Millimeter Wave Propagation Measurements and Characteristics for 5G System
Abstract
:1. Introduction
2. Measurement Technique
3. Testbed of Experiment
4. Post Processing
5. Path-Loss Models and Analysis
6. Time Dispersion Parameters and Analysis
7. Comparison with Some Studies
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Smulders, P.F.M.; Wagemans, A.G. Wideband indoor radio propagation measurements at 58 GHz. Electron. Lett. 1992, 28, 1270. [Google Scholar] [CrossRef]
- Geng, S.; Kivinen, J.; Zhao, X.; Vainikainen, P. Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Trans. Veh. Technol. 2009, 58, 3–13. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Rappaport, T.S.; Qiao, Y.; Lauffenburger, S.J. Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of the 2011 IEEE Global Telecommunications Conference—GLOBECOM 2011, Kathmandu, Nepal, 5–9 December 2011; pp. 1–6. [Google Scholar]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Al-Gumaei, Y.A.; Aslam, N.; Al-Samman, A.M.; Al-Hadhrami, T.; Noordin, K.; Fazea, Y. Non-cooperative power control game in D2D underlying networks with variant system conditions. Electronics 2019, 8, 1113. [Google Scholar] [CrossRef] [Green Version]
- ITU-R. World Radiocommunication Conference 2015—Provisional Final Acts. Available online: https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.11-2015-PDF-E.pdf (accessed on 29 November 2015).
- Durgin, G.D.; Kukshya, V.; Rappaport, T.S. Wideband measurements of angle and delay dispersion for outdoor and indoor peer-to-peer radio channels at 1920 MHz. IEEE Trans. Antennas Propag. 2003, 51, 936–944. [Google Scholar] [CrossRef]
- Thomas, T.A.; Rybakowski, M.; Sun, S.; Rappaport, T.S.; Nguyen, H.; Kovács, I.Z. A prediction study of path loss models from 2–73.5 GHz in an urban-macro environment. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (Spring VTC-2016), Nanjing, China, 15–18 May 2016. [Google Scholar]
- MacCartney, G.R.; Rappaport, T.S. Rural macrocell path loss models for millimeter wave wireless communications. IEEE J. Sel. Areas Commun. 2017, 35, 1663–1677. [Google Scholar] [CrossRef]
- Sánchez, M.G.; Táboas, M.P.; Cid, E.L. Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications. Measurement 2017, 95, 223–229. [Google Scholar] [CrossRef]
- Sun, S.; Rappaport, T.S.; Thomas, T.A.; Ghosh, A.; Nguyen, H.C.; Kovács, I.Z.; Rodriguez, I.; Koymen, O.; Partyka, A. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Trans. Veh. Technol. 2016, 65, 2843–2860. [Google Scholar] [CrossRef]
- Faruk, N.; Bello, O.W.; Sowande, O.A.; Onidare, S.O.; Muhammad, M.Y.; Ayeni, A.A. Large scale spectrum survey in rural and urban environments within the 50 MHz—6 GHz bands. Measurement 2016, 91, 228–238. [Google Scholar] [CrossRef]
- Alvarez, A.; Valera, G.; Lobeira, M.; Torres, R.P.; Garcia, J.L. Ultra wideband channel model for indoor environments. J. Commun. Netw. 2003, 5, 309–318. [Google Scholar] [CrossRef]
- Maccartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access 2015, 3, 2388–2424. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Zhao, X.; Wang, M.; Sun, S. Wideband millimeter-wave channel characterization based on LOS measurements in an open office at 26GHz. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Hur, S.; Cho, Y.-J.; Lee, J.; Kang, No.; Park, J.; Benn, H. Synchronous channel sounder using horn antenna and indoor measurements on 28 GHz. In Proceedings of the 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Odessa, Ukraine, 27–30 May 2014; pp. 83–87. [Google Scholar]
- Al-Samman, A.M.; Rahman, T.A.; Azmi, M.H.; Hindia, M.N.; Khan, I.; Hanafi, E. Statistical modelling and characterization of experimental mm-wave indoor channels for future 5G wireless communication networks. PLoS ONE 2016, 11, e0163034. [Google Scholar] [CrossRef] [PubMed]
- Azar, Y.; Wong, G.N.; Wang, K.; Mayzus, R.; Schulz, J.K.; Zhao, H.; Gutierrez, F.; Hwang, D.; Rappaport, T.S. 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 5143–5147. [Google Scholar]
- MacCartney, G.R.; Zhang, J.; Nie, S.; Rappaport, T.S. Path loss models for 5G millimeter wave propagation channels in urban microcells. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 3948–3953. [Google Scholar]
- Sun, S.; MacCartney, G.R.; Rappaport, T.S. Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. In Proceedings of the 2016 10th European Conference Antennas Propagation (EuCAP 2016), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Kim, M.; Konishi, Y.; Chang, Y.; Takada, J.I. Large scale parameters and double-directional characterization of indoor wideband radio multipath channels at 11 GHz. IEEE Trans. Antennas Propag. 2014, 62, 430–441. [Google Scholar] [CrossRef]
- Kim, M.; Umeki, K.; Wangchuk, K.; Takada, J.; Sasaki, S. Polarimetric Mm-wave channel measurement and characterization in a small office. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 764–768. [Google Scholar]
- Brochure, S. Keysight Technologies 5G Channel Sounding, Reference Solution. Available online: http://about.keysight.com/en/newsroom/pr/2015/30jul-em15109.shtml (accessed on 15 September 2015).
- Oudin, H.; Wen, Z. mmWave MIMO channel sounding for 5G: Technical challenges and prototype system. In Proceedings of the 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 26–27 November 2014; pp. 192–197. [Google Scholar]
- Rajagopal, S.; Abu-Surra, S.; Malmirchegini, M. Channel feasibility for outdoor non-line-of-sight mmWave mobile communication. In Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, 3–6 September 2012; pp. 1–6. [Google Scholar]
- Yin, X.; He, Y.; Song, Z.; Kim, M.-D.; Chung, H.K. A sliding-correlator-based SAGE algorithm for Mm-wave wideband channel parameter estimation. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), Hague, The Netherlands, 6–11 April 2014; pp. 625–629. [Google Scholar]
- Fessler, J.A.; Hero, A.O. Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Process. 1994, 42, 2664–2677. [Google Scholar]
- Piersanti, S.; Annoni, L.A.; Cassioli, D. Millimeter waves channel measurements and path loss models. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 4552–4556. [Google Scholar]
- Rappaport, T.S. Wireless Communications Principles and Practice, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Rappaport, T.S.; Ben-Dor, E.; Murdock, J.N.; Qiao, Y. 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In Proceedings of the IEEE International Conference on Communications, Ottawa, ON, Canada, 10–15 June 2012; pp. 4568–4573. [Google Scholar]
- Deng, S.; Samimi, M.K.; Rappaport, T.S. 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1244–1250. [Google Scholar]
Source | Environment | Frequency (GHz) | Bandwidth (MHz) | Distance (m) | Parameters of Study |
---|---|---|---|---|---|
Wang et al. [17] | Indoor | 26 | 1000 | 2–67 | Path loss, delay, and angular spreads |
Hur et al. [18] | Indoor | 28 | 250 | – | Power delay profile |
Al-samman et al. [19] | Indoor | 6.5–38 GHz | 1000 | 1–40 | Path loss and delay spread |
Azar et al. [20] | Outdoor | 28 | 400 | 30–500 | Path loss and power delay profile |
MacCartney et al. [21] | Outdoor | 28 and 38 | 400 | 50–200 | Path loss |
Sun et al. [22] | Outdoor | 28 and 73 | 400 | 27–190 | Path loss |
Model | PLE | |||
---|---|---|---|---|
CI | 0.9 | 5.2 dB | ||
ABG | 0.2 | 5.8 | 5.4 | 2.5 dB |
Frequency [GHz] | MAX-EX [ns] | Mean of MN-EX [ns] (min, max) | Mean of RMS Delay Spread [ns] (min, max) | MNEX/RMS |
---|---|---|---|---|
19 | 90 | 26.1 (8.1, 42.7) | 19.2 (13.0, 23.3) | 1.3 |
28 | 83 | 25.8 (4.2, 57.0) | 19.3 (9.2, 29.2) | 1.3 |
38 | 64 | 27.4(3.7, 27.4) | 20.3 (8.2, 23.4) | 1.3 |
Source | Frequency Range (GHz) | Distance (m) | PLE (n) | α | β | γ | σCI, σABG (dB) | τrms (ns) |
---|---|---|---|---|---|---|---|---|
Deng et al. [33] | 28, 73 | 4.1 21.3 | 1.1–3.5 | – | – | – | 1.7–9 | 4.1–21.2 |
MacCartny et al. [15] | 28, 73 | 4.1 21.3 | 1.1–3.5 | 0.9 1.1 | 17.7–47.1 | 2.5–3.5 | 1.8–8.6, 1.8–14.2 | 0.5–143.8 |
Rappaport et al. [32] | 38, 60 | 19–265 | 1.9–4.6 | – | – | – | – | <122 |
Rajagopal et al. [27] | 28, 40 | ≤100 | 1.89 | – | – | – | – | |
Ours | 19, 28, 38 | <15 | 0.4–1.5 | 0.2 | 5.8 | 5.4 | 1.7–4.1, 2.5 | 8.2−29.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Samman, A.M.; Azmi, M.H.; Al-Gumaei, Y.A.; Al-Hadhrami, T.; Abd. Rahman, T.; Fazea, Y.; Al-Mqdashi, A. Millimeter Wave Propagation Measurements and Characteristics for 5G System. Appl. Sci. 2020, 10, 335. https://doi.org/10.3390/app10010335
Al-Samman AM, Azmi MH, Al-Gumaei YA, Al-Hadhrami T, Abd. Rahman T, Fazea Y, Al-Mqdashi A. Millimeter Wave Propagation Measurements and Characteristics for 5G System. Applied Sciences. 2020; 10(1):335. https://doi.org/10.3390/app10010335
Chicago/Turabian StyleAl-Samman, Ahmed M., Marwan Hadri Azmi, Y. A. Al-Gumaei, Tawfik Al-Hadhrami, Tharek Abd. Rahman, Yousef Fazea, and Abdulmajid Al-Mqdashi. 2020. "Millimeter Wave Propagation Measurements and Characteristics for 5G System" Applied Sciences 10, no. 1: 335. https://doi.org/10.3390/app10010335
APA StyleAl-Samman, A. M., Azmi, M. H., Al-Gumaei, Y. A., Al-Hadhrami, T., Abd. Rahman, T., Fazea, Y., & Al-Mqdashi, A. (2020). Millimeter Wave Propagation Measurements and Characteristics for 5G System. Applied Sciences, 10(1), 335. https://doi.org/10.3390/app10010335