Trends in Biodiesel Production from Animal Fat Waste
Abstract
:1. Introduction
2. Animal Fats as Feedstock
Fatty Acid | Pork Lard | Beef Tallow | Mutton Tallow | Poultry Fat | |
---|---|---|---|---|---|
[37] | [38] | [39] | [40] | ||
Myristic | C14:0 | 1.6 | 1.6 | 2.2 | 0.4 |
Palmitic | C16:0 | 25.1 | 21.6 | 21.1 | 21.6 |
Stearic | C18:0 | 12.6 | 17.7 | 11.6 | 6.3 |
Palmitoleic | C16:1 | 2.8 | 2.5 | 2.1 | 3.2 |
Oleic | C18:1 | 36.5 | 31.5 | 38.7 | 30.0 |
Linoleic | C18:2 | 16.5 | 3.3 | 10.2 | 28.4 |
Linolenic | C18:3 | 1.1 | 1.3 | 0.6 | 2.4 |
Arachidonic | C20:4 | 0.3 | - | - | 3.4 |
Docosapentaenoic | C22:5 | 0.2 | - | - | 0.3 |
Docosahexaenoic | C22:6 | - | - | - | 0.8 |
Total saturated | SFA | 39.4 | 49.1 | 40.4 | 29.1 |
Total monounsaturated | MUFA | 39.7 | 41.0 | 47.1 | 33.2 |
Total polyunsaturated | PUFA | 20.9 | 10.0 | 12.5 | 37.6 |
3. Transesterification for Producing Biodiesel from Animal Fats
4. Quality of Biodiesel Produced from Animal Fat Waste
Properties | EN14214 Limits | Poultry Fat [47] | Poultry Fat [58] | Chicken Fat [29] | Chicken Fat [108] | Chicken Fat [66] | Pork Lard [58] | Pork Lard [61] | Mutton Tallow [24] | Beef Tallow [47] | Beef Tallow [58] |
---|---|---|---|---|---|---|---|---|---|---|---|
Density at 15 °C (kg/m3) | 860–900 | - | 877 | 830 | 870 | 883 | 873 | 870 | 856 | - | 870 |
Viscosity at 40 °C (mm2/s) | 3.50–5.00 | 4.50 | 6.86 | 3.5 | 5.4 | 4.94 | 5.08 | 4.74 | - | 4.82 | 5.35 |
Cetane number | >51.0 | - | - | 50 | 58.4 | - | - | 56.9 | 59.0 | - | - |
Acid value (mg KOH/g) | <0.50 | 0.044 | 0.55 | - | 0.8 | 0.22 | 0.22 | 0.23 | 0.65 | 0.147 | 0.20 |
Iodine value (g/100 g) | <120 | - | 78.8 | - | - | - | 75.6 | 66.7 | 126 | - | 44.4 |
Water content (mg/kg) | 1201 | 200 | 184 | 500 | 200 | 374 | |||||
Flash point (°C) | >120 | >160 | 172 | 50 | 174 | 171.8 | 147 | 175 | - | >160 | 171 |
Pour point (°C) | - | - | - | −6 | - | −6 | - | - | −5 | - | 10 |
Cloud point (°C) | - | 6.1 | - | - | - | −5 | - | - | −4 | 16 | - |
Free glycerin (%) | - | 0.002 | - | - | - | 0.19 | - | - | - | 0.008 | - |
Cold filter plugging point (°C) | 8 | 2 | 3 | - | - | - | 5 | −20 to 5 | - | 14 | 10 |
5. Developments in Improving Biodiesel Production from Animal Fats
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zalouk, S.; Barbati, S.; Sergent, M.; Ambrosio, M. Disposal of animal by-products by wet air oxidation: Performance optimization and kinetics. Chemosphere 2009, 74, 193–199. [Google Scholar] [CrossRef]
- EFPRA. Rendering in Numbers. 2016. Available online: https://efpra.eu/wp-content/uploads/2016/11/Rendering-in-numbers-Infographic.pdf (accessed on 20 March 2020).
