Optimal Sizing and Location of Co-Digestion Power Plants in Spain through a GIS-Based Approach
Abstract
:1. Introduction
1.1. Impact and Prospective of Co-Digestion Power Plants for a Decarbonized Generation System in Europe
1.2. Geographic Information Systems: Applications for Energy Planning
2. Materials and Methods
2.1. Agricultural and Livestock Waste Georeferenced Database
2.2. Co-Digestion Mixtures for Electrical Power Production
2.3. Multi-Objective Optimization through a GIS-Based System
3. Results and Discussion
3.1. Generation Potential for Mixture M1
3.2. Generation Potential for Mixture M4
3.3. Generation Potential for Mixture M5
3.4. Generation Potential for Mixture M6
3.5. Generation Potential for Mixtures M7 and M8
3.7. Optimized Size and Location of Feasible Co-Digestion Power Plants
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
CO2 kg eq. | CO2 kilograms equivalent |
EU | European Union |
GHG | Greenhouse gases |
GIS | Geographic information system |
GWh | Gigawatt hour |
IWA | International Water Association |
kcal | Kilocalories |
kgVS | Kilograms of volatile solids |
kW | Kilowatt |
kWh | Kilowatt hour |
kWhe | Electric kilowatt hour |
kWhp | Primary energy kilowatt hour |
kWht | Thermal kilowatt hour |
MW | Megawatt |
MWh | Megawatt hour |
Nl | Normal liter |
Nm3 | Normal cubic meter |
RES | Renewable energy source |
t | ton |
WWTP | Wastewater treatment plant |
References
- European Parliament. Regulation (EU) No 347/2013 of the European Parliament and of the Council of 17 April 2013 on Guidelines for Trans-European Energy Infrastructure and Repealing Decision No 1364/2006/EC and Amending Regulations (EC) No 713/2009, (EC) No 714/2009 and (EC) No 715/2009; Council of the European Union: Brussels, Belgium, 2013. [Google Scholar]
- Organization for Economic Co-Operation and Development. Environmental Outlook to 2050; OECD Publishing: Paris, France, 2012; pp. 1–353. [Google Scholar]
- Bhada-Tata, P.; Hoornweg, D.A. What a Waste?: A Global Review of Solid Waste Management; The World Bank: Washington, DC, USA, 2012; pp. 1–116. [Google Scholar]
- Castells, X.E. Tratamiento y Valorización Energética de Residuos; Ediciones Díaz de Santos: Madrid, Spain, 2005; ISBN 978-84-7978-694-6. [Google Scholar]
- Rodhe, H. A comparison of the contribution of various gases to the greenhouse effect. Science 1990, 248, 1217–1219. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.H.; Turner, C. Manure Management: Treatment Strategies for Sustainable Agriculture; Editions Quae: Bedford, UK, 2003. [Google Scholar]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- PRETOR. Available online: https://sedeaplicaciones.minetur.gob.es/Pretor/Vista/Informes/InformesInstalaciones.aspx (accessed on 14 October 2018).
- Real Decreto 661/2007, de 25 de Mayo, por el que se Regula la Actividad de Producción de Energía Eléctrica en Régimen Especial. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2007-10556 (accessed on 16 October 2018).
- European Union. Energy Roadmap 2050; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Red Eléctrica de España. El Sistema Eléctrico Español; Resumen Ejecutivo: Madid, Spain, 2017. [Google Scholar]
- Ozsoy, G.; Alibas, I. GIS mapping of biogas potential from animal wastes in Bursa, Turkey. Int. J. Agric. Biol. Eng. 2015, 8, 74–83. [Google Scholar] [CrossRef]
- Höhn, J.; Lehtonen, E.; Rasi, S.; Rintala, J. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Valenti, F.; Arcidiacono, C.; Chinnici, G.; Cascone, G.; Porto, S.M. Quantification of olive pomace availability for biogas production by using a GIS-based model. Biofuels Bioprod. Biorefin. 2017, 11, 784–797. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Chinnici, G.; Selvaggi, R.; Cascone, G.; Arcidiacono, C.; Pecorino, B. Use of citrus pulp for biogas production: A GIS analysis of citrus-growing areas and processing industries in South Italy. Land Use Policy 2017, 66, 151–161. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. A GIS-based approach for evaluating the potential of biogas production from livestock manure and crops at a regional scale: A case study for the Kujawsko-Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2012, 16, 752–763. [Google Scholar] [CrossRef]
- Brahma, A.; Saikia, K.; Hiloidhari, M.; Baruah, D.C. GIS based planning of a biomethanation power plant in Assam, India. Renew. Sustain. Energy Rev. 2016, 62, 596–608. [Google Scholar] [CrossRef]
- Panichelli, L.; Gnansounou, E. GIS-based approach for defining bioenergy facilities location: A case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass Bioenergy 2008, 32, 289–300. [Google Scholar] [CrossRef]
- Babalola, M.; Babalola, M.A. Application of GIS-Based Multi-Criteria Decision Technique in Exploration of Suitable Site Options for Anaerobic Digestion of Food and Biodegradable Waste in Oita City, Japan. Environments 2018, 5, 77. [Google Scholar] [CrossRef]
- Probiogas. Available online: http://www.probiogas.es/ (accessed on 23 September 2018).
