A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions
Abstract
:1. Introduction
2. Water Quality Parameters
3. Machine Learning (ML)
4. Data Pre-Processing Techniques
- 1.
- Data Normalisation
- 2.
- Data Cleaning
- 3.
- Selecting appropriate descriptors
5. Hybrid Models
5.1. Components Combination Based Hybrid Models (CBH)
5.2. Parameter Optimisation-Based Hybrid Models (OBH)
5.2.1. Particle Swarm Optimisation (PSO)
5.2.2. Genetic Algorithm (GA)
5.2.3. Other Optimisation Algorithms
5.3. Preprocessing-Based Hybrid Models (PBH)
5.4. Hybridisation of Hybrid Models
- The general optimisation approaches demonstrated their ability to tune all AI models to achieve a far higher score on various evaluations as compared to a single model, which does not use any optimisation technique. In addition, when compared to a trial-and-error procedure, the probability of achieving ideal values is substantially higher.
- The most commonly employed algorithm in the WQ area and paired with AI approaches to forming a combined model is the PSO algorithm.
- Several studies used pre-processing algorithms to overcome the data’s non-stationarity, randomness, and nonlinearity of the WQ indicators. However, all pre-processing data steps were not used in most papers.
- The trend of using hybrid models has increased in recent years.
6. Future Research Directions
- It is recommended that the three data pre-processing steps be applied to avoid outliers and noise and to select the most reliable and precise data to be employed as predictors later.
- Other techniques for pre-treatment data, such as EEMD and singular spectrum analysis, are proposed.
- Selection predictors are significant in determining the model’s performance and precision. Accordingly, it is advised that more efforts be made to select the optimal predictors’ combination; consequently, it is proposed that other techniques be used to choose the predictors, such as feature extraction methods, feature selection, and dimensionality reduction methods.
- Applying hybrid metaheuristic algorithms and soft computing techniques in WQ parameter prediction has grown considerably in recent years. Nevertheless, there is still room for improvement concerning WQ parameter prediction.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Banerjee, A.; Chakrabarty, M.; Bandyopadhyay, G.; Roy, P.K.; Ray, S. Forecasting environmental factors and zooplankton of Bakreswar reservoir in India using time series model. Ecol. Inform. 2020, 60, 101157. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-Khaddar, R. Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Franssen, W.H.-P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Melesse, A.M.; Khosravi, K.; Tiefenbacher, J.P.; Heddam, S.; Kim, S.; Mosavi, A.; Pham, B.T. River Water Salinity Prediction Using Hybrid Machine Learning Models. Water 2020, 12, 2951. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Seo, I.w.; Yun, S.H.; Choi, S.Y. Forecasting Water Quality Parameters by ANN Model Using Pre-processing Technique at the Downstream of Cheongpyeong Dam. Procedia Eng. 2016, 154, 1110–1115. [Google Scholar] [CrossRef] [Green Version]
- Abba, S.I.; Hadi, S.J.; Abdullahi, J. River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Comput. Sci. 2017, 120, 75–82. [Google Scholar] [CrossRef]
- Tahraoui, H.; Belhadj, A.-E.; Hamitouche, A.-e.; Bouhedda, M.; Amrane, A. Predicting the concentration of sulfate (SO42−) in drinking water using artificial neural networks: A case study: Médéa-Algeria. Desalination Water Treat. 2021, 217, 181–194. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ab Ghani, A.; Chan, N.W. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. Int. 2015, 22, 6208–6219. [Google Scholar] [CrossRef]
- Stamenkovic, L.J. Application of ANN and SVM for prediction nutrients in rivers. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2021, 56, 867–873. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Al-Yaari, M.; Alkahtani, H.; Maashi, M. Water Quality Prediction Using Artificial Intelligence Algorithms. Appl. Bionics. Biomech. 2020, 2020, 6659314. [Google Scholar] [CrossRef]
- Hmoud Al-Adhaileh, M.; Waselallah Alsaade, F. Modelling and Prediction of Water Quality by Using Artificial Intelligence. Sustainability 2021, 13, 4259. [Google Scholar] [CrossRef]
- Ahmed, U.; Mumtaz, R.; Anwar, H.; Shah, A.A.; Irfan, R.; García-Nieto, J. Efficient Water Quality Prediction Using Supervised Machine Learning. Water 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y. A review of artificial neural network techniques for environmental issues prediction. J. Therm. Anal. Calorim. 2021, 145, 2191–2207. [Google Scholar] [CrossRef]
