remediation and biomass waste management. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Graphical abstract

22 pages, 4715 KB  
Article
Remote Sensing-Based Mapping of Soil Health Descriptors Across Cyprus
by Ioannis Varvaris, Zampela Pittaki, George Themistokleous, Dimitrios Koumoulidis, Dhouha Ouerfelli, Marinos Eliades, Kyriacos Themistocleous and Diofantos Hadjimitsis
Environments 2025, 12(8), 283; https://doi.org/10.3390/environments12080283 - 17 Aug 2025
Viewed by 960
Abstract
Accurate and spatially detailed soil information is essential for supporting sustainable land use planning, particularly in data-scarce regions such as Cyprus, where soil degradation risks are intensified by land fragmentation, water scarcity, and climate change pressure. This study aimed to generate national-scale predictive [...] Read more.
Accurate and spatially detailed soil information is essential for supporting sustainable land use planning, particularly in data-scarce regions such as Cyprus, where soil degradation risks are intensified by land fragmentation, water scarcity, and climate change pressure. This study aimed to generate national-scale predictive maps of key soil health descriptors by integrating satellite-based indicators with a recently released geo-referenced soil dataset. A machine learning model was applied to estimate a suite of soil properties, including organic carbon, pH, texture fractions, macronutrients, and electrical conductivity. The resulting maps reflect spatial patterns consistent with previous studies focused on Cyprus and provide high resolution insights into degradation processes, such as organic carbon loss, and salinization risk. These outputs provide added value for identifying priority zones for soil conservation and evidence-based land management planning. While predictive uncertainty is greater in areas lacking ground reference data, particularly in the northeastern part of the island, the modeling framework demonstrates strong potential for a national-scale soil health assessment. The outcomes are directly relevant to ongoing soil policy developments, including the forthcoming Soil Monitoring Law, and provide spatial prediction models and indicator maps that support the assessment and mitigation of soil degradation. Full article
(This article belongs to the Special Issue Remote Sensing Technologies for Soil Health Monitoring)
Show Figures

Figure 1

16 pages, 4827 KB  
Article
Molecular Structure of the Humic Acids Isolated from Organic Material from Modern and Paleosoils (MIS 5e and MIS 7) of Batagay Megaslump Ice Complex Deposits (Yakutia, Russia)
by Vyacheslav Polyakov, Alexey Lupachev, Evgeny Abakumov and Petr Danilov
Environments 2025, 12(8), 282; https://doi.org/10.3390/environments12080282 - 15 Aug 2025
Viewed by 630
Abstract
The degradation of modern and ancient permafrost-affected soils and organic-rich sediments and the release of relict soil organic matter from the frozen state are critical for understanding the global carbon cycle in a changing climate. The molecular structure of humic acids isolated from [...] Read more.
The degradation of modern and ancient permafrost-affected soils and organic-rich sediments and the release of relict soil organic matter from the frozen state are critical for understanding the global carbon cycle in a changing climate. The molecular structure of humic acids isolated from modern Cryosols and paleosoils from the Ice Complex deposits in the Batagay megaslump area was investigated. The elemental composition analysis was performed using a CHN analyzer, and molecular composition analysis was determined by CP/MAS 13C-NMR spectroscopy. Analysis of the molecular structure of humic acids showed that MIS 5e paleosoils are characterized by a relatively high content of aliphatic structural fragments (C,H-AL—29–36%) and a low content of aromatic structural fragments (AR/AL—0.49–0.43), which reveals low humification rates in this time period. The composition of humic acids from MIS 7 paleosoils shows a relatively high content of aromatic structural fragments compared to modern soils (AR/AL—0.47) and MIS 5e deposits (AR/AL—0.67–0.54), indicating a longer humification process in heterogenic conditions (warm and cold periods). The results indicate that the molecular structure of humic acids is a dynamic parameter of the environment that reflects the local conditions of pedogenesis and organic matter formation. Permafrost thawing leads to the release of organic matter (including matter that is relatively weakly resistant to biodegradation where aliphatic structural fragments dominate the composition of humic acids) that may strengthen the emission of climate-active gases into the atmosphere and boost climate change. Full article
Show Figures