- Toldrá, F.; Mora, L.; Reig, M.; Mora, L. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Rosson, E.; Sgarbossa, P.; Pedrielli, F.; Mozzon, M.; Bertani, R. Bioliquids from raw waste animal fats: An alternative renewable energy source. Biomass Convers. Biorefinery 2020, 1–16. [Google Scholar] [CrossRef]
- EFPRA. The Facts about Biofuels and Bioliquids. 2016. Available online: https://efpra.eu/wp-content/uploads/2016/11/The-facts-about-biofuels-and-bioliquids.pdf (accessed on 3 April 2020).
- Baladincz, P.; Hancsók, J. Fuel from waste animal fats. Chem. Eng. J. 2015, 282, 152–160. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Mansir, N.; Teo, S.H.; Rashid, U.; Saiman, M.I.; Tan, Y.P.; Abdulkareem-Alsultan, G.; Taufiq-Yap, Y. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew. Sustain. Energy Rev. 2018, 82, 3645–3655. [Google Scholar] [CrossRef]
- IPPR. Time for Change: A New Vision for the British Economy—The Interim Report of the IPPR Commission on Economic Justice. 2017. Available online: http://www.ippr.org/cej-time-for-change (accessed on 25 March 2020).
- Carraretto, C. Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy 2004, 29, 2195–2211. [Google Scholar] [CrossRef]
- Mahlia, T.; Syazmi, Z.; Mofijur, M.; Abas, A.P.; Bilad, M.; Ong, H.C.; Silitonga, A. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Shaghaghi, S.; Ghahderijani, M.; Dehrouyeh, M.H. Optimization of Indicators Pollutant Emission Following Blending Diesel Fuel with Waste Oil-Derived Biodiesel. J. Oleo Sci. 2020, 69, 337–346. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Global Energy Transformation: A Roadmap to 2050. 2018. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf (accessed on 14 April 2020).
- Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D.; Toma, M.; Nicolici, A. Combustion of preheated raw animal fats-diesel fuel blends at diesel engine. J. Therm. Anal. Calorim. 2019, 140, 2369–2375. [Google Scholar] [CrossRef]
- Lawan, I.; Garba, Z.N.; Zhou, W.; Zhang, M.; Yuan, Z. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production. Renew. Energy 2020, 145, 2550–2560. [Google Scholar] [CrossRef]
- Bušić, A.; Kundas, S.; Morzak, G.; Belskaya, H.; Marđetko, N.; Santek, M.I.; Komes, D.; Novak, S.; Šantek, B. Recent Trends in Biodiesel and Biogas Production. Food Technol. Biotechnol. 2018, 56, 152–173. [Google Scholar] [CrossRef] [PubMed]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Ramos, M.; Dias; Puna; Gomes, J.F.; Bordado, J.; Dias, A.P.S.; Puna, J. Biodiesel Production Processes and Sustainable Raw Materials. Energies 2019, 12, 4408. [Google Scholar] [CrossRef] [Green Version]
- Flach, B.; Lieberz, S.; Bolla, S. EU Biofuels Annual 2019, Gain Report NL9022, USDA Foreign Agricultural Service. 2019. Available online: http://gain.fas.usda.gov/Pages/Default.aspx (accessed on 6 May 2020).
- Bockey, D. The significance and perspective of biodiesel production—A European and global view. OCL 2019, 26, 40. [Google Scholar] [CrossRef]
- US Energy Information Administration. Monthly Biodiesel Production Report; US Department of Energy: Washington, DC, USA, 2020. Available online: https://www.eia.gov/biofuels/biodiesel/production/biodiesel.pdf (accessed on 5 May 2020).
- Biodiesel. Available online: https://www.biodiesel.org/what-is-biodiesel/biodiesel-basics (accessed on 21 March 2020).
