The Influence of Resin Infiltration Pretreatment on Orthodontic Bonding to Demineralized Human Enamel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Resin Infiltration Procedure
2.3. Bonding Procedure
2.4. Thermocycling
2.5. Shear Bond Strength Test
2.6. Adhesive Remnant Index
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torres, C.; Borges, A. Color Masking of Developmental Enamel Defects: A Case Series. Oper. Dent. 2015, 40, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Belli, R.; Rahiotis, C.; Schubert, E.W.; Baratieri, L.N.; Petschelt, A.; Lohbauer, U. Wear and morphology of infiltrated white spot lesions. J. Dent. 2011, 39, 376–385. [Google Scholar] [CrossRef]
- Richter, A.E.; Arruda, A.O.; Peters, M.C.; Sohn, W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 657–664. [Google Scholar] [CrossRef]
- Julien, K.C.; Buschang, P.H.; Campbell, P.M. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013, 83, 641–647. [Google Scholar] [CrossRef]
- Lovrov, S.; Hertrich, K.; Hirschfelder, U. Enamel Demineralization during Fixed Orthodontic Treatment—Incidence and Correlation to Various Oral-hygiene Parameters. J. Orofac. Orthop./Fortschr. Kieferorthopädie 2007, 68, 353–363. [Google Scholar] [CrossRef]
- Denis, M.; Atlan, A.; Vennat, E.; Tirlet, G.; Attal, J.-P. White defects on enamel: Diagnosis and anatomopathology: Two essential factors for proper treatment (part 1). Int. Orthod. 2013, 11, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Benham, A.W.; Campbell, P.M.; Buschang, P.H. Effectiveness of pit and fissure sealants in reducing white spot lesions during orthodontic treatment: A pilot study. Angle Orthod. 2008, 79, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Baysal, A.; Uysal, T. Do enamel microabrasion and casein phosphopeptide-amorphous calcium phosphate affect shear bond strength of orthodontic brackets bonded to a demineralized enamel surface? Angle Orthod. 2012, 82, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, M.; Moosavi, H.; Gholami, A.; Ahrari, F. In vitro effects of several surface preparation methods on shear bond strength of orthodontic brackets to caries-like lesions of enamel. Eur. J. Paediatr. Dent. 2012, 13, 197–202. [Google Scholar]
- Jimenez, E.E.O.; Hilgenberg, S.P.; Rastelli, M.C.; Pilatti, G.L.; Orellana, B.; Coelho, U. Rebonding of unused brackets with different orthodontic adhesives. Dent. Press J. Orthod. 2012, 17, 69–76. [Google Scholar] [CrossRef]
- Vianna, J.S.; Marquezan, M.; Lau, T.C.L.; Sant’Anna, E.F. Bonding brackets on white spot lesions pretreated by means of two methods. Dent. Press J. Orthod. 2016, 21, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Attin, R.; Stawarczyk, B.; Keçik, D.; Knösel, M.; Wiechmann, D.; Attin, T. Shear bond strength of brackets to demineralize enamel after different pretreatment methods. Angle Orthod. 2012, 82, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Tschoppe, P.; Zandim, D.L.; Martus, P.; Kielbassa, A.M. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011, 39, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Pulido, M.T.; Wefel, J.S.; Hernandez, M.M.; Denehy, G.E.; Guzman-Armstrong, S.; Chalmers, J.M.; Qian, F. The inhibitory effect of MI paste, fluoride and a combination of both on the progression of artificial caries-like lesions in enamel. Oper. Dent. 2008, 33, 550–555. [Google Scholar] [CrossRef]
- Kielbassa, A.M.; Müller, J.; CR, G. Closing the gap between oral hygiene and minimally invasive dentistry: A review of the resin infiltration technique of incipient (proximal) enamel lesions. Quintessence Int. 2009, 40, 663–681. [Google Scholar] [CrossRef]
- Paris, S.; Meyer-Lueckel, H.; Cölfen, H.; Kielbassa, A.M. Resin infiltration of artificial enamel caries lesions with experimental light curing resins. Dent. Mater. J. 2007, 26, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Lueckel, H.; Bitter, K.; Paris, S. Randomized controlled clinical trial on proximal caries infiltration: Three-year follow-up. Caries Res. 2012, 46, 544–548. [Google Scholar] [CrossRef]