- Banadkooki, F.B.; Ehteram, M.; Panahi, F.; Sh. Sammen, S.; Othman, F.B.; El-Shafie, A. Estimation of total dissolved solids (TDS) using new hybrid machine learning models. J. Hydrol. 2020, 587, 124989. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Artificial intelligence for surface water quality monitoring and assessment: A systematic literature analysis. Modeling Earth Syst. Environ. 2020, 7, 669–681. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Mustapha, A.; Hayder, G.; Salisu, A. Applications of IoT and Artificial Intelligence in Water Quality Monitoring and Prediction: A Review. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 968–975. [Google Scholar]
- Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Giri, S. Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ. Pollut. 2021, 271, 116332. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86, 83–106. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybridization of hybrid structures for time series forecasting: A review. Artif. Intell. Rev. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Fitch, P.; Thorburn, P.J. Predicting the Trend of Dissolved Oxygen Based on the kPCA-RNN Model. Water 2020, 12, 585. [Google Scholar] [CrossRef] [Green Version]
- Malek, N.H.A.; Wan Yaacob, W.F.; Md Nasir, S.A.; Shaadan, N. Prediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning Techniques. Water 2022, 14, 1067. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Kashif Bashir, A.; Kaliappan, J.; Pattukandan Ganapathy, G.; Kumaran Selvaraj, S.; Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. Comput. Modeling Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- He, B.; Oki, T.; Sun, F.; Komori, D.; Kanae, S.; Wang, Y.; Kim, H.; Yamazaki, D. Estimating monthly total nitrogen concentration in streams by using artificial neural network. J. Environ. Manag. 2011, 92, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sami, B.H.Z.; Jee khai, W.; Sami, B.F.Z.; Ming Fai, C.; Essam, Y.; Ahmed, A.N.; El-Shafie, A. Investigating the reliability of machine learning algorithms as a sustainable tool for total suspended solid prediction. Ain Shams Eng. J. 2021, 12, 1607–1622. [Google Scholar] [CrossRef]
- Tiyasha, T.; Tung, T.M.; Bhagat, S.K.; Tan, M.L.; Jawad, A.H.; Mohtar, W.H.M.W.; Yaseen, Z.M. Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models. Mar. Pollut. Bull. 2021, 170, 112639. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 1797–1819. [Google Scholar] [CrossRef]
- Shah, M.I.; Abunama, T.; Javed, M.F.; Bux, F.; Aldrees, A.; Tariq, M.A.U.R.; Mosavi, A. Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization. Sustainability 2021, 13, 4576. [Google Scholar] [CrossRef]
- Li, W.; Fang, H.; Qin, G.; Tan, X.; Huang, Z.; Zeng, F.; Du, H.; Li, S. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. 2020, 731, 139099. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Z.; Yu, Q.; Bai, Y.; Li, C. Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China. Am. Soc. Civ. Eng. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Nouraki, A.; Alavi, M.; Golabi, M.; Albaji, M. Prediction of water quality parameters using machine learning models: A case study of the Karun River, Iran. Environ. Sci Pollut. Res. Int. 2021, 28, 57060–57072. [Google Scholar] [CrossRef]
- Ali Khan, M.; Izhar Shah, M.; Faisal Javed, M.; Ijaz Khan, M.; Rasheed, S.; El-Shorbagy, M.A.; Roshdy El-Zahar, E.; Malik, M.Y. Application of random forest for modelling of surface water salinity. Ain. Shams Eng. J. 2022, 13, 101635. [Google Scholar] [CrossRef]
- Alqahtani, A.; Shah, M.I.; Aldrees, A.; Javed, M.F. Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality. Sustainability 2022, 14, 1183. [Google Scholar] [CrossRef]
- Sattari, M.T.; Joudi, A.R.; Kusiak, A. Estimation of Water Quality Parameters With Data-Driven Model. J. Am. Water Work. Assoc. 2016, 108, E232–E239. [Google Scholar] [CrossRef] [Green Version]
- Babbar, R.; Babbar, S. Predicting river water quality index using data mining techniques. Environ. Earth Sci. 2017, 76, 504. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Jeihouni, M.; Toomanian, A.; Mansourian, A. Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: A Novel Hybrid Use of Data Mining and GIS. Water Resour. Manag. 2019, 34, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Naghibi, S.A.; Hashemi, H.; Berndtsson, R.; Lee, S. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J. Hydrol. 2020, 589, 125197. [Google Scholar] [CrossRef]