Figure 1

27 pages, 2995 KB  
Article
Photovoltaic System for Residential Energy Sustainability in Santa Elena, Ecuador
by Angela García-Guillén, Marllelis Gutiérrez-Hinestroza, Lucrecia Moreno-Alcívar, Lady Bravo-Montero and Gricelda Herrera-Franco
Environments 2025, 12(8), 281; https://doi.org/10.3390/environments12080281 - 15 Aug 2025
Viewed by 1304
Abstract
The instability of the energy supply, growing demand and the need to reduce carbon emissions are priority challenges in developing countries such as Ecuador, where power outages affect productivity and generate economic losses. Therefore, solar energy is positioned as a sustainable alternative. The [...] Read more.
The instability of the energy supply, growing demand and the need to reduce carbon emissions are priority challenges in developing countries such as Ecuador, where power outages affect productivity and generate economic losses. Therefore, solar energy is positioned as a sustainable alternative. The objective of this study is to evaluate a pilot photovoltaic (PV) system for residential housing in coastal areas in the Santa Elena province, Ecuador. The methodology included the following: (i) criteria for the selection of three representative residential housings; (ii) design of a distributed generation system using PVsyst software; and (iii) proposal of strategic guidelines for the design of PV systems. This proposed system proved to be environmentally friendly, achieving reductions of between 16.4 and 32 tonnes of CO2 in the first 10 years. A return on investment (ROI) of 16 years was achieved for the low-demand (L) scenario, with 4 years for the medium-demand (M) scenario and 2 years for the high-demand (H) scenario. The sensitivity analysis showed that the Levelized Cost of Energy (LCOE) is more variable in the L scenario, requiring more efficient designs. It is proposed to diversify the Ecuadorian energy matrix through self-supply PV systems, which would reduce electricity costs by 6% of consumption (L scenario), 30% (M scenario), and 100% (H scenario). Although generation is concentrated during the day, the net metering scheme enables compensation for nighttime consumption without the need for batteries, thereby improving the system’s profitability. The high solar potential and high tariffs make the adoption of sustainable energy solutions a justifiable choice. Full article
Show Figures

Figure 1

20 pages, 7249 KB  
Article
Enhanced Degradation of 4-Nitrophenol via a Two-Stage Co-Catalytic Fenton Packed-Bed Reactor with External Circulation
by Yan Liu, Jingyu Liu, Yongyou Hu, Yueyue Shi, Chaoyang Tang, Jianhua Cheng, Xiaoqiang Zhu, Guobin Wang and Jieyun Xie
Environments 2025, 12(8), 280; https://doi.org/10.3390/environments12080280 - 14 Aug 2025
Viewed by 673
Abstract
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade [...] Read more.
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade 4-nitrophenol (4-NP). Under suitable conditions, the ECTPBR could achieve over 91.97% 4-NP degradation, with low iron sludge production (11.97 mg/L) and minimal tungsten leaching (3.6363 mg/L). The two-stage strategy enabled spatial separation of Fe3+ reduction and Fenton reactions, minimizing the loss of active sites on DPW, ensuring long-term system stability, and reducing the toxicity of 4-NPdegradation products. In addition, external circulation enhanced mass transfer and improved resistance to shock loads. These advantages suggest that the ECTPBR may serve as an effective strategy for applying co-catalytic Fenton reactions in the treatment of toxic and refractory organic wastewater. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Remediation Technologies)
Show Figures

Figure 1

18 pages, 629 KB  
Article
Bridging Nutritional and Environmental Assessment Tools: A One Health Integration Using Zinc Supplementation in Weaned Pigs
by Jinsu Hong, Joel Tallaksen and Pedro E. Urriola
Environments 2025, 12(8), 279; https://doi.org/10.3390/environments12080279 - 12 Aug 2025
Viewed by 803
Abstract
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, [...] Read more.
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, dietary zinc flow, and environmental impacts. A 6-week feeding trial with 432 weaned pigs assessed three dietary treatments: high ZnO (pharmaceutical levels), intermediate ZnO, and low ZnO (EU recommendation). Growth performance for the growing–finishing period was modeled using the NRC (2012), and dietary Zn intake and fecal Zn excretion were estimated. Environmental impacts were analyzed via life cycle assessment (LCA) using SimaPro LCA software. High ZnO improved growth performance and reduced mortality (p < 0.05), but increased nursery fecal zinc excretion, resulting in a total fecal Zn excretion per pig of 54,125 mg, 59,485 mg, and 106,043 mg for low-, intermediate-, and high-ZnO treatments, respectively. In the nursery phase, high-ZnO treatment had the greatest impact on environmental footprint, increasing freshwater ecotoxicity and marine ecotoxicity indicators by 59.6% and 57.9%, respectively. However, high-ZnO-fed pigs had a greater body weight at the end of the nursery phase and were predicted to achieve a higher growth rate per 130 kg market pig, with fewer days to market and by sparing feed. Therefore, high-ZnO-fed pigs had reduced environmental burdens, including global warming potential, ozone depletion, land use, and mineral resource depletion. These findings demonstrate how livestock nutritionists can apply integrated modeling approaches to link animal performance with environmental outcomes within a One Health framework. Full article
Show Figures