- Eckstein, A.; Helms, H.J.; Knösel, M. Camouflage effects following resin infiltration of postorthodontic white-spot lesions in vivo: One-year follow-up. Angle Orthod. 2015, 85, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Sonesson, M.; Bergstrand, F.; Gizani, S.; Twetman, S. Management of post-orthodontic white spot lesions: An updated systematic review. Eur. J. Orthod. 2017, 39, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, E.Y.; Jeong, T.S.; Kim, J.W. The evaluation of resin infiltration for masking labial enamel white spot lesions. Int. J. Paediatr. Dent. 2011, 21, 241–248. [Google Scholar] [CrossRef]
- Buskes, J.A.K.M.; Christoffersen, J.; Arends, J. Lesion formation and lesion remineralization in enamel under constant composition conditions: A new technique with applications. Caries Res. 1985, 19, 490–496. [Google Scholar] [CrossRef]
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. Dentofac. Orthop. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Gaur, A.; Maheshwari, S.; Verma, S.; Tariq, M. Effects of adhesion promoter on orthodontic bonding in fluorosed teeth: A scanning electron microscopy study. J. Orthod. Sci. 2016, 5, 87–91. [Google Scholar] [CrossRef]
- Jia, L.; Stawarczyk, B.; Schmidlin, P.R.; Attin, T.; Wiegand, A. Effect of caries infiltrant application on shear bond strength of different adhesive systems to sound and demineralized enamel. J. Adhes. Dent. 2012, 14, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Mews, L.; Kern, M.; Ciesielski, R.; Fischer-Brandies, H.; Koos, B. Shear bond strength of orthodontic brackets to enamel after application of a caries infiltrant. Angle Orthod. 2015, 85, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Hellak, A.; Ebeling, J.; Schauseil, M.; Stein, S.; Roggendorf, M.; Korbmacher-Steiner, H. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials. BioMed. Res. Int. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, I.R.; von Fraunhofer, J.A. Direct Bonding of Orthodontic Brackets—A comparative study of adhesives. Br. J. Orthod. 1976, 3, 143–146. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Paris, S. Improved resin infiltration of natural caries lesions. J. Dent. Res. 2008, 87, 1112–1116. [Google Scholar] [CrossRef]
- Paris, S.; Dörfer, C.E.; Meyer-Lueckel, H. Surface conditioning of natural enamel caries lesions in deciduous teeth in preparation for resin infiltration. J. Dent. 2010, 38, 65–71. [Google Scholar] [CrossRef]
- Meyer-Lueckel, H.; Paris, S.; Mueller, J.; Cölfen, H.; Kielbassa, A.M. Influence of the application time on the penetration of different dental adhesives and a fissure sealant into artificial subsurface lesions in bovine enamel. Dent. Mater. 2006, 22, 22–28. [Google Scholar] [CrossRef]
- Naidu, E.; Stawarczyk, B.; Tawakoli, P.N.; Attin, R.; Attin, T.; Wiegand, A. Shear bond strength of orthodontic resins after caries infiltrant preconditioning. Angle Orthod. 2013, 83, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shawkat, E.S.; Shortall, A.C.; Addison, O.; Palin, W.M. Oxygen inhibition and incremental layer bond strengths of resin composites. Dent. Mater. 2009, 25, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Ekizer, A.; Zorba, Y.O.; Uysal, T.; Ayrikcil, S. Effects of demineralizaton-inhibition procedures on the bond strength of brackets bonded to demineralized enamel surface. Korean J. Orthod. 2012, 42, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Costenoble, A.; Vennat, E.; Attal, J.P.; Dursun, E. Bond strength and interfacial morphology of orthodontic brackets bonded to eroded enamel treated with calcium silicate-sodium phosphate salts or resin infiltration. Angle Orthod. 2016, 86, 909–916. [Google Scholar] [CrossRef] [Green Version]
- VelI, I.; Akin, M.; Baka, Z.M.; Uysal, T. Effects of different pre-treatment methods on the shear bond strength of orthodontic brackets to demineralized enamel. Acta Odontol. Scandi 2015, 1–7. [Google Scholar] [CrossRef]
- Wiegand, A.; Stawarczyk, B.; Kolakovic, M.; Hämmerle, C.H.F.; Attin, T.; Schmidlin, P.R. Adhesive performance of a caries infiltrant on sound and demineralised enamel. J. Dent. 2011, 39, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Fukegawa, D.; Hayakawa, S.; Yoshida, Y.; Suzuki, K.; Osaka, A.; Van Meerbeek, B. Chemical interaction of phosphoric acid ester with hydroxyapatite. J. Dent. Res. 2006, 85, 941–944. [Google Scholar] [CrossRef]
