Analysis of Decision Support System Based on 2-Tuple Spherical Fuzzy Linguistic Aggregation Information
Abstract
:1. Introduction
2. Preliminaries
- (1)
- The ordered of set as:
- (2)
- The operator of negation as: Neg
- (3)
- Maximum iff
- (4)
- Minimum iff
- 1.
- 2.
- 3.
- 4.
- 5.
3. 2-Tuple Spherical Fuzzy Linguistic Sets
4. 2-Tuple Spherical Fuzzy Linguistic Averaging Aggregation Operators
5. 2-Tuple Spherical Fuzzy Linguistic Geometric Aggregation Operators
6. An Approach for MADM with 2-Tuple Spherical Fuzzy Linguistic Information
Practical Example
7. A Comparative Analysis with Linguistic Spherical Fuzzy Sets
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy decision making with data: Applications to statistics. Fuzzy Sets Syst. 1985, 16, 139–147. [Google Scholar] [CrossRef]
- Atnassov, K. Intuitionistic Fuzzy Sets: Theory and Applications; Physica-Verlag: Heidelberg, Germany, 1999; Volume 35. [Google Scholar]
- Garg, H. Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput. Ind. Eng. 2016, 101, 53–69. [Google Scholar] [CrossRef]
- Garg, H. Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng. Appl. Artif. Intell. 2017, 60, 164–174. [Google Scholar] [CrossRef]
- Kaur, G.; Garg, H. Cubic intuitionistic fuzzy aggregation operators. Int. J. Uncertain. Quantif. 2018, 8, 405–427. [Google Scholar] [CrossRef]
- Kaur, G.; Garg, H. Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process. Arab. J. Sci. Eng. 2019, 44, 2775–2794. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making. Eng. Appl. Artif. Intell. 2018, 71C, 100–112. [Google Scholar] [CrossRef]
- Garg, H.; Rani, D. Some generalized complex intuitionistic fuzzy aggregation operators and their application to multi-criteria decision-making process. Arab. J. Sci. Eng. 2019, 44, 2679–2698. [Google Scholar] [CrossRef]
- Shen, K.W.; Wang, J.Q. Z-VIKOR method based on a new weighted comprehensive distance measure of z-number and its application. IEEE Trans. Fuzzy Syst. 2018. [Google Scholar] [CrossRef]
- Wang, X.K.; Peng, H.G.; Wang, J.Q. Hesitant linguistic intuitionistic fuzzy sets and their application in multi-criteria decision-making problems. Int. J. Uncertain. Quantif. 2018, 8, 321–341. [Google Scholar] [CrossRef]
- Garg, H.; Kumar, K. Power Geometric Aggregation Operators Based on Connection Number of Set Pair Analysis Under Intuitionistic Fuzzy Environment. Arab. J. Sci. Eng. 2019, 1–15. [Google Scholar] [CrossRef]
- Garg, H.; Rani, D. New generalised Bonferroni mean aggregation operators of complex intuitionistic fuzzy information based on Archimedean t-norm and t-conorm. J. Exp. Theor. Artif. Intell. 2019, 1–29. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Generalized intuitionistic fuzzy soft power aggregation operator based on t-norm and their application in multicriteria decision-making. Int. J. Intell. Syst. 2019, 34, 215–246. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 57–61. [Google Scholar]
- Rahman, K.; Abdullah, S.; Shakeel, M.; Khan, M.S.A.; Ullah, M. Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Math. Stat. 2017, 4, 1338638. [Google Scholar] [CrossRef]
- Liang, D.; Xu, Z. The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 2017, 60, 167–179. [Google Scholar] [CrossRef]
- Rahman, K.; Ali, A.; Abdullah, S.; Amin, F. Approaches to multi-attribute group decision making based on induced interval-valued Pythagorean fuzzy Einstein aggregation operator. New Math. Nat. Comput. 2018, 14, 343–361. [Google Scholar] [CrossRef]
- Garg, H. New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multi-criteria decision-making. Int. J. Intell. Syst. 2018, 33, 653–683. [Google Scholar] [CrossRef]
- Garg, H. Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment. Int. J. Intell. Syst. 2018, 33, 687–712. [Google Scholar] [CrossRef]
- Garg, H. Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multi-criteria decision-making process. Int. J. Intell. Syst. 2017, 32, 597–630. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Wei, G. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Wei, G.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Xu, Q.; Yu, K.; Zeng, S.; Liu, J. Pythagorean fuzzy induced generalized OWA operator and its application to multi-attribute group decision making. Int. J. Innov. Comput. Inf. Control 2017, 13, 1527–1536. [Google Scholar]
- Xue, W.; Xu, Z.; Zhang, X.; Tian, X. Pythagorean fuzzy LINMAP method based on the entropy theory for railway project investment decision making. Int. J. Intell. Syst. 2018, 33, 93–125. [Google Scholar] [CrossRef]
- Perez-Domínguez, L.; Rodríguez-Picón, L.A.; Alvarado-Iniesta, A.; Luviano Cruz, D.; Xu, Z. MOORA under Pythagorean fuzzy set for multiple criteria decision making. Complexity 2018, 2018, 2602376. [Google Scholar]