- Ministerio de Medio Ambiente y Medio Rural y Marino. El Sector del Biogás Agroindustrial en España; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; pp. 1–89.
- Hill, D.T. A Comprehensive Dynamic Model for Animal Waste Methanogenesis. Trans. ASAE 1982, 25, 1374–1380. [Google Scholar] [CrossRef]
- Buswell, A.M.; Mueller, H.F. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Boyle, W.C. Energy recovery from sanitary landfills—A review. In Microbial Energy Conversion; Schlegel, H.G., Barnea, J., Eds.; Pergamon: Bergama, Turkey, 1977; pp. 119–138. ISBN 978-0-08-021791-8. [Google Scholar]
- Baserga, U. Landwirtschaftliche Co-Vergärungs-Biogasanlagen: Biogas aus Organischen Reststoffen und Energiegras; FAT: Zürich, Switzerland, 1998. [Google Scholar]
- Robra, S. Uso da Glicerina Bruta em Biodigestão Anaeróbica: Aspectos Tecnológicos, Ambientais e Ecológicos; Druck diplomica Verlag GmbH: Hamburg, Germany, 2007; ISBN 978-3-95636-249-1. [Google Scholar]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.F.; Graef, S.P. Dynamic Modeling and Simulation of the Anaerobic Digestion Process. In Anaerobic Biological Treatment Processes; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1971; Volume 105, pp. 126–162. ISBN 978-0-8412-0131-6. [Google Scholar]
- Parker, W.J. Application of the ADM1 model to advanced anaerobic digestion. Bioresour. Technol. 2005, 96, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.; Vrecko, D.; Gernaey, K.V.; Pons, M.N.; Jeppsson, U. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink. Water Sci. Technol. 2006, 54, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Thamsiriroj, T.; Murphy, J.D. Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1. Bioresour. Technol. 2011, 102, 948–959. [Google Scholar] [CrossRef]
- Lauwers, J.; Appels, L.; Thompson, I.P.; Degrève, J.; Van Impe, J.F.; Dewil, R. Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. Prog. Energy Combust. Sci. 2013, 39, 383–402. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.R. Kinetic analysis of anaerobic digestion of pig manure and its design implications. Agric. Wastes 1983, 8, 65–81. [Google Scholar] [CrossRef]
- Harris, P. Biowatts—Online Biogas Calculator & Biomass Marketplace—Index. Available online: http://www.biowattsonline.com/anaerobic_digestion_kinetics_calculator/index (accessed on 5 November 2018).
- Samarasiri, B.K.T.; Samarakoon, S.W.S.; Rathnasiri, P.G.; Gunawardena, S.H.P. Mechanistic model for electricity generation via biomethane production through anaerobic digestion of organic fraction of municipal solid waste generated in Sri Lanka. In Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 29–31 May 2017; pp. 407–412. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación. Comarcas Agrarias. Available online: https://www.mapama.gob.es/es/cartografia-y-sig/ide/descargas/agricultura/default.aspx (accessed on 23 September 2018).
- Bidart, C.; Fröhling, M.; Schultmann, F. Livestock manure and crop residue for energy generation: Macro-assessment at a national scale. Renew. Sustain. Energy Rev. 2014, 38, 537–550. [Google Scholar] [CrossRef]
- Daniel-Gromke, J.; Liebetrau, J.; Denysenko, V.; Krebs, C. Digestion of bio-waste-GHG emissions and mitigation potential. Energy Sustain. Soc. 2015, 5, 3. [Google Scholar] [CrossRef]
- Muñoz Soler, N. Valorización de Residuos de la Industria Agroalimentaria. Codigestión de Estiércol de Vacuno Lechero y Suero de Quesería; Universidad de Cantabria: Cantabria, Spain, 2017. [Google Scholar]
- Metaniza. Available online: http://213.229.136.11/bases/ainia_probiogas.nsf/webContents/Metaniza (accessed on 29 November 2018).
- Interreg IVB SUDOE AGROGAS. Available online: http://www.agrogas.eu/herramienta-de-biog-s-532.html (accessed on 29 November 2018).
- The German Solar Energy Society. Planning and Installing Bioenergy Systems: A Guide for Installers, Architects, and Engineers; James & James: London, UK, 2005; ISBN 1-84407-132-4. [Google Scholar]
- López, R.; Menéndez, M.; Fernández, C.; Bernardo-Sánchez, A. The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants. Energy 2018, 148, 571–584. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Li, J. Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing. Energy 2016, 114, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.J.; Wollenberg, B.F. Power, Generation, Operation and Control, 2nd ed.; John Wiley: Toronto, ON, Canada, 1996. [Google Scholar]
- Dopico, V. Propuesta de Tarifas de Coste de Transporte de Mercancías. Available online: https://docplayer.es/5597155-Propuesta-de-tarifas-de-coste-de-transporte-de-mercancias.html (accessed on 29 November 2018).
- Lee, G.-E.; Loveridge, S.; Joshi, S. Local acceptance and heterogeneous externalities of biorefineries. Energy Econ. 2017, 67, 328–336. [Google Scholar] [CrossRef]
- Ministerio de Industria, Energía y Turismo. Factores de Emisión de CO2 y Coeficientes de Paso a Energía Primaria de Diferentes Fuentes de Energía Final Consumidas en el Sector de Edificios en España. Documeto Reconocido del Reglamento de Instalaciones Térmicas en los Edificios (RITE); Gobierno de España: Madrid, España, 2016; p. 31.
- Joint Research Centre European Comission. WELL-TO-TANK Report Version 4.0 JEC WELL-TO-WHEELS ANALYSIS; European Commission: Brussels, Belgium, 2013; p. 134. [Google Scholar]
RES | Installed Capacity (MW) | Generated Energy (GWh) | Average Load Factor (kWh/kW) |
---|---|---|---|
Wind energy | 22,922 | 47,498 | 2072 |
Photovoltaic | 4439 | 7988 | 1799 |
Biogas | 84 | 497 | 5919 |
Total RES | 47,670 | 83,526 | 1752 |
Code | Type of Material | Code | Type of Material |
---|---|---|---|
R01 | Pork slurry | R21 | Other fruit rejection |
R02 | Cow dung | R22 | Vegetable transformation |
R03 | Chicken dung | R23 | Tuber transformation |
R04 | Manure from other animal species | R24 | Citrus transformation |
R05 | Raw materials of meat slaughterhouse | R25 | Other fruit transformation |
R06 | Raw materials of poultry slaughterhouse | R26 | Beer bagasse |
R07 | Stacking raw materials | R27 | Olive oil by-product |
R08 | Flours | R28 | Olive oil waste |
R09 | Meat sludge WWTP * | R29 | Raw materials from wine industry |
R10 | Milk sludge WWTP * | R30 | Raw materials from cider industry |
R11 | Whey | R31 | Raw materials from sugar industry |
R12 | Dairy raw materials | R32 | Cereal straw |
R13 | Fish raw materials | R33 | Vegetable transformation sludge WWTP * |