- Tayebi, A.; Fallahzadeh, F.; Morsaghian, M. Shear bond strength of orthodontic metal brackets to aged composite using three primers. J. Clin. Exp. Dent. 2017, 9, e749–e755. [Google Scholar] [CrossRef] [Green Version]
- Tauscher, S.; Angermann, J.; Catel, Y.; Moszner, N. Evaluation of alternative monomers to HEMA for dental applications. Dent. Mater. 2017, 33, 857–865. [Google Scholar] [CrossRef]
- Öztoprak, M.O.; Isik, F.; Sayinsu, K.; Arun, T.; Aydemir, B. Effect of blood and saliva contamination on shear bond strength of brackets bonded with 4 adhesives. Am. J. Orthod. Dent. Orthop. 2007, 131, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.H.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Degree of polymerization of resin composites by different light sources. J. Oral Rehabil. 2002, 29, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- De Sena, L.M.F.; Barbosa, H.A.M.; Caldas, S.G.F.R.; Ozcan, M.; de Souza, R.O.A.E. Effect of different bonding protocols on degree of monomer conversion and bond strength between orthodontic brackets and enamel. Braz. Oral Res. 2018, 32, e58. [Google Scholar] [CrossRef]
- Yılmaz, B.; Bakkal, M.; Zengin Kurt, B. Structural and mechanical analysis of three orthodontic adhesive composites cured with different light units. J. Appl. Biomater. Funct. Mater. 2020, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Composition | Manufacturer |
---|---|---|
ICON | Icon-Etch—hydrochloric acid, pyrogenic silicic acid, surface-active substances Icon-Dry—99% ethanol Icon-Infiltrant—TEG-DMA-based resin matrix, initiators, additives | DMG, Hamburg, Germany |
Transbond XT primer | Bis-GMA, TEGDMA, dimethylamino-benzene ethanol, DL-camphorquinone, hydrochinone | 3M Unitek, Monrovia, CA, USA |
Scotchbond Universal | 10-MDP phosphate monomer, dimethacrylate resins, bis-GMA, Viterbond copolymer, filler, ethanol, water, initiators, silane, HEMA | 3M ESPE, St. Paul, MN, USA |
Assure PLUS | Bis-GMA, ethanol, 10-MDP phosphate monomer | Reliance Orthodontic Products, Itasca, IL, USA |
Transbond XT Light Cure Adhesive | Silane-treated quartz, bis-GMA, bis-EMA, silane-treated silica, diphenyliodonium hexa-fluorophosphate | 3M Unitek, Monrovia, CA, USA |
Group | Number | SBS | SIGNIFICANCE | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Minimum | Maximum | ANOVA | Tukey’s Test | ||||
Group 2 | Group 3 | Group 4 | |||||||
I | 12 | 11.33 | 4.36 | 3.60 | 17.15 | F = 14.37 P = 0.000 | 0.757 | 0.915 | 0.000 |
II | 12 | 12.99 | 5.51 | 7.12 | 24.67 | – | 0.369 | 0.001 | |
III | 12 | 10.23 | 2.77 | 5.94 | 14.36 | – | – | 0.000 | |
IV | 12 | 20.28 | 3.35 | 16.45 | 25.62 | – | – | – |
Group | Total Number of Cases | ARI | Significance (Kruskal–Wallis Test) | |||
---|---|---|---|---|---|---|
Score 0 (Number of Cases) | Score 1 (Number of Cases) | Score 2 (Number of Cases) | Score 3 (Number of Cases) | |||
I | 12 | 6 | 4 | 0 | 2 | P = 0.742 |
II | 12 | 3 | 7 | 2 | 0 | |
III | 12 | 4 | 7 | 1 | 0 | |
IV | 12 | 4 | 4 | 3 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simunovic Anicic, M.; Goracci, C.; Juloski, J.; Miletic, I.; Mestrovic, S. The Influence of Resin Infiltration Pretreatment on Orthodontic Bonding to Demineralized Human Enamel. Appl. Sci. 2020, 10, 3619. https://doi.org/10.3390/app10103619
Simunovic Anicic M, Goracci C, Juloski J, Miletic I, Mestrovic S. The Influence of Resin Infiltration Pretreatment on Orthodontic Bonding to Demineralized Human Enamel. Applied Sciences. 2020; 10(10):3619. https://doi.org/10.3390/app10103619
Chicago/Turabian StyleSimunovic Anicic, Marina, Cecilia Goracci, Jelena Juloski, Ivana Miletic, and Senka Mestrovic. 2020. "The Influence of Resin Infiltration Pretreatment on Orthodontic Bonding to Demineralized Human Enamel" Applied Sciences 10, no. 10: 3619. https://doi.org/10.3390/app10103619
APA StyleSimunovic Anicic, M., Goracci, C., Juloski, J., Miletic, I., & Mestrovic, S. (2020). The Influence of Resin Infiltration Pretreatment on Orthodontic Bonding to Demineralized Human Enamel. Applied Sciences, 10(10), 3619. https://doi.org/10.3390/app10103619