Figure 1

18 pages, 1120 KB  
Article
Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic
by Neliswa Mpayipheli, Anele Mpupa, Ntakadzeni Edwin Madala and Philiswa Nosizo Nomngongo
Environments 2025, 12(8), 278; https://doi.org/10.3390/environments12080278 - 12 Aug 2025
Viewed by 1397
Abstract
The consumption of pharmaceuticals during the COVID-19 pandemic increased significantly. As such, over-the-counter drugs such as acetaminophen (ACT), ibuprofen (IBU), metoprolol (MET), and propranolol (PRO) were among the pharmaceuticals that were widely used to contain COVID-19 symptoms. Therefore, this study investigated the occurrence [...] Read more.
The consumption of pharmaceuticals during the COVID-19 pandemic increased significantly. As such, over-the-counter drugs such as acetaminophen (ACT), ibuprofen (IBU), metoprolol (MET), and propranolol (PRO) were among the pharmaceuticals that were widely used to contain COVID-19 symptoms. Therefore, this study investigated the occurrence of ACT, IBU, MET, and PRO in wastewater and river water systems, focusing on two provinces in South Africa (Gauteng (GP) and KwaZulu-Natal (KZN)). Generally, WWTP influents had the highest concentrations in both provinces. ACT, MET, and PRO were frequently detected compared to ibuprofen, particularly in KZN, during the second wave of the COVID-19 pandemic. However, a low detection occurred during the fourth wave of the COVID-19 pandemic. The concentrations of ACT, IBU, MET, and PRO in influent wastewater samples ranged from ND-480 µg/L, ND-54.1 µg/L, ND-52.8 µg/L, to ND-13.1 µg/L, respectively. In comparison with influent samples, ACT, IBU, MET, and PRO concentrations of effluent wastewater samples were generally at lower concentration levels: ACT (ND-289 µg/L), IBU (ND-36.1 µg/L), MET (ND-13.9 µg/L), and PRO (ND-5.53 µg/L). The removal efficiencies of the selected pharmaceuticals in KZN WWTPs ranged from 6.1 to 100% and −362.6 to 100% in the GP province. The ecological risk assessment results showed a low to high ecological risk against fish, Daphnia magna, and algae due to the presence of these pharmaceuticals. Full article
Show Figures