R14 | Fish sludge WWTP * | R34 | Energy crops |
R15 | Vegetable surplus | R35 | Glycerine |
R16 | Citrus surplus | R36 | Bioethanol from manufacturing raw materials |
R17 | Other fruit surpluses | R37 | Bioethanol from manuf. raw mat. in sugar industry |
R18 | Vegetable rejection | R38 | Food retailing |
R19 | Tuber rejection | R39 | Bar and restaurant waste |
R20 | Citrus rejection | R40 | Hotel waste |
Material | Biogas Production (Nm3/t) |
---|---|
Pork slurry | 10.82 |
Chicken dung | 31.28 |
Cow dung | 115.59 |
Flour | 469.00 |
Agricultural residuals | 106.00 |
Whey | 37.00 |
Glycerine | 686.00 |
Type | Biogas Production (Nm3/t) | CH4 (%) |
---|---|---|
Carbohydrates | 790 | 50% |
Fat | 1250 | 68% |
Proteins | 700 | 71% |
Mixture | Breakdown | Biogas Production (Nm3/t) |
---|---|---|
M1 | 62% Pork slurry 38% Chicken dung and cow dung | 20.17 |
M2 | 95% Pork slurry, chicken dung and cow dung 5% Flours | 42.99 |
M3 | 90% Pork slurry, chicken dung and cow dung 10% Flours | 65.40 |
M4 | 80% Pork slurry, chicken dung and cow dung 20% Agricultural residuals | 31.76 |
M5 | 95% Pork slurry, chicken dung and cow dung 5% Glycerine | 31.36 |
M6 | 90% Pork slurry, chicken dung and cow dung 10% Glycerine | 87.11 |
M7 | 55% Whey 45% Cow dung | 10.60 |
M8 | 85% Whey 15% Cow dung | 14.60 |
ID | Optimization Factor | Value | Priority |
---|---|---|---|
1 | Transport costs | <200 km | 1 |
2 | Power grid access | <1 km | 3 |
3 | Vicinity of urban centres or natural parks | >2 km | 4 |
4 | Communication routes (national and secondary roads) | <1 km | 2 |
5 | Unemployment rate | Highest | 5 |
Mixture | Cluster | Power Potential (MW) | Mixture | Cluster | Power Potential (MW) |
---|---|---|---|---|---|
M1 | C1 | 3.81 | M6 | C1 | 6.53 |
C2 | 49.39 | C2 | 1.44 | ||
C3 | 21.55 | C3 | 6.30 | ||
C4 | 5.58 | C4 | 4.03 | ||
C5 | 5.76 | C5 | 1.44 | ||
M2 | C1 | 1.73 | C6 | 3.40 | |
C2 | 1.32 | C7 | 2.27 | ||
M3 | C1 | 0.22 | C8 | 6.93 | |
C2 | 0.16 | C9 | 12.07 | ||
M4 | C1 | 15.98 | M7 | C1 | 0.32 |
C2 | 5.38 | C2 | 2.57 | ||
C3 | 4.02 | C3 | 5.48 | ||
C4 | 17.68 | C4 | 1.94 | ||
C5 | 13.03 | C5 | 0.84 | ||
C6 | 9.96 | M8 | C1 | 1.33 | |
C7 | 20.49 | C2 | 0.96 | ||
M5 | C1 | 10.54 | C3 | 4.23 | |
C2 | 23.88 | C4 | 5.25 | ||
C3 | 10.28 | C5 | 0.86 | ||
C4 | 13.21 | Not clusterized (all mixtures) | 250.18 | ||
C5 | 2.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-de Prado, L.; De Simón-Martín, M.; Diez-Suárez, A.-M.; Blanes-Peiró, J.J.; González-Martínez, A. Optimal Sizing and Location of Co-Digestion Power Plants in Spain through a GIS-Based Approach. Environments 2018, 5, 137. https://doi.org/10.3390/environments5120137
Álvarez-de Prado L, De Simón-Martín M, Diez-Suárez A-M, Blanes-Peiró JJ, González-Martínez A. Optimal Sizing and Location of Co-Digestion Power Plants in Spain through a GIS-Based Approach. Environments. 2018; 5(12):137. https://doi.org/10.3390/environments5120137
Chicago/Turabian StyleÁlvarez-de Prado, Laura, Miguel De Simón-Martín, Ana-María Diez-Suárez, Jorge Juan Blanes-Peiró, and Alberto González-Martínez. 2018. "Optimal Sizing and Location of Co-Digestion Power Plants in Spain through a GIS-Based Approach" Environments 5, no. 12: 137. https://doi.org/10.3390/environments5120137
APA StyleÁlvarez-de Prado, L., De Simón-Martín, M., Diez-Suárez, A. -M., Blanes-Peiró, J. J., & González-Martínez, A. (2018). Optimal Sizing and Location of Co-Digestion Power Plants in Spain through a GIS-Based Approach. Environments, 5(12), 137. https://doi.org/10.3390/environments5120137