Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Drift Geometry and Instrumentation
2.3. Initil Analysis
2.4. Fire Load
2.5. Model Formulation
3. Results and Discussion
3.1. Experimental Data
3.2. FDS Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, A.C.; Thimons, E.D. Summary of US Mine Fire Research. SME Annual Meeting and Exhibit; Society for Mining, Metallurgy, and Exploration, Inc.: Englewood, CO, USA, 2010; pp. 1–15. [Google Scholar]
- Larry Grayson, R.; Kinilakodi, H.; Kecojevic, V. Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data. Saf. Sci. 2009, 47, 1371–1378. [Google Scholar] [CrossRef]
- Sanmiquel, L.; Bascompta, M.; Anticoi, H.F. Analysis of a historical accident in a Spanish coal mine. Int. J. Environ. Res. Public Health 2019, 16, 3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, R. Fire behaviour of multiple fires in a mine drift with longitudinal ventilation. Int. J. Min. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wang, D. Mining-Induced void distribution and application in the hydro-Thermal investigation and control of an underground coal fire: A case study. Process Saf. Environ. Prot. 2016. [Google Scholar] [CrossRef]
- Prakash, A.; Vekerdy, Z. Design and implementation of a dedicated prototype GIS for coal fire investigations in North China. Int. J. Coal Geol. 2004, 59, 107–119. [Google Scholar] [CrossRef]
- NIOSH. Analysis of Mine Fires for All U.S. Metal / Nonmetal Mining Categories, 1990–2001. 2004. [Google Scholar]
- Hartman, H.L.; Mutmansky, J.M.; Wang, Y.J. Mine Ventilation and Air Conditioning, 3rd ed.; Wiley; Technology & Engineering: New York, NY, USA, 1997; ISBN 0471116351. [Google Scholar]
- McPherson, M.J. Subsurface Ventilation and Environmental Engineering; Springer Netherlands: Heidelberg, Germany, 1993; ISBN 978-94-011-1550-6. [Google Scholar]
- Bhattacharjee, S.; Roy, P.; Ghosh, S.; Misra, S.; Obaidat, M.S. Wireless sensor network-based fire detection, alarming, monitoring and prevention system for Bord-And-PILLAR coal mines. J. Syst. Softw. 2012, 85, 571–581. [Google Scholar] [CrossRef]
- Brune, J.F.; Saki, S.A. Prevention of gob ignitions and explosions in longwall mining using dynamic seals. Int. J. Min. Sci. Technol. 2017, 27, 999–1003. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. The impact of the strength of roof rocks on the extent of the zone with a high risk of spontaneous coal combustion for fully powered longwalls ventilated with the Y-Type system-A case study. Appl. Sci. 2019, 9, 5315. [Google Scholar] [CrossRef] [Green Version]
- Kallianiotis, A.; Kaliampakos, D. Optimization of exit location in underground spaces. Tunn. Undergr. Space Technol. 2016, 60, 96–110. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.; Ma, X.; Wu, Z.; Shao, H.; Zhang, W.; Cui, C. Information fusion of plume control and personnel escape during the emergency rescue of external-Caused fire in a coal mine. Process Saf. Environ. Prot. 2016, 103, 46–59. [Google Scholar] [CrossRef]
- Li, G.; Hu, J.; Hao, X. Application and Research of Swirling Curtain Dust Collection Technology in Mines. Appl. Sci. 2020, 10, 2005. [Google Scholar] [CrossRef] [Green Version]
- Diego, I.; Torno, S.; Toraño, J.; Menéndez, M.; Gent, M. A practical use of CDF for ventilation of underground Works. Tunn. Undergr. Space Technol. 2011, 26, 189–200. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q. Analytical solution, experimental data and CFD simulation for longitudinal tunnel fire ventilation. Tunn. Undergr. Space Technol. 2014, 42, 307–313. [Google Scholar] [CrossRef]