- Anshuka, A.; van Ogtrop, F.F.; Willem Vervoort, R. Drought forecasting through statistical models using standardised precipitation index: A systematic review and meta-regression analysis. Nat. Hazards 2019, 97, 955–977. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Change 2020, 11, 771–799. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Singh, V.P. Univariate streamflow forecasting using commonly used data-driven models: Literature review and case study. Hydrol. Sci. J. 2018, 63, 1091–1111. [Google Scholar] [CrossRef]
- Mohammadi, B. A review on the applications of machine learning for runoff modeling. Sustain. Water Resour. Manag. 2021, 7, 98. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, X.; Wan, R.; Yang, G.; Li, B. Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China. Hydrol. Res. 2016, 47, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.; Guo, Y. Wind Power Prediction Based on PSO-SVR and Grey Combination Model. IEEE Access 2019, 7, 136254–136267. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting. Alex. Eng. J. 2022, 61, 279–303. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using Machine Learning Approaches. Atmosphere 2020, 11, 585. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Dooley, J.; Alkhaddar, R.M.; Abdellatif, M.; Al-Bugharbee, H.; Ortega-Martorell, S. A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks. J. Hydrol. 2018, 561, 136–145. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.K.; Olier, I.; Hashim, K.S.; Al-Bdairi, N.S.S.; Kot, P. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. Water 2020, 12, 1628. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Hashim, K.; Ethaib, S.; Al-Bdairi, N.S.S.; Al-Bugharbee, H.; Gharghan, S.K. A novel methodology to predict monthly municipal water demand based on weather variables scenario. J. King Saud. Univ. Eng. Sci. 2022, 34, 163–169. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega-Martorell, S.; Kot, P.; Alkhaddar, R.M.; Abdellatif, M.; Gharghan, S.K.; Ahmed, M.S.; Hashim, K. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resour. Manag. 2020, 34, 1265–1279. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education, Inc.: Boston, MA, USA, 2013. [Google Scholar]
- Najah, A.; Elshafie, A.; Karim, O.A.; Jaffar, O. Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks. Eur. J. Sci. Res. 2009, 28, 422–435. [Google Scholar]
- Apaydin, H.; Taghi Sattari, M.; Falsafian, K.; Prasad, R. Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. J. Hydrol. 2021, 600, 126506. [Google Scholar] [CrossRef]
- Lola, M.S.; Zainuddin, N.H.; Abdullah, M.T.; Ponniah, V.; Ramlee, M.N.A.; Zakariya, R.; Idris, M.S.; Khalili, I. Improving the performance of ann-arima models for predicting water quality in the offshore area of kuala terengganu, terengganu, malaysia. J. Sustain. Sci. Manag. 2018, 13, 27–37. [Google Scholar]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433. [Google Scholar] [CrossRef]
- Baek, S.-S.; Pyo, J.; Chun, J.A. Prediction of Water Level and Water Quality Using a CNN-LSTM Combined Deep Learning Approach. Water 2020, 12, 3399. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Yu, Y.; Xu, H. Water Quality Prediction in the Luan River Based on 1-DRCNN and BiGRU Hybrid Neural Network Model. Water 2021, 13, 1273. [Google Scholar] [CrossRef]
- Hien Than, N.; Dinh Ly, C.; Van Tat, P. The performance of classification and forecasting Dong Nai River water quality for sustainable water resources management using neural network techniques. J. Hydrol. 2021, 596, 126099. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Gharghan, S.K.; Dooley, J.; Alkhaddar, R.M.; Abdellatif, M. Short-Term Urban Water Demand Prediction Considering Weather Factors. Water Resour. Manag. 2018, 32, 4527–4542. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Kisi, O.; Yaseen, Z.M.; Shahid, S.; Zounemat-Kermani, M. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based Syst. 2021, 230, 107379. [Google Scholar] [CrossRef]
- Jawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-AlShaeer, M.J. Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture. IEEE Sens. J. 2020, 20, 552–561. [Google Scholar] [CrossRef]
