Gender-Based Differences in Actual Thumb Force Exertions at Various Target Force Levels
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Apparatus
2.3. Experimental Procedure
2.4. Experimental Design
3. Results
3.1. Maximum Thumb Force (MTF)
3.2. Actual Exerted Thumb Force
3.3. Difference between Actual Thumb Force and Perceived Exertion Level (% MTF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United States Department of Labor. Lost-Work Time Injuries and Illness: Characteristics and Resulting Days away from Work; Bureau of Labor Statistics: Washington, DC, USA, 2005.
- Jin, K.; Lombardi, D.; Courtney, T.; Sorock, G.; Li, M.; Pan, R.; Wang, X.; Lin, J.; Liang, Y.; Perry, M. Patterns of work-related traumatic hand injury among hospitalised workers in the People’s Republic of China. Inj. Prev. 2010, 16, 42–49. [Google Scholar] [CrossRef]
- Kim, B. Wrist and hand pain. J. Korean Acad. Fam. Med. 2000, 21, 820–836. [Google Scholar]
- Eerkes, K. Volleyball injuries. Curr. Sports Med. Rep. 2012, 11, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.-K.; Lee, J.-H.; Lee, J.-H.; Shin, J.-M.; Park, C.W.; Kim, B.C.; Choi, K.-H. The Development of Guideline for Risk Evaluation of Thumb-Pressing Tasks Associated with Thumb-Pressing Forces and Repetitions. J. Korean Inst. Ind. Eng. 2018, 44, 47–53. [Google Scholar]
- Wang, D.; Dai, F.; Ning, X. Risk Assessment of Work-Related Musculoskeletal Disorders in Construction: State-of-the-Art Review. J. Constr. Eng. Manag. 2015, 141, 04015008. [Google Scholar] [CrossRef]
- Li, K.W.; Yu, R. Assessment of grip force and subjective hand force exertion under handedness and postural conditions. Appl. Ergon. 2011, 42, 929–933. [Google Scholar] [CrossRef]
- Spielholz, P. Calibrating Borg scale ratings of hand force exertion. Appl. Ergon. 2006, 37, 615–618. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Heal. 1990, 16, 55–58. [Google Scholar] [CrossRef]
- Park, D.; Yun, M.H. An application of psychophysical ratings to external force estimation. Comput. Ind. Eng. 1996, 31, 675–680. [Google Scholar] [CrossRef]
- Kong, Y.-K.; Lee, J.-H.; Shin, J.-M.; Shim, H.-H.; Kim, J.-K.; Cho, M.-U.; Park, C.-W.; Choi, K.-H. Evaluation of subjective perceived rating for grip strength depending on handedness for various target force levels. Work 2019, 62, 21–26. [Google Scholar] [CrossRef]
- Manivannan, M.; Prasad, M.R. Comparison of Force Matching Performance in Conventional and Laparoscopic Force-Based Task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2014, 58, 683–687. [Google Scholar]
- Cotugno, G.; Althoefer, K.; Nanayakkara, T. The role of the thumb: Study of finger motion in grasping and reachability space in human and robotic hands. IEEE Trans. Syst. Man. Cybern. Syst. 2017, 47, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Feix, T.; Romero, J.; Schmiedmayer, H.-B.; Dollar, A.M.; Kragic, D. The GRASP Taxonomy of Human Grasp Types. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 66–77. [Google Scholar] [CrossRef]
- Curran, P.F.; Bagley, A.M.; Sison-Williamson, M.; James, M.A. Three-dimensional functional workspace of thumb prehension. Clin. Biomech. 2019, 63, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Franke, W.D.; Boettger, C.F.; McLean, S.P. Effects of varying central command and muscle mass on the cardiovascular responses to isometric exercise. Clin. Physiol. 2000, 20, 380–387. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Coelho, A.J.; Erikson, W.H. Perceived exertion during isometric quadriceps contraction. A comparison between men and women. J. Sports Med. Phys. Fit. 2000, 40, 319–326. [Google Scholar]
- Pincivero, D.M.; Coelho, A.J.; Campy, R.M. Gender Differences in Perceived Exertion during Fatiguing Knee Extensions. Med. Sci. Sports Exerc. 2004, 36, 109–117. [Google Scholar] [CrossRef]
- Stackhouse, S.K.; Stevens, J.E.; Lee, S.C.; Pearce, K.M.; Snyder-Mackler, L.; Binder-Macleod, S.A. Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys. Ther. 2001, 81, 1102–1109. [Google Scholar]
- Boettcher, C.E.; Ginn, K.A.; Cathers, I. Standard maximum isometric voluntary contraction tests for normalizing shoulder muscle EMG. J. Orthop. Res. 2008, 26, 1591–1597. [Google Scholar] [CrossRef]
- Pheasant, S. Sex differences in strength—Some observations on their variability. Appl. Ergon. 1983, 14, 205–211. [Google Scholar] [CrossRef]
- Härkönen, R.; Piirtomaa, M.; Alaranta, H. Grip Strength and Hand Position of the Dynamometer in 204 Finnish Adults. J. Hand Surg. 1993, 18, 129–132. [Google Scholar] [CrossRef]