- Du, T.; Yang, D.; Ding, Y. Driving force for preventing smoke backlayering in downhill tunnel fires using forced longitudinal ventilation. Tunn. Undergr. Space Technol. 2018, 79, 76–82. [Google Scholar] [CrossRef]
- Zanzi, C.; Gómez, P.; López, J.; Hernández, J. Analysis of heat and smoke propagation and oscillatory flow through ceiling vents in a large-Scale compartment fire. Appl. Sci. 2019, 9, 3305. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.C.; Zhu, G.Q.; Gao, Y.J.; Tao, H.J. Study on Temperature Field of Fire Smoke in Utility Tunnel with Different Cross Sections. Procedia Eng. 2018, 211, 1043–1051. [Google Scholar] [CrossRef]
- Sun, J.; Fang, Z.; Tang, Z.; Beji, T.; Merci, B. Experimental study of the effectiveness of a water system in blocking fire-induced smoke and heat in reduced-Scale tunnel tests. Tunn. Undergr. Space Technol. 2016, 56, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Zhai, J.; Wang, C.; Zhou, B.; Niu, X. Possibility of using roof openings for natural ventilation in a shallow urban road tunnel. Tunn. Undergr. Space Technol. 2016, 54, 92–101. [Google Scholar] [CrossRef]
- Yuan, L.; Zhou, L.; Smith, A.C. Modeling carbon monoxide spread in underground mine fires. Appl. Therm. Eng. 2016, 100, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
- Weisenpacher, P.; Glasa, J.; Halada, L. Automobile interior fire and its spread to an adjacent vehicle. J. Fire Sci. 2016, 34, 305–322. [Google Scholar] [CrossRef]
- Zalosh, R. Explosion Protection. SFPE Handbook of Fire Protection Engineering, 3th ed.; DiNenno, P.J., Ed.; NFPA: Quincy, MA, USA, 2002. [Google Scholar]
- Banerjee, S.C. A Theoretical Desing to the Determination of Risk Index of Spontaneous Fires in Coal Mines. J. Mines Metals Fuels 1982, 30, 399–406. [Google Scholar]
- Weisenpacher, P.; Glasa, J.; Sipkova, V. Performance of FDS versions 5 and 6 in passenger car fire computer simulation. In Proceedings of the 28th European Modeling and Simulation Symposium, EMSS 2016, Larnaca, Cyprus, 26–28 September 2016; pp. 155–161. [Google Scholar]
Equipment | Type and model |
---|---|
Thermocouple | TC Ltd. Type K |
Anemometer | Trolex. Vortex TX 12233 Mk |
Barometer | Wika. FBA30WB2-900Y |
Manometer | Testo GmbH&Co. 520 D0E10 |
ENVIRO Multisensor | Trolex. TX6522.01.51 |
Data acquisition system | Advantech. ADAM 5000 |
Scenarios | Experimental Data | FDS Data | Fire Load (MW) | ||
---|---|---|---|---|---|
Airflow (m3/s) | Velocity (m/s) | Airflow (m3/s) | Velocity (m/s) | ||
1 (Door 0%) | 1.93 | 0.21 | 1.90 | 0.21 | 4.73 |
2 (Door 17%) | 5.10 | 0.57 | 5.30 | 0.59 | 4.73 |
3 (Door 100%) | 10.45 | 1.16 | 12.50 | 1.39 | 4.73 |
4 (Door 100%) | 11.05 | 1.23 | 12.50 | 1.39 | 9.46 |
5 (Door 100%) | 13.38 | 1.49 | 12.50 | 1.39 | 14.20 |
Stage | Features | Value |
---|---|---|
Modeling design | Cell size | 0.6 × 0.6 × 0.6 m |
Cell size rate | 1 × 1 × 1 | |
Number of cells | 14,625 | |
Combustion parameters | Surface type | BURNER |
HRR (heat release rate) | 2.220 kW/m2 | |
Vessel dimensions | 1.8 × 1.2 m | |
Material of the vessel | Steel Sheet | |
Initial conditions | Air temperature | 10 °C |
Humidity | 80% | |
Fan airflow | 30 m3/s | |
Simulation | Type of simulation | LES (large eddy simulation) |
Total time | 4800 s | |
Output data frames | 4800 |
Conditions | O2 (%) | CO (ppm) | NOx (ppm) | SO2 (ppm) | CO2 (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Mean | Max. | Mean | Max. | Mean | Max. | Mean | Max. | |