Figure 1

12 pages, 234 KB  
Review
Trifluoroacetic Acid: A Narrative Review on Physico-Chemical Properties, Exposure Pathways, and Toxicological Concerns
by Andrea Moscato, Maria Valentina Longo, Margherita Ferrante and Maria Fiore
Environments 2025, 12(8), 277; https://doi.org/10.3390/environments12080277 - 12 Aug 2025
Viewed by 1370
Abstract
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current [...] Read more.
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current knowledge on TFA, we conducted a literature search (PubMed and Scopus, December 2024–January 2025) focusing on its environmental fate, human exposure, toxicokinetic, ecotoxicology, and regulation. A narrative approach was applied, prioritizing recent and high-quality evidence. TFA is ubiquitous in air, water, food, and consumer products. Human exposure occurs mainly through ingestion and inhalation. It is rapidly absorbed and excreted mostly unchanged in urine, with limited metabolic transformation. Though not bioaccumulated in fat, its environmental persistence and ongoing exposure raise concerns about long-term systemic effects. Ecotoxicological data show chronic toxicity in aquatic and terrestrial species, with environmental concentrations often exceeding safety thresholds. Currently, no binding EU limit exists for TFA, although several countries have proposed drinking water guidelines. TFA represents an emerging environmental contaminant with potential human health and ecological impacts. Strengthened monitoring, long-term toxicological studies, and precautionary regulatory action are urgently needed. Full article
17 pages, 3246 KB  
Article
A Citizen Science Approach for Documenting Mass Coral Bleaching in the Western Indian Ocean
by Anderson B. Mayfield
Environments 2025, 12(8), 276; https://doi.org/10.3390/environments12080276 - 11 Aug 2025
Viewed by 786
Abstract
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from [...] Read more.
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from NOAA’s Coral Reef Watch tend to underestimate severity of bleaching in the Indian Ocean, as was evident in March 2024 when corals began bleaching after only experiencing 1–2 degree-heating weeks. To characterize the impacts of this event, I conducted citizen science-style surveys at 22 sites along a 600-km stretch of the Kenyan coastline. Thereafter, I trained an artificial intelligence (AI) to extract coral abundance and bleaching data from 2300 coral reef images spanning 11–12 hectares of reef area to estimate both coral cover and bleaching prevalence. The AI’s accuracy was >80%, though it was prone to false-positive bleaching classifications. Bleaching severity varied significantly across sites, as well as over time, as seawater continued to warm over the duration of the study period; on average, over 75% of all reef-building scleractinians had bleached. Across the 22 sites, the mean healthy coral cover was only 7–8%, vs. >30% at sites in the same areas in the late 1990s. Whether these corals can recover, and then withstand such heatwaves in the future, will be known all too soon. Full article
Show Figures

Figure 1

47 pages, 10040 KB  
Article
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 - 10 Aug 2025
Viewed by 701
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO [...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment. Full article
Show Figures

Figure 1

27 pages, 22030 KB  
Article
Spatiotemporal Dynamics of Urban Air Pollution in Dhaka City (2020–2024) Using Time-Series Sentinel-5P Satellite Images and Google Earth Engine (GEE)
by Md. Mostafizur Rahman, Md. Kamruzzaman, Mst Ilme Faridatul and György Szabó
Environments 2025, 12(8), 274; https://doi.org/10.3390/environments12080274 - 10 Aug 2025
Viewed by 1914
Abstract
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was [...] Read more.
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted, integrating spatial mapping, seasonal composites, and Mann–Kendall trend testing. Results indicated clear seasonal variations: CO and NO2 concentrations peaked during winter, with maximum monthly averages of 0.05287 mol/m2 and 0.00035 mol/m2, respectively, while SO2 reached a high of 0.00043 mol/m2 in pre-monsoon months. In contrast, O3 peaked in May (0.13023 mol/m2), following an inverse seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution hotspots in central-western zones like Tejgaon and Mirpur for CO and NO2, while SO2 was concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann–Kendall test identified moderate to strong increasing trends for CO (τ = 0.8, p = 0.086 in June and September) and SO2 (τ = 0.8, p = 0.086 in April and May), although most trends lacked statistical significance due to the limited temporal window. This study demonstrates the viability of combining satellite remote sensing and cloud-based processing for urban air quality monitoring and provides actionable insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving urban context. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

34 pages, 23162 KB  
Article
Analysis and Evaluation of Sulfur Dioxide and Equivalent Black Carbon at a Southern Italian WMO/GAW Station Using the Ozone to Nitrogen Oxides Ratio Methodology as Proximity Indicator
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 273; https://doi.org/10.3390/environments12080273 - 9 Aug 2025
Cited by 1 | Viewed by 598
Abstract
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) [...] Read more.
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) World Meteorological Organization–Global Atmosphere Watch (WMO/GAW) observation site located in the south Italian region of Calabria, the “Proximity” methodology based on photochemical processes, i.e., the ratio of tropospheric ozone (O3) to nitrogen oxides (NOx) has been used to discriminate the local and remote atmospheric concentrations of GHGs. Local air masses are heavily affected by anthropogenic emissions while remote air masses are more representative of atmospheric background conditions. This study applies, to eight continuous years of measurements (2016–2023), the Proximity methodology to sulfur dioxide (SO2) for the first time, and also extends it to equivalent black carbon (eBC) to assess whether the methodology can be applied to aerosols. The results indicate that SO2 follows a peculiar pattern, with LOC (local) and BKG (background) levels being generally lower than their N–SRC (near source) and R–SRC (remote source), thus corroborating previous hypotheses on SO2 variability at LMT by which the Aeolian Arc of volcanoes and maritime traffic could be responsible for these concentration levels. The anomalous behavior of SO2 was assessed using the Proximity Progression Factor (PPF) introduced in this study, which provides a value representative of changes from local to background concentrations. This finding, combined with an evaluation of known sources on a regional scale, has been used to provide an estimate on the spatial resolution of proximity categories, which is one of the known limitations of this methodology. Furthermore, the results confirm the potential of using the Proximity methodology for aerosols, as eBC shows a pattern consistent with local sources of emissions, such as wildfires and other forms of biomass burning, being responsible for the observed peaks. Full article
Show Figures