- Garg, H. A linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2018, 26, 67–80. [Google Scholar] [CrossRef]
- Hamacher, H. Uber logische Verknupfungen unscharfer Aussagen und daren zugeharige Bewertungs-functionene, Progress in Cybernetics and Systems Research; Trappl, R., Klir, G.J., Riccardi, L., Eds.; John Wiley and Sons: New York, NY, USA, 1979; Volume 276, p. 288. [Google Scholar]
- Zhou, L.; Zhao, X.; Wei, G. Hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2689–2699. [Google Scholar] [CrossRef]
- Liu, P. Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 83–97. [Google Scholar] [CrossRef]
- Tan, C.; Yi, W.; Chen, X. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl. Soft Comput. 2015, 26, 325–349. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. The 2-tuple linguistic computational model: Advantages of its linguistic description, accuracy and consistency. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2001, 9 (Suppl. 01), 33–48. [Google Scholar] [CrossRef]
- Herrera, F.; Martınez, L.; Sánchez, P.J. Managing non-homogeneous information in group decision making. Eur. Oper. Res. 2005, 166, 115–132. [Google Scholar] [CrossRef]
- Wang, W.P. Evaluating new product development performance by fuzzy linguistic computing. Expert Syst. Appl. 2009, 36, 9759–9766. [Google Scholar] [CrossRef]
- Wei, G.W. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Knowl. Inf. Syst. 2010, 25, 623–634. [Google Scholar] [CrossRef]
- Chang, K.H.; Wen, T.C. A novel efficient approach for DFMEA combining 2-tuple and the OWA operator. Expert Syst. Appl. 2010, 37, 2362–2370. [Google Scholar] [CrossRef]
- Jiang, X.P.; Wei, G.W. Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2153–2162. [Google Scholar] [CrossRef]
- Li, C.C.; Dong, Y. Multi-attribute group decision making methods with proportional 2-tuple linguistic assessments and weights. Int. J. Comput. Intell. Syst. 2014, 7, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q.; Wang, D.D.; Zhang, H.Y.; Chen, X.H. Multi-criteria group decision making method based on interval 2-tuple linguistic information and Choquet integral aggregation operators. Soft Comput. 2015, 19, 389–405. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X. 2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection. Kybernetes 2016, 45, 2–29. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Wang, H. A consensus reaching model for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Int. J. Syst. Sci. 2016, 47, 389–405. [Google Scholar] [CrossRef]
- Ashraf, S.; Abdullah, S.; Mahmood, T.; Ghani, F.; Mahmood, T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. J. Intell. Fuzzy Syst. 2019, 36, 2829–2844. [Google Scholar] [CrossRef]
- Kutlu Gundogdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Jin, H.; Ashraf, S.; Abdullah, S.; Qiyas, M.; Bano, M.; Zeng, S. Linguistic Spherical Fuzzy Aggregation Operators and Their Applications in Multi-Attribute Decision Making Problems. Mathematics 2019, 7, 413. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S.; Abdullah, S.; Mahmood, T. Spherical fuzzy Dombi aggregation operators and their application in group decision making problems. J. Ambient. Intell. Humaniz. Comput. 2019, 1–19. [Google Scholar] [CrossRef]
- Ashraf, S.; Abdullah, S.; Aslam, M.; Qiyas, M.; Kutbi, M.A. Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms. J. Intell. Fuzzy Syst. 2019, 36, 6089–6102. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Herrera, F.; Martinez, L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Yang, M.S.; Hussain, Z. Fuzzy entropy for Pythagorean fuzzy sets with application to multicriterion decision making. Complexity 2018, 2018, 14. [Google Scholar] [CrossRef]
2TSFLWA | 2TSFLWG | |
---|---|---|
2TSFLWA | 2TSFLWG | |
---|---|---|
Operators | Ranking |
---|---|
2TSFLWA | |
2TSFLWG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, S.; Barukab, O.; Qiyas, M.; Arif, M.; Khan, S.A. Analysis of Decision Support System Based on 2-Tuple Spherical Fuzzy Linguistic Aggregation Information. Appl. Sci. 2020, 10, 276. https://doi.org/10.3390/app10010276
Abdullah S, Barukab O, Qiyas M, Arif M, Khan SA. Analysis of Decision Support System Based on 2-Tuple Spherical Fuzzy Linguistic Aggregation Information. Applied Sciences. 2020; 10(1):276. https://doi.org/10.3390/app10010276
Chicago/Turabian StyleAbdullah, Saleem, Omar Barukab, Muhammad Qiyas, Muhammad Arif, and Sher Afzal Khan. 2020. "Analysis of Decision Support System Based on 2-Tuple Spherical Fuzzy Linguistic Aggregation Information" Applied Sciences 10, no. 1: 276. https://doi.org/10.3390/app10010276
APA StyleAbdullah, S., Barukab, O., Qiyas, M., Arif, M., & Khan, S. A. (2020). Analysis of Decision Support System Based on 2-Tuple Spherical Fuzzy Linguistic Aggregation Information. Applied Sciences, 10(1), 276. https://doi.org/10.3390/app10010276