0%, 180 L | 21 | 16 | 958 | 1063 | 6 | 16 | 79 | 102 | - | 3 |
17%, 180 L | 20 | 21 | 234 | 362 | 2 | 5 | 24 | 64 | 1 | 2 |
100%, 180 L | 20 | 21 | 67 | 91 | 2 | 4 | 19 | 26 | 1 | 1 |
100%, 360 L | 20 | 21 | 132 | 233 | 2 | 3 | 23 | 25 | 1 | 2 |
100%, 540 L | 20 | 21 | 219 | 284 | 4 | 5 | 19 | 21 | 1 | 2 |
Section | Control Point | Temperature (°C) | ||||
---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | ||
P1 | 139 | 78 | 16 | 19 | 23 | |
S1 (−30 m) | P2 | 109 | 44 | 16 | 19 | 22 |
P3 | 63 | 27 | 16 | 19 | 20 | |
P1 | 255 | 241 | 32 | 26 | 27 | |
S2 (−10 m) | P2 | 213 | 193 | 20 | 25 | 25 |
P3 | 113 | 42 | 16 | 20 | 22 | |
P1 | 290 | 268 | 63 | 45 | 64 | |
S3 (−5 m) | P2 | 233 | 218 | 34 | 31 | 63 |
P3 | 144 | 64 | 22 | 16 | 49 | |
P1 | 355 | 264 | 212 | 502 | 593 | |
S4 (5 m) | P2 | 244 | 181 | 184 | 503 | 590 |
P3 | 117 | 100 | 127 | 332 | 378 | |
P1 | 251 | 216 | 133 | 260 | 368 | |
S5 (10 m) | P2 | 185 | 172 | 102 | 188 | 284 |
P3 | 106 | 97 | 87 | 105 | 185 | |
P1 | 229 | 200 | 122 | 231 | 329 | |
S6 (15 m) | P2 | 197 | 178 | 109 | 201 | 290 |
P3 | 104 | 98 | 78 | 119 | 176 | |
P1 | 186 | 168 | 112 | 198 | 283 | |
S7 (25 m) | P2 | 165 | 147 | 99 | 167 | 256 |
P3 | 99 | 95 | 69 | 103 | 166 | |
P1 | 143 | 134 | 97 | 163 | 238 | |
S8 (40 m) | P2 | 126 | 118 | 88 | 144 | 214 |
P3 | 96 | 91 | 61 | 98 | 163 | |
P1 | 113 | 109 | 85 | 138 | 199 | |
S9 (60 m) | P2 | 101 | 100 | 81 | 127 | 182 |
P3 | 49 | 62 | 52 | 83 | 140 |
Section | Control Point | Temperature (°C) | ||||
---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | ||
P1 | 157 | 92 | 22 | 28 | 34 | |
S1 (−30 m) | P2 | 145 | 68 | 23 | 30 | 35 |
P3 | 94 | 40 | 25 | 31 | 29 | |
P1 | 276 | 195 | 26 | 31 | 35 | |
S2 (−10 m) | P2 | 203 | 128 | 25 | 31 | 38 |
P3 | 98 | 51 | 20 | 25 | 32 | |
P1 | 344 | 260 | 45 | 35 | 45 | |
S3 (−5 m) | P2 | 237 | 175 | 30 | 38 | 51 |
P3 | 107 | 55 | 20 | 23 | 62 | |
P1 | 402 | 336 | 181 | 412 | 508 | |
S4 (5 m) | P2 | 311 | 291 | 141 | 404 | 499 |
P3 | 163 | 165 | 142 | 296 | 326 | |
P1 | 334 | 296 | 158 | 257 | 388 | |
S5 (10 m) | P2 | 283 | 268 | 141 | 208 | 326 |
P3 | 150 | 144 | 108 | 126 | 200 | |
P1 | 289 | 261 | 149 | 248 | 350 | |
S6 (15 m) | P2 | 254 | 241 | 142 | 227 | 328 |
P3 | 149 | 139 | 89 | 163 | 224 | |
P1 | 235 | 218 | 139 | 224 | 313 | |
S7 (25 m) | P2 | 216 | 205 | 140 | 223 | 303 |
P3 | 140 | 127 | 83 | 136 | 196 | |
P1 | 182 | 184 | 120 | 186 | 258 | |
S8 (40 m) | P2 | 173 | 169 | 121 | 185 | 258 |
P3 | 121 | 130 | 88 | 136 | 184 | |
P1 | 136 | 145 | 103 | 158 | 213 | |
S9 (60 m) | P2 | 132 | 134 | 107 | 164 | 220 |
P3 | 64 | 71 | 86 | 129 | 172 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Alaiz, F.; Castañón, A.M.; Gómez-Fernández, F.; Bascompta, M. Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling. Appl. Sci. 2020, 10, 3380. https://doi.org/10.3390/app10103380
Fernández-Alaiz F, Castañón AM, Gómez-Fernández F, Bascompta M. Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling. Applied Sciences. 2020; 10(10):3380. https://doi.org/10.3390/app10103380
Chicago/Turabian StyleFernández-Alaiz, Florencio, Ana Maria Castañón, Fernando Gómez-Fernández, and Marc Bascompta. 2020. "Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling" Applied Sciences 10, no. 10: 3380. https://doi.org/10.3390/app10103380
APA StyleFernández-Alaiz, F., Castañón, A. M., Gómez-Fernández, F., & Bascompta, M. (2020). Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling. Applied Sciences, 10(10), 3380. https://doi.org/10.3390/app10103380