Figure 1

35 pages, 1831 KB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Viewed by 2653
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

27 pages, 7041 KB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Viewed by 998
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

19 pages, 1495 KB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Viewed by 908
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

11 pages, 1083 KB  
Article
Assessment of 137Cs and 40K Transfer Factors in Croatian Agricultural Systems and Implications for Food Safety
by Tomislav Bituh, Branko Petrinec, Dragutin Hasenay and Sanja Stipičević
Environments 2025, 12(8), 269; https://doi.org/10.3390/environments12080269 - 2 Aug 2025
Viewed by 757
Abstract
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural [...] Read more.
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural systems in Croatia. This study investigates the transfer of radionuclides 137Cs and 40K from soil to agricultural crops throughout Croatia and estimates the consequent annual ingestion dose for the population. The samples collected comprised food crops and animal feed, with corresponding soil samples analyzed to calculate transfer factors. Activity concentrations of 137Cs exhibited regional and crop-type variability, reflecting the uneven distribution of fallout and differing soil properties. Transfer factors were found to range from 0.003 to 0.06 for 137Cs and from 0.15 to 3.1 for 40K, with the highest uptake occurring in kidney beans. The total estimated annual effective ingestion dose was calculated to be a maximum of 0.748 mSv/year for children aged 2–7, predominantly attributable to 40K. Given the homeostatic regulation of potassium in the human body, the dose associated with 137Cs poses a more significant radiological concern. These findings underscore the need for radionuclide-specific agricultural legislation in Croatia and offer a baseline for recommending reference values and informing future regulations regarding agricultural soil contamination. Full article
Show Figures

Figure 1

5 pages, 164 KB  
Editorial
Sustainable Water Resource Management: Challenges and Opportunities
by Pengxiao Zhou, Qianqian Zhang, Fei Zhang and Zoe Li
Environments 2025, 12(8), 268; https://doi.org/10.3390/environments12080268 - 1 Aug 2025
Viewed by 923
Abstract
Water is a basic human necessity, and the amount of water on Earth remains fairly constant [...] Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
22 pages, 1556 KB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Cited by 1 | Viewed by 849
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

14 pages, 3668 KB  
Article
Infrasound-Altered Pollination in a Common Western North American Plant: Evidence from Wind Turbines and Railways
by Lusha M. Tronstad, Madison Mazur, Lauren Thelen-Wade, Delina Dority, Alexis Lester, Michelle Weschler and Michael E. Dillon
Environments 2025, 12(8), 266; https://doi.org/10.3390/environments12080266 - 31 Jul 2025
Viewed by 743
Abstract
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and [...] Read more.
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and we studied infrasound (<20 Hz) produced by wind turbines and trains. We estimated the number, mass and viability of seeds produced by flowers of Plains pricklypear (Opuntia polyacantha Haw.) that were left open to pollinators, hand-pollinated or bagged to exclude pollinators. Each pollination treatment was applied to plants at varying distances from wind turbines and railways (≤25 km). Self-pollinated Opuntia polyacantha and plants within the wind facility produced ≥1.6 times more seeds in the bagged treatments compared to more distant sites. Seed mass and the percent of viable seeds decreased with distance from infrasound. Viability of seeds was >70% for most treatments and sites. If wind facilities, railways and other man-made structures produce infrasound that increases self-pollination, crops and native plants near sources may produce heavier seeds with higher viability in the absence of pollinators, but genetic diversity of plants may decline due to decreased cross-pollination. Full article
Show Figures