- Hunter, S.K.; Enoka, R.M. Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. J. Appl. Physiol. 2001, 91, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, E. Muscle strength measurement using shoulder and upper joint for Korean young-aged. J. Ergon. Soc. Korean 2009, 28, 125–134. [Google Scholar]
- Talsania, J.S.; Kozin, S.H. Normal digital contribution to grip strength assessed by a computerized digital dynamometer. J. Hand Surg. 1998, 23, 162–166. [Google Scholar] [CrossRef]
- Kong, Y.-K.; Lowe, B.D. Optimal cylindrical handle diameter for grip force tasks. Int. J. Ind. Ergon. 2005, 35, 495–507. [Google Scholar] [CrossRef]
- Kong, Y.-K.; Sohn, S.-T.; Kim, D.-M.; Jung, M.-C. Grip force, finger force, and comfort analyses of young and old people by hand tool handle shapes. J. Ergon. Soc. Korea 2009, 28, 27–34. [Google Scholar]
- Kong, Y.-K.; Kim, D.-M.; Park, J.-S.; Lee, S.-Y.; Choi, K.-H.; Kim, K.R. Evaluation of Gender Effect in Various Pliers’ Grip Spans for Maximum Isometric Grasping Tasks. J. Ergon. Soc. Korea 2014, 33, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Fulco, C.S.; Rock, P.B.; Muza, S.R.; Lammi, E.; Cymerman, A.; Butterfield, G.; Moore, L.G.; Braun, B.; Lewis, S.F. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol. Scand. 1999, 167, 233–239. [Google Scholar] [CrossRef]
- Ditor, D.S.; Hicks, A.L. The effect of age and gender on the relative fatigability of the human adductor pollicis muscle. Can. J. Physiol. Pharmacol. 2000, 78, 781–790. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kong, Y.-K.; Choi, K.-H.; Lee, S.-Y. Development of thumb endurance curves associated with various exertion levels. Hum. Factors Ergon. Manuf. 2017, 27, 249–255. [Google Scholar]
- Bruce, S.A.; Newton, D.; Woledge, R.C. Effect of age on voluntary force and cross-sectional area of human adductor pollicis muscle. Q. J. Exp. Physiol. 1989, 74, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.E.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Graefe’s Arch. Clin. Exp. Ophthalmol. 1993, 66, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Pincivero, D.M.; Coelho, A.J.; Campy, R.M.; Salfetnikov, Y.; Bright, A. The effects of voluntary contraction intensity and gender on perceived exertion during isokinetic quadriceps exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 84, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Simmonds, M.; Lechelt, D. Maximal and graded effort perception by young females in stoop lifting, hand grip and finger pinch activity with comparisons to males. Int. J. Ind. Ergon. 1994, 13, 3–13. [Google Scholar] [CrossRef]
- Kumar, S.; Narayan, Y.; Chouinard, K. Effort reproduction accuracy in pinching, gripping, and lifting among industrial males. Int. J. Ind. Ergon. 1997, 20, 109–119. [Google Scholar] [CrossRef]
- Kumar, S.; Simmonds, M. The accuracy of magnitude production of submaximal precision and power grips and gross motor efforts. Ergonomics 1994, 37, 1345–1353. [Google Scholar] [CrossRef]
- Jackson, A.W.; Ludtke, A.W.; Martin, S.B.; Koziris, L.P.; Dishman, R.K. Perceived Submaximal Force Production in Young Adults. Res. Q. Exerc. Sport 2006, 77, 50–57. [Google Scholar] [CrossRef]
Anthropometry Item | Gender | |
---|---|---|
Male | Female | |
Age (year) | 22.9 ± 1.2 | 21.8 ± 1.2 |
Height (cm) | 175.2 ± 5.5 | 161.2 ± 3.4 |
Weight (kg) | 73.7 ± 11.6 | 51.2 ± 5.3 |
Hand length (mm) | 185.4 ± 6.8 | 168.5 ± 4.8 |
Thumb length (mm) | 63.1 ± 3.5 | 56.9 ± 4.4 |
Hand width (mm) | 81.9 ± 3.5 | 73.6 ± 3.2 |
Hand depth (mm) | 29.7 ± 2.8 | 24.9 ± 2.6 |
Perceived Exertion Force (% MTF) | Actual Exerted Force (Mean ± SD, % MVC) | t29 | p-Value |
---|---|---|---|
10 * | 21.7 ± 10.2 | 6.109 | <0.001 |
30 * | 38.2 ± 13.8 | 3.310 | 0.002 |
50 | 49.4 ± 15.2 | −0.206 | 0.838 |
70 * | 58.8 ± 16.8 | −3.700 | 0.001 |
90 * | 79.2 ± 15.9 | −3.780 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.-H.; Kim, J.-K.; Shim, H.-H.; Kong, Y.-K. Gender-Based Differences in Actual Thumb Force Exertions at Various Target Force Levels. Appl. Sci. 2020, 10, 194. https://doi.org/10.3390/app10010194
Choi K-H, Kim J-K, Shim H-H, Kong Y-K. Gender-Based Differences in Actual Thumb Force Exertions at Various Target Force Levels. Applied Sciences. 2020; 10(1):194. https://doi.org/10.3390/app10010194
Chicago/Turabian StyleChoi, Kyeong-Hee, Jae-Kyeong Kim, Hyun-Ho Shim, and Yong-Ku Kong. 2020. "Gender-Based Differences in Actual Thumb Force Exertions at Various Target Force Levels" Applied Sciences 10, no. 1: 194. https://doi.org/10.3390/app10010194
APA StyleChoi, K.-H., Kim, J.-K., Shim, H.-H., & Kong, Y.-K. (2020). Gender-Based Differences in Actual Thumb Force Exertions at Various Target Force Levels. Applied Sciences, 10(1), 194. https://doi.org/10.3390/app10010194