- Panyadee, P.; Champrasert, P.; Aryupong, C. Water Level Prediction using Artificial Neural Network with Particle Swarm Optimization Model. In Proceedings of the 2017 Fifth International Conference on Information and Communication Technology (ICoICT), Melaka, Malaysia, 17–19 May 2017. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water 2017, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Nabipour, N.; Dehghani, M.; Mosavi, A.; Shamshirband, S. Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks. IEEE Access 2020, 8, 15210–15222. [Google Scholar] [CrossRef]
- Aghel, B.; Rezaei, A.; Mohadesi, M. Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach. Int. J. Environ. Sci. Technol. 2018, 16, 4823–4832. [Google Scholar] [CrossRef]
- Azad, A.; Karami, H.; Farzin, S.; Mousavi, S.-F.; Kisi, O. Modeling river water quality parameters using modified adaptive neuro fuzzy inference system. Water Sci. Eng. 2019, 12, 45–54. [Google Scholar] [CrossRef]
- Shah, M.I.; Javed, M.F.; Alqahtani, A.; Aldrees, A. Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data. Process Saf. Environ. Prot. 2021, 151, 324–340. [Google Scholar] [CrossRef]
- Yudina, E.; Petrovskaia, A.; Shadrin, D.; Tregubova, P.; Chernova, E.; Pukalchik, M.; Oseledets, I. Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: Moscow Region Use Case. Water 2021, 13, 888. [Google Scholar] [CrossRef]
- Tripura, J.; Roy, P.; Barbhuiya, A.K. Simultaneous streamflow forecasting based on hybridized neuro-fuzzy method for a river system. Neural Comput. Appl. 2020, 33, 3221–3233. [Google Scholar] [CrossRef]
- Hassan, M.; Hassan, I. Improving Artificial Neural Network Based Streamflow Forecasting Models through Data Preprocessing. KSCE J. Civ. Eng. 2021, 25, 3583–3595. [Google Scholar] [CrossRef]
- Azad, A.; Karami, H.; Farzin, S.; Saeedian, A.; Kashi, H.; Sayyahi, F. Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrood River). KSCE J. Civ. Eng. 2017, 22, 2206–2213. [Google Scholar] [CrossRef]
- Stajkowski, S.; Kumar, D.; Samui, P.; Bonakdari, H.; Gharabaghi, B. Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability 2020, 12, 5374. [Google Scholar] [CrossRef]
- Jin, T.; Cai, S.; Jiang, D.; Liu, J. A data-driven model for real-time water quality prediction and early warning by an integration method. Environ. Sci. Pollut. Res. Int. 2019, 26, 30374–30385. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2, 78–84. [Google Scholar] [CrossRef]
- Li, J.; Abdulmohsin, H.A.; Hasan, S.S.; Kaiming, L.; Al-Khateeb, B.; Ghareb, M.I.; Mohammed, M.N. Hybrid soft computing approach for determining water quality indicator: Euphrates River. Neural Comput. Appl. 2017, 31, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Raheli, B.; Aalami, M.T.; El-Shafie, A.; Ghorbani, M.A.; Deo, R.C. Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: A case study of Langat River. Environ. Earth Sci. 2017, 76, 503. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2013, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Sarkar, S.; Dey, N.; Ashour, A.S.; Sen, S.; Hassanien, A.E. Application of cuckoo search in water quality prediction using artificial neural network. Int. J. Comput. Intell. Stud. 2017, 6, 229–244. [Google Scholar] [CrossRef]
- Li, Z.; Peng, F.; Niu, B.; Li, G.; Wu, J.; Miao, Z. Water Quality Prediction Model Combining Sparse Auto-encoder and LSTM Network. IFAC PapersOnLine 2018, 51–17, 831–836. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report tr06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005. [Google Scholar]
- Chen, S.; Fang, G.; Huang, X.; Zhang, Y. Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network. Water 2018, 10, 806. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.H.; Karimi, A.; Tavana, M. An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. Int. J. Prod. Econ. 2015, 159, 178–191. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water Quality Prediction Method Based on IGRA and LSTM. Water 2018, 10, 1148. [Google Scholar] [CrossRef] [Green Version]
- Kadkhodazadeh, M.; Farzin, S. A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters. Water Resour. Manag. 2021, 35, 3939–3968. [Google Scholar] [CrossRef]
- Dehghani, R.; Torabi Poudeh, H.; Izadi, Z. Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Modeling Earth Syst. Environ. 2021, 8, 2599–2613. [Google Scholar] [CrossRef]
- He, Q.; Wang, J.; Lu, H. A hybrid system for short-term wind speed forecasting. Appl. Energy 2018, 226, 756–771. [Google Scholar] [CrossRef]
- Solgi, A.; Pourhaghi, A.; Bahmani, R.; Zarei, H. Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrol. Hydrobiol. 2017, 17, 164–175. [Google Scholar] [CrossRef]
- Al-Sulttani, A.O.; Al-Mukhtar, M.; Roomi, A.B.; Farooque, A.A.; Khedher, K.M.; Yaseen, Z.M. Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction. IEEE Access 2021, 9, 108527–108541. [Google Scholar] [CrossRef]
- Bi, J.; Lin, Y.; Dong, Q.; Yuan, H.; Zhou, M. Large-scale water quality prediction with integrated deep neural network. Inf. Sci. 2021, 571, 191–205. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Chowdhury, M.A.I.; Ahmed, O.; Sutradhar, A. Development of Dissolved Oxygen Forecast Model Using Hybrid Machine Learning Algorithm with Hydro-Meteorological Variables. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Jamei, M.; Chu, X. A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water. J. Contam. Hydrol. 2020, 232, 103641. [Google Scholar] [CrossRef]
- Eze, E.; Halse, S.; Ajmal, T. Developing a Novel Water Quality Prediction Model for a South African Aquaculture Farm. Water 2021, 13, 1782. [Google Scholar] [CrossRef]
- Yan, J.; Gao, Y.; Yu, Y.; Xu, H.; Xu, Z. A Prediction Model Based on Deep Belief Network and Least Squares SVR Applied to Cross-Section Water Quality. Water 2020, 12, 1929. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Pan, Y.; Fan, Z. Modeling Daily and Monthly Water Quality Indicators in a Canal Using a Hybrid Wavelet-Based Support Vector Regression Structure. Water 2020, 12, 1476. [Google Scholar] [CrossRef]
- Song, C.; Yao, L.; Hua, C.; Ni, Q. A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory. J. Hydrol. 2021, 603, 126879. [Google Scholar] [CrossRef]
- Jamei, M.; Ahmadianfar, I.; Karbasi, M.; Jawad, A.H.; Farooque, A.A.; Yaseen, Z.M. The assessment of emerging data-intelligence technologies for modeling Mg+2 and SO4−2 surface water quality. J. Environ. Manag. 2021, 300, 113774. [Google Scholar] [CrossRef]
- Sha, J.; Li, X.; Zhang, M.; Wang, Z.-L. Comparison of Forecasting Models for Real-Time Monitoring of Water Quality Parameters Based on Hybrid Deep Learning Neural Networks. Water 2021, 13, 1547. [Google Scholar] [CrossRef]
- Yan, J.; Xu, Z.; Yu, Y.; Xu, H.; Gao, K. Application of a Hybrid Optimized BP Network Model to Estimate Water Quality Parameters of Beihai Lake in Beijing. Appl. Sci. 2019, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Abba, S.I.; Linh, N.T.T.; Abdullahi, J.; Ali, S.I.A.; Pham, Q.B.; Abdulkadir, R.A.; Costache, R.; Nam, V.T.; Anh, D.T. Hybrid Machine Learning Ensemble Techniques for Modeling Dissolved Oxygen Concentration. IEEE Access 2020, 8, 157218–157237. [Google Scholar] [CrossRef]
- Song, C.; Yao, L.; Hua, C.; Ni, Q. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ. Monit. Assess 2021, 193, 363. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.W.; Duan, H.F. Machine learning based marine water quality prediction for coastal hydro-environment management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Hassan, S.G.; Xu, L.; Huang, C. A hybrid model for short-term dissolved oxygen content prediction. Comput. Electron. Agric. 2021, 186, 106216. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, S.; Liu, R.; Sivakumar, B.; Wu, X.; Pang, T. A hybrid wavelet-Lyapunov exponent model for river water quality forecast. J. Hydroinform. 2021, 23, 864–878. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Jalali, M.; Nikmehr, S.; Shiri, N.; Shiri, J.; Maroufpoor, E. Modeling groundwater quality by using hybrid intelligent and geostatistical methods. Environ. Sci. Pollut. Res. Int. 2020, 27, 28183–28197. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Rajaee, T.; Kisi, O. Improved Water Quality Prediction with Hybrid Wavelet-Genetic Programming Model and Shannon Entropy. Nat. Resour. Res. 2020, 29, 3819–3840. [Google Scholar] [CrossRef]
- Ye, Q.; Yang, X.; Chen, C.; Wang, J. River Water Quality Parameters Prediction Method Based on LSTM-RNN Model. In Proceedings of the 31th Chinese Control and Decision Conference (2019 CCDC), Nanchang, China, 3–5 June 2019. [Google Scholar] [CrossRef]
- Li, L.; Jiang, P.; Xu, H.; Lin, G.; Guo, D.; Wu, H. Water quality prediction based on recurrent neural network and improved evidence theory: A case study of Qiantang River, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 19879–19896. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.S.; Makkhan, S.J.S.; Kaushal, S. Neuro-fuzzy-wavelet hybrid approach to estimate the future trends of river water quality. Neural Comput. Appl. 2019, 31, 8463–8473. [Google Scholar] [CrossRef]
- Kisi, O.; Azad, A.; Kashi, H.; Saeedian, A.; Hashemi, S.A.A.; Ghorbani, S. Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods. Water Resour. Manag. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Fijani, E.; Barzegar, R.; Deo, R.; Tziritis, E.; Skordas, K. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Sci. Total Environ. 2019, 648, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Nong, X.; Tan, X.; Chen, S.; Xu, B.; Hu, N. Daily Water Quality Forecast of the South-To-North Water Diversion Project of China Based on the Cuckoo Search-Back Propagation Neural Network. Water 2018, 10, 1471. [Google Scholar] [CrossRef] [Green Version]
- Montaseri, M.; Zaman Zad Ghavidel, S.; Sanikhani, H. Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques. Stoch. Environ. Res. Risk Assess. 2018, 32, 2253–2273. [Google Scholar] [CrossRef]
- Huang, M.; Tian, D.; Liu, H.; Zhang, C.; Yi, X.; Cai, J.; Ruan, J.; Zhang, T.; Kong, S.; Ying, G. A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers. Complexity 2018, 2018, 8241342. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Asghari Moghaddam, A.; Adamowski, J.; Ozga-Zielinski, B. Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. Environ. Res. Risk Assess. 2017, 32, 799–813. [Google Scholar] [CrossRef]
Reference | Keywords | Summary |
---|---|---|
[19] | River water quality, state of the art, literature assessment and evaluation, AI, hybrid model. | A survey on river water quality modelling using AI models: 2000–2020 |
[15] | Neural networks, water quality, environment, BPNN, CNN, LSTM. | A review of ANN techniques for environmental issues prediction |
[17] | AI, ANFIS, ANN, river, water quality. | AI for surface water quality monitoring and assessment: a systematic literature analysis |
[18] | Pollutant, sediment load, ML tool, ANN, discharge prediction | Applications of IoT and AI in Water Quality Monitoring and Prediction: A Review |
[5] | ANNs, feed-forward, recurrent, hybrid, water quality prediction. | A Review of the ANN Models for Water Quality Prediction |
[20] | Water quality criteria, climate change, Urbanisation, eutrophication, best management practices, critical source areas, water quality index, ML algorithms, remote sensing. | Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review |
[14] | AI; hybrid model; Wavelet transform; river water quality; prediction; review. | AI -based Single and Hybrid Models for Prediction of Water Quality in Rivers: A Review |
Model | Advantage | Disadvantage | References |
---|---|---|---|
ANN | It can handle non-linear data series and complicated hydrological processes. Increase the accuracy of WQ forecasting by training and testing data series continuously without understanding the relationship between input and output. | Over parameterisation and overfitting difficulties are common in ANNs, especially when the approaches are based on optimal input selection, and the model is regarded as a black-box model. In addition, because no consistent principles control proper ANN model development and construction, it is not easy to prioritise a suitable model. | [18,41,42] |
ANFIS | It can be used when the system input data is confusing and imprecise. It can manage non-linear data series and allow the modelling process to have the least possible uncertainty level. | When the number of fuzzy rules grows, it might become computationally expensive and may risk overfitting. | [42,43,44] |
SVR | Its increased generalisation ability, unique and globally optimum structures, and ability to be quickly trained. And SVR’s flexibility is one of its strongest features, dependent on several types of kernel functions such as linear, polynomial, and radial basis function (RBF) kernels. | Hyper-parameters like the penalty factor, accuracy, and kernel function variance significantly impact the performance of the SVR model. | [45,46] |
RF | It is able to manage large datasets with several features, and the accuracy of modelling improves when the number of trees increases. | The training process is slowed when using the model with a high number of trees. | [47,48] |
Authors | River | Location | Scale | Predictors | Target | Models Used | Best Model | Measures of Accuracy |
---|---|---|---|---|---|---|---|---|
[4] | Babol-Rood River | Northern iran | Monthly | PH, HCO3, CL, SO4, Na, Mg, Ca, Q, TDS, | EC | M5P, RF, bagging-M5P, bagging-RF, RS-M5P, RS-RF, RC-M5P, RC-RF, AR-M5P, AR-RF | AR-M5P | RMSE, MAE, NSE, BPIAS |
[59] | Luan | Tangshan City | Every 4 h | T, PH, DO, BOD, Tur, COD-Mn, NH4-N, TP, TN | TP, TN, COD-Mn | 1-DRCNN, BiGRU, GRU, LSTM | Combined (1-DRCNN-BiGRU) | MAE, MAPE, RMSE, R2 |
[31] | Pearl | China | Used six different time scale | PH, EC, Tur, DO, NH3-N, TP, COD-Mn, TN, WL, WT | DO | SVR | MIC-SVR | NSE, R2, RMSE |
[69] | Indus river | Asia | monthly | Ca, Mg, Na, Cl, SO4, HCO3, PH, EC, WT, DO, TDS | DO, TDS | PSO-FFNN, PSO-GEP | PSO-GEP | NSE, RMSE, RRMSE, P, R |
[60] | Dong Nai River | Vietnam | Month | DO, PH, COD, BOD, TSS, Tur, NH3-NL, Coliform | DO, PH, COD, BOD, TSS, Tur, NH3-NL, Coliform | ARIMA, NAR, NAR-MA, LSTM, and LSTM-MA | LSTM-MA | MSE, RMSE, MAPE |
[86] | Karun | Iran | Monthly | Ca, Cl, Mg, Na, SO4, SAR, Sum.C, Sum.A, PH, Q, HCO3 | TDS, EC | ANN, ANFIS, LSSVM, LSSVM-GBO | LSSVM-GBO | MAE, RRMSE, R, R2 |
[57] | Greece’s Small Prespa Lake | south-eastern Europe | Every 15-min | PH, ORP, T, EC, DO, Chl-a | DO, Chl-a | LSTM, CNN, SVR, and DT, CNN-LSTM | CNN-LSTM | R, RMSE, MAE, PBIAS, NSE, WI, and graphical plots (Taylor diagram, box plot and spider diagram) |
[58] | Nakdong | South Korea | Monthly | WL, TOC, TP, TN | TOC, TP, TN | CNN-LSTM | CNN-LSTM | NSE, R2, MSE |
[97] | Yongding River and Gangnan gauging stations in the Haihe River Basin, | Chain | weekly | DO | DO | SWT-LSTM, ISSA-LSTM, SWT-SSA-LSTM, SVR, BPNN, and single LSTM | SWT-ISSA-LSTM | AEmax, MAE, MAPE, RMSE, R2, CC, NSE, IA, 1.96 Se |
[98] | Maroon | Southwest Iran | monthly | Q, EC, Mg, SO4 | Mg, SO4 | LSSVM-ISA, EKF-ANN W-LSSVM-ISA, W-EKF-ANN | W-LSSVM-ISA | R, RMSE, KGE |
[90] | the Euphrates River | Iraq | monthly | T, PH, EC, TSS, BOD, ALK, Ca, COD, SO4 TDS, TSS, Tur | BOD | (QRF), (RF), (SVM), (GBM) (GBM_H2O) | PCA-QRF | R2, RMSE, AE, NSE, W index, PBIAS |
[99] | Xin’anjiang River | Huangshan City, | 4-h | DO, TN | DO, TN | CNN, LSTM, CNN-LSTM, CEEMDAN-CNN-LSTM | CEEMDAN-CNN-LSTM | CE, RMSE, MAPE |
[100] | Beihai Lake | Beijing | Hourly | PH, CAHL-A, NH4H, BOD, EC | DO | BPNN, PSO-BPNN, GA-BPNN, PSO-GA-BPNN | PSO-GA-BPNN | APEmax, MAPE, RMSE, R2 |
[85] | Tai Lake, Victoria Bay | China. | Monthly in Tai lake, every two weeks in Victoria Bay | Tai lake (TN, TP, NH3-N, SS, WT, DO, PH, Transparency, CL, Precipitation Victoria Bay (E. coli, BOD5, NH3-N, Nitrite, phosphate, PH, WT, salinity | DO | LSTM, BP, ARIMA | IGRA -LSTM | RMSE, |
[38] | Tualatin | Oregon, USA | Hourly | T, DO, PH, Specific conductance, Tur, fluorescent dissolved organic matter | T, DO, PH, Specific conductance, Tur, fluorescent dissolved organic matter | RF, XGboost, CEEMDAN-RF, CEEMDAN-XGBoost, PSO-SVM, RBFNN, LSSVM and LSTM | CEEMDAN-RF, CEEMDAN-XGBoost | MAPE, MAE, RMSE, RMSPE, U1, U2 |
[28] | Klang | Malaysia | Monthly daily | 15 WQ parameters, 7 hydrological components | DO | XGBoost-XGBoost MARS-XGBoost Boruta-XGBoost GA-XGBoost Boruta-Ranger GA-Ranger MARS-Ranger XGBoost-Ranger …… | XGBoost-XGBoost MARS-XGBoost Boruta-XGBoost | R2, RMSE, MAE, NSE, MD |
[91] | GuBeiKou, | Beijing, China. | Every 4-h | DO, CODmn | DO, CODmn | ANN, SVR, ARIMA, XBoost, LSTM, SE-LSTM | SE-LSTM | MAE, MAPE, RMSE |
[83] | Yangtze river | China | Daily | DO, BOD, CODmn, T, PH, NH3-N | DO, BOD, CODmn | BP, ABC-BP, PSO-BP, IABC-BP | IABC-BP | R2, NSE, RE, |
[81] | Shrimp pond | China | Every 10 min | DO, WT, Am, PH, AT, Hu, AP, WS | DO | SAE-LSTM, SAE-BPNN, LSTM, BPNN | SAE-LSTM | MSE, RMSE, MAPE |
[23] | Burnett river | Australia | Hourly | T, EC, DO, PH, Chl-a | DO | KPCA-RNN, FFNN, SVR, GRNN | KPCA-RNN | MAE, R2, RMSE |
[94] | Abalone farm | South African | Monthly | DO, T, Tur, PH | DO, T, Tur, PH | BP, SAE-BP, DL-LSTM, SAE-LSTM, EEMD-DL-LSTM | EEMD-DL-LSTM | RMSE, MAE, MSE, MAPE |
[96] | Grand Canal | China | Daily and Monthly | CODMn, NH3-N, DO | COD | SVR, PSO-SVR, WA-PSO-SVR | WA-PSO-SVR | RMSE, NSE, MAPE, R2 |
[68] | Zayandehrood River | Iran | (2001–2015) | TDS, EC, pH, HCO3, Cl, SO4, Mg, Na, K, CO2, Ca, CH, and TH | EC, TDS, SAR, CH, and TH | ANFIS, ANFIS-PSO, ANFIS-ACOR | ANFIS-PSO | MAPE, RMSE, R2, d |
[87] | Cumberland River | Southern United States | Monthly | T, Q | DO | SVR, SVR-CSO, SVR-SSD, SVR-BWO, SVR-AIG | SVR–AIG | RMSE, R2, MAE, NSE, BIAS |
[80] | Hooghly River | West Bengal, India | Monthly | H, Cl, TH, total alkalinity, Turbidity and Residual Chlorine | H, Cl, TH, TALK, Tur and Residual Chlorine | NN-CS, NN-GA, NN-PSO | NN-CS | RMSE, accuracy, precision, recall, f-measure, (MCC) (FM index) |
[67] | Kermanshah Province | Iran | Monthly | pH, T, SC, SA | TAlk, TH, TDS, EC | ANFIS, PSO-ANFIS | PSO-ANFIS | MRE, RMSE, R |
[95] | Juhe River | China | Every 4 h | T, pH, DO, conductivity, NTU, CODmn, TP, NH4N | TN | BPNN, LSSVR, DBN, DBN-LSSVR, PSO-DBN-LSSVR | PSO-DBN-LSSVR | R2, RMSE, MAE, MAPE |
[78] | Langat Rive | Malaysia | Monthly | COD, PO4, TS, K, Na, Cl, EC, PH, NH4-N | BOD, DO | MLP, MLP-FFA | MLP-FFA | RMSE, R, WI |
[92] | Surma River | Bangladesh | Monthly | Humidity, WT, rainfall, TDS, pH, turb, AT | DO | MARS, CEEMDAN-MARS, CEEMDAN-SVR, SVR, KRR, KNN, RF | MODWT-MARS | R, WI, RMSE, MAE |
[93] | Sefidrud River | Iran | Monthly | EC, Q | EC | SVR, W-SVR, ARIMA, W-ARIMA, MLR, and W-MLR, LWLR, W-LWLR | W-LWLR | RMSE, NSE, MAE, RAE, MSRE |
[101] | Kinta River | Malaysia | Monthly | DO, BOD, COD, Temp, NH3, TS, Cl, Ca, PH Na | DO | LSTM, ELM, HW, GRNN, SAE, WAE, LSTM-RF, ELM-RF, GRNN-RF and HW-RF | HW-RF | NSE, WI, RMSE, MAE, MSE, CC |
[102] | Yangtze River | China | Weekly | DO | DO | LSSVM, SSA-LSSVM, VMD-LSSVM, SVR, BPNN, VMD-SSA-LSSVM | VMD-SSA-LSSVM | NSE, RMSE, MAE, MAPE, CC, R2 |
[103] | Tolo Harbour | China | biweekly/monthly | BOD, TIN, DO, PO4, Temp, Chl-a, SDD, pH | HAB | ANN (LM-PSO), ANN(LM-GA), ANN (GDM-PSO) ANN (GDM-GA), SVM | ANN (LM-PSO) | RMSE, CC |
[104] | crab culture ponds | China | 10 min | DO | DO | CEEMDAN-LZC-GOBLPSO-GRU, CEEMDAN-GOBLPSO-GRU, GRU, CEEMDAN-LZC-GOBLPSO-LSTM, CEEMDAN-GOBLPSO-LSTM, LSTM, CEEMDAN-LZC-GOBLPSO-RNN, CEEMDAN-GOBLPSO-RNN, RNN, BPNN | CEEMDAN-LZC-GOBLPSO-GRU | MAPE, RMSE R2 |
[105] | Huaihe River, Potomac River | China, US | Weekly, every 15 min | COD, DO, NH3-N | COD, DO, NH3-N | ANN, ARIMA, MLE, W-MLE | W-MLE | ARE, MRE |
[106] | Bam Normashir Plain | Iran | Monthly | EC, Cl, Na, Ca, Mg, SAR | Cl, EC, SAR | FCM, GP, ANN, ANN-PSO, IDW, RBF, kriging, NF-GP, NF-MCF | NF-GP | RMSE, MAE, CC |
[107] | Karaj River | Iran | Monthly | BOD, Q | BOD | WANN, ANN, GP, DT, BN, WGP | WGP | MAE, RMSE, R |
[74] | Credit River | Canada | hourly | WT | WT | GA-LSTM, LSTM, RNN | GA-LSTM | R2, MAE, RMSE, RSR, mNSE, md, KGE |
[108] | River of Shanghai | Shanghai | Daily | P, N, BOD, NH4-NO3 COD | index COD | GM, RNN, LSTM-RNN | LSTM-RNN | RMSE, MAPE |
[75] | Ashi River | China | Every 4 h | NH3-N, TURB, EC | NH3-N, TURB, EC | BPNN, IGA-BPNN | IGA-BPNN | RMSE, MAE, MRE, R2 |
[109] | Qiantang River, Zhejiang Province | China | Every 4 h | permanganate index, pH, TP, DO | permanganate index, pH, TP, DO | BPNN, SVR, LSTM, GRU, SRN, RNNs-DS | RNNs-DS | RMSE MAE MAPE |
[110] | Yamuna | India | Monthly | BOD | BOD | ANFIS, ANN, W-ANFIS | W-ANFIS | MAE |
[111] | Isfahan-Borkhar | Iran | Monthly | SO4, Cl, HCO3, K, Na, Mg, Ca | EC, SAR, TH | ANFIS-CGA, ANFIS-ACOR, ANFIS-DE, ANFIS-PSO, ANFIS | ANFIS-CGA | R2, RMSE, MAPE, SI |
[112] | Small Prespa Lake | Greece | Daily | Chl-a, DO | Chl-a, DO | LSSVM, CEEMDAN-LSSVM, VMD-CEEMDAN-LSSVM, ELM, CEEMDAN-ELM, VMD-CEEMDAN-ELM | VMD-CEEMDAN-ELM | R, RMSE, MAE, BIAS |
[113] | South-to-NorthWater Diversion Project | China | Daily | PI, Ph, TN, WT, turb, EC, Chl, DO, DOM | TN, WT, DOM, DO, WVP, AT, PM 2.5 | BPNN, CS-BP, PSO-BP, GRNN, | CS-BP | RMSE, MAPE |
[114] | Nazlu Chay, Tajan, Zayandeh Rud and Helleh | Iran | Seasonal | TDS, Cl, EC, Na | TDS | ANN, ANFIS-GP, ANFIS-SC, GEP, WANN, WANFIS, GP, WANFIS-SC, WGEP | WGEP | R, RMSE and MAE |
[56] | offshore of Kuala | Terengganu | Daily | WT, pH, salinity, DO | WT, pH, salinity, DO | ARIMA, ANN, ARIMA-ANN | ARIMA-ANN | RMSE, MAE |
[115] | Pearl River | China | Daily | COD, NH4N, DO, EC, WT, pH, TU | COD, Tur | WNN, ANN, FWNN | FWNN | R, R2, MAPE, RMSE, MSE |
[116] | Aji-Chay River | Iran | Monthly | EC | EC | ELM, ANFIS, WA-ELM, WA-ANFIS | boosting multi-WA-ELM, multi-WA-ANFIS | RMSE, R2, NSE |
[89] | Karun River | Iran | Monthly | DO, Q, WT, BOD | BOD | SVR, ANFIS, WSVR, WANFIS | WSVR | RMSE, R2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khudhair, Z.S.; Zubaidi, S.L.; Ortega-Martorell, S.; Al-Ansari, N.; Ethaib, S.; Hashim, K. A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions. Environments 2022, 9, 85. https://doi.org/10.3390/environments9070085
Khudhair ZS, Zubaidi SL, Ortega-Martorell S, Al-Ansari N, Ethaib S, Hashim K. A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions. Environments. 2022; 9(7):85. https://doi.org/10.3390/environments9070085
Chicago/Turabian StyleKhudhair, Zahraa S., Salah L. Zubaidi, Sandra Ortega-Martorell, Nadhir Al-Ansari, Saleem Ethaib, and Khalid Hashim. 2022. "A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions" Environments 9, no. 7: 85. https://doi.org/10.3390/environments9070085
APA StyleKhudhair, Z. S., Zubaidi, S. L., Ortega-Martorell, S., Al-Ansari, N., Ethaib, S., & Hashim, K. (2022). A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions. Environments, 9(7), 85. https://doi.org/10.3390/environments9070085