Figure 1

15 pages, 860 KB  
Article
Classification of Agricultural Soils in Manica and Sussundenga (Mozambique)
by Mário J. S. L. Pereira, João M. M. Leitão and Joaquim Esteves da Silva
Environments 2025, 12(8), 265; https://doi.org/10.3390/environments12080265 - 31 Jul 2025
Viewed by 867
Abstract
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine [...] Read more.
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine farms from the Manica and Sussundenga districts (Manica province) in three campaigns in 2021/2022, 2022/2023, and 2023/2024 (before and after the rainy seasons). They were subjected to a physical–chemical analysis to assess their quality from the fertility and environmental contamination point of view. Attending to the physical–chemical properties analysed, and for all the soils and sampling campaigns, a low concentration below the limit of detection for B of <0.2 mg/Kg for the majority of soils and a low concentration of Al < 0.025 mg/Kg for all the soils were obtained. Also, higher concentrations for the majority of soils for the Ca between 270 and 1634 mg/Kg, for the Mg between 41 and 601 mg/Kg, for the K between 17 and 406 mg/Kg, for the Mn between 13.6 and 522 mg/Kg, for the Fe between 66.3 and 243 mg/Kg, and for the P between <20 and 132 mg/Kg were estimated. In terms of texture and for the sand, a high percentage between 6.1 and 79% was found. In terms of metal concentrations and for all the soils of the Sussundenga district and sampling campaigns, a concentration above the reference value concentration for the Cr (76–1400 mg/Kg) and a concentration below the reference value concentration for the Pb (5–19 mg/Kg), Ba (13–120 mg/Kg) and for the Zn (10–61 mg/Kg) were evaluated. A multivariate data analysis methodology was used based on cluster and discriminant analysis. The analysis of twenty-three physical–chemical variables of the soils suggested four clusters of soils characterised by deficiencies and excess elements that must be corrected to improve the yield and quality of agricultural production. Moreover, the multivariate analysis of the metal composition of soil samples from the second and third campaigns, before and after the rainy season, suggested five clusters with a pristine composition and different metal pollutant compositions and concentrations. The information obtained in this study allows for the scientific comprehension of agricultural soil quality, which is crucial for designing agronomic and environmental corrective measures to improve food quality and quantity in the Manica and Sussundenga districts and ensure environmental, social, and economic sustainability. Full article
Show Figures

Figure 1

17 pages, 1110 KB  
Article
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Viewed by 1445
Abstract
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of [...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs. Full article
Show Figures

Figure 1

18 pages, 2238 KB  
Article
Dispersal Patterns of Euphydryas aurinia provincialis (Lepidoptera: Nymphalidae) in the Colfiorito Highlands, Central Italy
by Andrea Brusaferro, Silvia Marinsalti, Federico Maria Tardella, Emilio Insom and Antonietta La Terza
Environments 2025, 12(8), 263; https://doi.org/10.3390/environments12080263 - 30 Jul 2025
Viewed by 580
Abstract
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, [...] Read more.
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, where reproductive sites, despite their spatial proximity, can act as either source or sink habitats depending on environmental conditions. We conducted fieldwork in six nesting patches inside a single node, capturing, marking, and recapturing individuals to assess their spatial distribution and movement tendencies at a large landscape scale. We found a high degree of site fidelity among individuals, with many recaptures occurring within the original marking site, but also a sex-based difference in movement patterns; females dispersed farther than males, likely driven by reproductive strategies, while males remained more localized, prioritizing mate-searching. Our findings suggest a complex dynamic in habitat connectivity: pastures and abandoned fields, despite being open, seem to act like sink areas, while breeding sites with shrub and tree cover act as source habitats, offering optimal conditions for reproduction. Individuals, especially females, from these source areas were later compelled to disperse into open habitats, highlighting a nuanced interaction between landscape structure and population dynamics. These results highlight the importance of maintaining habitat corridors to support metapopulation dynamics and prevent genetic isolation; the abandonment of traditional grazing practices is leading to the rapid closure of these source habitats, posing a severe risk of local extinction. Conservation efforts should prioritize the preservation of these source habitats to ensure the long-term viability of E. a. provincialis populations in fragmented landscapes. Full article
Show Figures

Figure 1

20 pages, 1509 KB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 1037
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

40 pages, 910 KB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Cited by 1 | Viewed by 1781
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop