The Impact of Optogenetics on Regenerative Medicine
Abstract
:1. Introduction
2. Molecular Pathways in Optogenetics
3. Biomedical Applications of Optogenetics
3.1. Applications in Ophthalmology
3.2. Applications in Bone Repairing
3.3. Applications in Heart Failure
3.4. Applications in Post-Stroke Recovery
3.5. Applications in Neurological Diseases
3.6. Clinical and Tissue Engineering and Regenerative Medicine (TERM) Applications
4. Conclusions and Future Insights
Author Contributions
Funding
Conflicts of Interest
References
- Hägglund, M.; Borgius, L.; Dougherty, K.J.; Kiehn, O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 2010, 13, 246. [Google Scholar] [CrossRef]
- Kalanithi, P.S.; Henderson, J.M. Chapter Nine—Optogenetic neuromodulation. Int. Rev. Neurobiol. 2012, 107, 185–205. [Google Scholar] [PubMed]
- Eickelbeck, D.; Karapinar, R.; Herlitze, S.; Spoida, K. Optogenetic Approaches for Controlling Neuronal Activity and Plasticity. In Handbook of Behavioral Neuroscience; Denise, M.-V., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 285–310. [Google Scholar] [CrossRef]
- Lane, S.W.; Williams, D.A.; Watt, F.M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 2014, 32, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravanis, A.M.; Wang, L.-P.; Zhang, F.; Meltzer, L.A.; Mogri, M.Z.; Schneider, M.B.; Deisseroth, K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 2007, 4, S143. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, V.; Zhang, F.; Ramakrishnan, C.; Mattis, J.; Prakash, R.; Diester, I.; Goshen, I.; Thompson, K.R.; Deisseroth, K. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010, 141, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.J.; Mansfield, B.; Rose, S. Proceedings of the first international optogenetic therapies for vision symposium. Transl. Vis. Sci. Technol. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Garita Hernandez, M.; Guibbal, L.; Toualbi, L.; Routet, F.; Chaffiol, A.; Winckler, C.; Harinquet, M.; Robert, C.; Fouquet, S.; Bellow, S.; et al. Optogenetic light sensors in human retinal organoids. Front. Neurosci. 2018, 12, 789. [Google Scholar] [CrossRef]
- Inoue, K.; Tsukamoto, T.; Shimono, K.; Suzuki, Y.; Miyauchi, S.; Hayashi, S.; Kandori, H.; Sudo, Y. Converting a light-driven proton pump into a light-gated proton channel. J. Am. Chem. Soc. 2015, 137, 3291–3299. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Terakita, A. Diversity and functional properties of bistable pigments. Photochem. Photobiol. Sci. 2010, 9, 1435–1443. [Google Scholar] [CrossRef]
- Terakita, A.; Nagata, T. Functional properties of opsins and their contribution to light-sensing physiology. Zool. Sci. 2014, 31, 653–660. [Google Scholar] [CrossRef]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinlogel, S.; Feldbauer, K.; Dempski, R.E.; Fotis, H.; Wood, P.G.; Bamann, C.; Bamberg, E. Ultra-light-sensitive and fast neuronal activation with the Ca 2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 2011, 14, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunaydin, L.A.; Yizhar, O.; Berndt, A.; Sohal, V.S.; Deisseroth, K.; Hegemann, P. Ultrafast optogenetic control. Nat. Neurosci. 2010, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Rabert, D.K.; Koch, B.D.; Ilnicka, M.; Obernolte, R.A.; Naylor, S.L.; Herman, R.C.; Eglen, R.M.; Hunter, J.C.; Sangameswaran, L. A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hPN3/SCN10A. Pain 1998, 78, 107–114. [Google Scholar] [CrossRef]
- Uhelski, M.L.; Bruce, D.J.; Séguéla, P.; Wilcox, G.L.; Simone, D.A. In vivo optogenetic activation of Nav1. 8+ cutaneous nociceptors and their responses to natural stimuli. J. Neurophysiol. 2017, 117, 2218–2223. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, N.; Herrmann, U.; Kähne, T.; Schicknick, H.; Pielot, R.; Naumann, M.; Dieterich, D.C.; Gundelfinger, E.D.; Smalla, K.H.; Tischmeyer, W. Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci. 2015, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Lippert, M.T.; Takagaki, K.; Weidner, T.; Brocka, M.; Tegtmeier, J.; Ohl, F.W. Optogenetic Intracranial Self-Stimulation as a Method to Study the Plasticity-Inducing Effects of Dopamine. In Handbook of Behavioral Neuroscience; Denise, M.-V., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 311–326. [Google Scholar]
- Kobayashi, T.; Mizuno, H.; Imayoshi, I.; Furusawa, C.; Shirahige, K.; Kageyama, R. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev. 2009, 23, 1870–1875. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Kageyama, R. Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes 2011, 2, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Sarris, M.; Olekhnovitch, R.; Bousso, P. Manipulating leukocyte interactions in vivo through optogenetic chemokine release. Blood 2016, 127, e35–e41. [Google Scholar] [CrossRef] [Green Version]
- Hörner, M.; Müller, K.; Weber, W. Light-responsive promoters. In Mammalian Synthetic Promoters; Springer: Berlin/Heidelberg, Germany, 2017; pp. 173–186. [Google Scholar]
- Zimmerman, S.P.; Hallett, R.A.; Bourke, A.M.; Bear, J.E.; Kennedy, M.J.; Kuhlman, B. Tuning the binding affinities and reversion kinetics of a light inducible dimer allows control of transmembrane protein localization. Biochemistry 2016, 55, 5264–5271. [Google Scholar] [CrossRef] [Green Version]
- Kyung, T.; Lee, S.; Kim, J.E.; Cho, T.; Park, H.; Jeong, Y.-M.; Kim, D.; Shin, A.; Kim, S.; Baek, J.; et al. Optogenetic control of endogenous Ca (2+) channels in vivo. Nat. Biotechnol. 2015, 33, 1092. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lee, M.; Kim, N.; Do Heo, W. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration. Proc. Natl. Acad. Sci. USA 2016, 113, 5952–5957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.X.; Fan, L.Z.; Li, P.; Shen, K.; Lin, M.Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 2017, 355, 836–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatelle, C.; Ochoa-Fernandez, R.; Engesser, R.; Schneider, N.; Beyer, H.M.; Jones, A.R.; Timmer, J.; Zurbriggen, M.D.; Weber, W. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol. 2018, 7, 1349–1358. [Google Scholar] [CrossRef]
- Aramaki, T.; Kondo, S. Method for disarranging the pigment pattern of zebrafish by optogenetics. Dev. Biol. 2018. [Google Scholar] [CrossRef]
- Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010, 29, 335–375. [Google Scholar] [CrossRef] [Green Version]
- Grossman, N.; Nikolic, K.; Toumazou, C.; Degenaar, P. Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Transl. Biomed. Eng. 2011, 58, 1742–1751. [Google Scholar] [CrossRef]
- Gaub, B.M.; Berry, M.H.; Visel, M.; Holt, A.; Isacoff, E.Y.; Flannery, J.G. Optogenetic retinal gene therapy with the light gated GPCR vertebrate rhodopsin. In Retinal Gene Therapy; Boon, C.J.F., Wijnholds, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 177–189. [Google Scholar]
- Ishii, T.; Sato, K.; Kakumoto, T.; Miura, S.; Touhara, K.; Takeuchi, S.; Nakata, T. Light generation of intracellular Ca 2+ signals by a genetically encoded protein BACCS. Nat. Commun. 2015, 6, 8021. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Asano, T.; Hosomichi, J.; Ono, T.; Nakata, T. Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2018, 506, 716–722. [Google Scholar] [CrossRef]
- Boyle, P.M.; Karathanos, T.V.; Entcheva, E.; Trayanova, N.A. Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Comput. Biol. Med. 2015, 65, 200–208. [Google Scholar]
- Karathanos, T.V.; Bayer, J.D.; Wang, D.; Boyle, P.M.; Trayanova, N.A. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: A simulation study. J Physiol. 2016, 594, 6879–6891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübkemeier, I.; Andrié, R.; Lickfett, L.; Bosen, F.; Stöckigt, F.; Dobrowolski, R.; Draffehn, A.M.; Fregeac, J.; Schultze, J.L.; Bukauskas, F.F.; et al. The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice. J. Mol. Cell Cardiol. 2013, 65, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Bruegmann, T.; Beiert, T.; Vogt, C.C.; Schrickel, J.W.; Sasse, P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc. Res. 2017, 114, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Cohen, L.G. Recovery of motor function after stroke. Dev. Psychobiol. 2012, 54, 254–262. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wang, E.H.; Woodson, W.J.; Wang, S.; Sun, G.; Lee, A.G.; Arac, A.; Fenno, L.E.; Deisseroth, K.; Steinberg, G.K. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl. Acad. Sci. USA 2014, 111, 12913–12918. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Schelhaas, B.; Maimon, B.E.; Song, H.; Herr, H.M. Retinal supplementation augments optogenetic stimulation efficacy in vivo. J. Neural Eng. 2019. [Google Scholar] [CrossRef]
- Vidal, P.-P.; Cullen, K.; Curthoys, I.S.; Du Lac, S.; Holstein, G.; Idoux, E.; Lysakowski, A.; Peusner, K.D.; Sans, A.; Smith, P. The vestibular system. In The Rat Nervous System; Denise, M.-V., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 805–864. [Google Scholar]
- Leong, A.T.; Gu, Y.; Chan, Y.-S.; Zheng, H.; Dong, C.M.; Chan, R.W.; Wang, X.; Liu, Y.; Tan, L.H.; Wu, E.X. Optogenetic fMRI interrogation of brain-wide central vestibular pathways. Proc. Natl. Acad. Sci. USA 2019, 116, 10122–10129. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tang, Y.; Xing, Y.; Kramer, P.; Bellinger, L.; Tao, F. Potential application of optogenetic stimulation in the treatment of pain and migraine headache: A perspective from animal studies. Brain Sci. 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H.; Kim, S.S. Therapeutic strategies for neuropathic pain: Potential application of pharmacosynthetics and optogenetics. Mediat. Inflamm. 2016, 2016, 5808215. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.; Kim, J.-H.; Kim, J.-H.; Jha, M.K.; Jung, J.Y.; Lee, M.-G.; Choi, I.-S.; Jang, I.-S.; Lim, D.G.; Hwang, S.-H.; et al. Reversible induction of pain hypersensitivity following optogenetic stimulation of spinal astrocytes. Cell Rep. 2016, 17, 3049–3061. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Raver, C.; Li, Y.; Uddin, O.; Rubin, D.; Ji, Y.; Masri, R.; Keller, A. Cortical regulation of nociception of the trigeminal nucleus caudalis. J. Neurosci. 2017, 37, 11431–11440. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hao, S.; Yang, C.; Chen, G. Article Synthesis of Multicolor Core/Shell NaLuF 4: Yb 3+/Ln3+ αCaF 2 Upconversion Nanocrystals. Nanomaterials 2017, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.; Park, Y.I. Lanthanide-doped upconversion nanocarriers for drug and gene delivery. Nanomaterials 2018, 8, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.; Hashimot, Y. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 2018, 359, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C.; et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morizumi, T.; Ou, W.-L.; Van Eps, N.; Inoue, K.; Kandori, H.; Brown, L.S.; Ernst, O.P. X-ray crystallographic Structure and oligomerization of Gloeobacter Rhodopsin. Sci. Rep. 2019, 9, 11283. [Google Scholar] [CrossRef] [Green Version]
- Rostami, I.; Alanagh, H.R.; Hu, Z.; Shahmoradian, S.H. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles. Int. J. Nanomed. 2019, 14, 7759. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.; Getzin, M.; Gjesteby, L.; Wang, G. X-optogenetics and U-optogenetics: Feasibility and possibilities. Photonics 2015, 2, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Shin, G.; Gomez, A.M.; Al-Hasani, R.; Jeong, Y.R.; Kim, J.; Xie, Z.; Banks, A.; Lee, S.M.; Han, S.Y.; Yoo, C.J.; et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 2017, 93, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Mickle, A.D.; Won, S.M.; Noh, K.N.; Yoon, J.; Meacham, K.W.; Xue, Y.; Mcllvried, L.A.; Copits, B.A.; Samineni, V.K.; Crawford, K.E.; et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361. [Google Scholar] [CrossRef]
- Wang, S.; Kugelman, T.; Buch, A.; Herman, M.; Han, Y.; Karakatsani, M.E.; Hussaini, S.A.; Duff, K.; Konofagou, E.E. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Sci. Rep. 2017, 7, 39955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redchuk, T.A.; Kaberniuk, A.A.; Verkhusha, V.V. Near-infrared light–controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nat. Protoc. 2018, 13, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Shadish, J.A.; Arakawa, C.K.; Shi, K.; Davis, J.; DeForest, C.A. Cyclic Stiffness Modulation of Cell-Laden Protein–Polymer Hydrogels in Response to User-Specified Stimuli Including Light. Adv. Biosyst. 2018, 2, 1800240. [Google Scholar] [CrossRef]
- Bugaj, L.J.; Sabnis, A.J.; Mitchell, A.; Garbarino, J.E.; Toettcher, J.E.; Bivona, T.G.; Lim, W.A. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 2018, 361, eaao3048. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; He, L.; Martinez-Moczygemba, M.; Huang, Y.; Zhou, Y. Rewiring calcium signaling for precise transcriptional reprogramming. ACS Synth. Biol. 2018, 7, 814–821. [Google Scholar] [CrossRef]
- Hughes, R.M.; Bolger, S.; Tapadia, H.; Tucker, C.L. Light-mediated control of DNA transcription in yeast. Methods 2012, 58, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Maeder, M.L.; Linder, S.J.; Reyon, D.; Angstman, J.F.; Fu, Y.; Sander, J.D.; Joung, J.K. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 2013, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Sanders, T.H.; Jaeger, D. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol. Dis. 2016, 95, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Daoud-El Baba, M.; Peng, R.-W.; Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 2011, 332, 1565–1568. [Google Scholar] [CrossRef]
- Xu, Y.; Hyun, Y.-M.; Lim, K.; Lee, H.; Cummings, R.J.; Gerber, S.A.; Bae, S.; Cho, T.Y.; Lord, E.M.; Kim, M. Optogenetic control of chemokine receptor signal and T-cell migration. Proc. Natl. Acad. Sci. USA 2014, 111, 6371–6376. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.P.; Tung, J.K.; Wei, Z.Z.; Chen, D.; Berglund, K.; Zhong, W.; Zhang, J.; Gu, X.; Song, M.; Gross, R.E.; et al. Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. J. Neurosci. 2019, 39, 6571–6594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Du, L.; Peng, G.-H. Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells. Cell Biosci. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paduano, F.; Marrelli, M.; Amantea, M.; Rengo, C.; Rengo, S.; Goldberg, M.; Spagnuolo, G.; Tatullo, M. Adipose tissue as a strategic source of mesenchymal stem cells in bone regeneration: A topical review on the most promising craniomaxillofacial applications. Int. J. Mol. Sci. 2017, 18, 2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Vito, A.; Giudice, A.; Chiarella, E.; Malara, N.; Bennardo, F.; Fortunato, L. In vitro long-term expansion and high osteogenic potential of periodontal ligament stem cells: More than a mirage. Cell Transplant. 2019, 28, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paduano, F.; Marrelli, M.; Alom, N.; Amer, M.; White, L.J.; Shakesheff, K.M.; Tatullo, M. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J. Biomater. Sci. Polym. Ed. 2017, 28, 730–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A.M.; Inchingolo, A.D.; Dipalma, G.; Flace, P.; Girolamo, F.; Tarullo, A.; Laino, L.; et al. Regenerative surgery performed with platelet-rich plasma used in sinus lift elevation before dental implant surgery: An useful aid in healing and regeneration of bone tissue. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1222–1226. [Google Scholar]
- Barry, M.; Pearce, H.; Cross, L.; Tatullo, M.; Gaharwar, A.K. Advances in Nanotechnology for the Treatment of Osteoporosis. Curr. Osteoporos. Rep. 2016, 14, 87–94. [Google Scholar] [CrossRef]
- Marrelli, M.; Tatullo, M.; Dipalma, G.; Inchingolo, F. Oral infection by Staphylococcus aureus in patients affected by White Sponge Nevus: A description of two cases occurred in the same family. Int. J. Med. Sci. 2012, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Figliuzzi, M.M.; Giudice, A.; Pileggi, S.; Pacifico, D.; Marrelli, M.; Tatullo, M.; Fortunato, L. Implant-prosthetic rehabilitation in bilateral agenesis of maxillary lateral incisors with a mini split crest. Case Rep. Dent. 2016, 2016, 3591321. [Google Scholar] [CrossRef] [Green Version]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Gentile, M.; Inchingolo, A.M.; Dipalma, G. Non-syndromic multiple supernumerary teeth in a family unit with a normal karyotype: Case report. Int. J. Med. Sci. 2010, 7, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Inchingolo, A.M.; Dipalma, G. Non-Hodgkin lymphoma affecting the tongue: Unusual intra-oral location. Head Neck Oncol. 2011, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giudice, A.; Bennardo, F.; Barone, S.; Antonelli, A.; Figliuzzi, M.M.; Fortunato, L. Can autofluorescence guide surgeons in the treatment of medication-related osteonecrosis of the jaw? A prospective feasibility study. J. Oral Maxillofac. Surg. 2018, 76, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Tatullo, M.; Abenavoli, F.M.; Marrelli, M.; Inchingolo, A.D.; Palladino, A.; Inchingolo, A.M.; Dipalma, G. Oral piercing and oral diseases: A short time retrospective study. Int. J. Med. Sci. 2011, 8, 649–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatullo, M.; Marrelli, M.; Amantea, M.; Paduano, F.; Santacroce, L.; Gentile, S.; Scacco, S. Bioimpedance Detection of Oral Lichen Planus Used as Preneoplastic Model. J. Cancer 2015, 6, 976–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatullo, M.; Gentile, S.; Paduano, F.; Santacroce, L.; Marrelli, M. Crosstalk between oral and general health status in e-smokers. Medicine 2016, 95, e558. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spagnuolo, G.; Genovese, F.; Fortunato, L.; Simeone, M.; Rengo, C.; Tatullo, M. The Impact of Optogenetics on Regenerative Medicine. Appl. Sci. 2020, 10, 173. https://doi.org/10.3390/app10010173
Spagnuolo G, Genovese F, Fortunato L, Simeone M, Rengo C, Tatullo M. The Impact of Optogenetics on Regenerative Medicine. Applied Sciences. 2020; 10(1):173. https://doi.org/10.3390/app10010173
Chicago/Turabian StyleSpagnuolo, Gianrico, Fabio Genovese, Leonzio Fortunato, Michele Simeone, Carlo Rengo, and Marco Tatullo. 2020. "The Impact of Optogenetics on Regenerative Medicine" Applied Sciences 10, no. 1: 173. https://doi.org/10.3390/app10010173
APA StyleSpagnuolo, G., Genovese, F., Fortunato, L., Simeone, M., Rengo, C., & Tatullo, M. (2020). The Impact of Optogenetics on Regenerative Medicine. Applied Sciences, 10(1), 173. https://doi.org/10.3390/app10010173