- Gumahin, A.C.; Galamiton, J.M.; Allerite, M.J.; Valmorida, R.S.; Laranang, J.-R.L.; Mabayo, V.I.; Arazo, R.O.; Ido, A.L. Response surface optimization of biodiesel yield from pre-treated waste oil of rendered pork from a food processing industry. Bioresour. Bioprocess. 2019, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, H.N.; Hanif, M.A.; Qasim, M.; Rehman, A. Biodiesel production from waste tallow. Fuel 2008, 87, 2961–2966. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá-Reig, F.; Prates, J.A.M.; Toldrá, F. Cattle by-products. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma and Fuels; Simpson, B.K., Aryee, A.N., Toldrá, F., Eds.; Wiley: Chichester, West Sussex, UK, 2020; pp. 43–55. [Google Scholar]
- Mora, L.; Toldrá-Reig, F.; Reig, M.; Toldrá, F. Possible uses of processed slaughter by-products. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press/Elsevier: London, UK, 2019; pp. 145–160. [Google Scholar]
- Akhil, U.S.; Alagumalai, A. A Short Review on Valorization of Slaughterhouse Wastes for Biodiesel Production. Chem. Sel. 2019, 4, 13356–13362. [Google Scholar] [CrossRef]
- Barik, D.; Vijayaraghavan, R. Effects of waste chicken fat derived biodiesel on the performance and emission characteristics of a compression ignition engine. Int. J. Ambient Energy 2018, 41, 88–97. [Google Scholar] [CrossRef]
- Banković-Ilić, I.B.; Stojković, I.J.; Stamenković, O.S.; Veljkovic, V.B.; Hung, Y.-T. Waste animal fats as feed stocks for biodiesel production. Renew. Sustain. Energy Rev. 2014, 32, 238–254. [Google Scholar]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Prates, J.; Alfaia, C.; Alves, S.; Bessa, R. Fatty acids. In Handbook of Analysis of Edible Animal by-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 137–159. [Google Scholar]
- Oner, C.; Altun, Ş. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl. Energy 2009, 86, 2114–2120. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2011, 49, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Ecofys. Indirect Emissions from Rendered Animal Fats Used for Biodiesel. 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/Annex%20II%20Case%20study%202.pdf (accessed on 7 May 2020).
- Walsh, C. The Use of Animal by-Products; EBLEX: Stoneleigh Park, UK, 2014; pp. 1–73. [Google Scholar]
- Toldrá, F.; Rubio, M.A.; Navarro, J.L.; Cabrerizo, L. Quality aspects of pork and its nutritional impact. In Quality of Fresh and Processed Foods. Advances in Experimental Medicine and Biology; Shahidi, F., Spanier, A.M., Ho, C.-T., Braggins, T., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004; Volume 542, pp. 25–32. [Google Scholar]
- Realini, C.; Duckett, S.; Brito, G.; Rizza, M.D.; De Mattos, D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef]
- Castro, T.; Manso, T.; Mantecon, A.R.; Guirao, J.; Jimeno, V. Fatty acid composition and carcass characteristics of growing lambs fed diets containing palm oil supplements. Meat Sci. 2005, 69, 757–764. [Google Scholar] [CrossRef]
- Zduńczyk, Z.; Gruzauskas, R.; Semaskaite, A.; Juskiewicz, J.; Raceviciute-Stupeliene, A.; Wroblewska, M. Fatty acid profile of breast muscle of broiler chickens fed diets with different levels of selenium and vitamin. Eur. Poult. Sci. 2011, 75, 264–267. [Google Scholar]
- Gebremariam, S.; Marchetti, J.M. Economics of biodiesel production: Review. Energy Convers. Manag. 2018, 168, 74–84. [Google Scholar] [CrossRef]
- Pinnarat, T.; Savage, P.E. Assessment of noncatalytic biodiesel synthesis using supercritical reaction conditions. Ind. Eng. Chem. Res. 2008, 47, 6801–6808. [Google Scholar] [CrossRef]
- van Kasteren, J.; Nisworo, A. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour. Conserv. Recycl. 2007, 50, 442–458. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Alvim-Ferraz, M.D.C. Production of biodiesel from acid waste lard. Bioresour. Technol. 2009, 100, 6355–6361. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selvan, V.A.M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 2018, 82, 390–401. [Google Scholar] [CrossRef]
- Atabani, A.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.-R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in biodiesel production—a review. Clean Energy 2019, 3, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Gok, H.Y.F.; Shen, J.; Emami, S.; Reaney, M.J.T. Polyol-Derived Alkoxide/Hydroxide Base Catalysts I. Production. J. Am. Oil Chem. Soc. 2012, 90, 291–298. [Google Scholar] [CrossRef]
- Pradhan, S.; Shen, J.; Emami, S.; Naik, S.N.; Reaney, M.J.T. Fatty acid methyl esters production with glycerol metal alkoxide catalyst. Eur. J. Lipid Sci. Technol. 2014, 116, 1590–1597. [Google Scholar] [CrossRef]
- Canakci, M.; Sanli, H. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 2008, 35, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Van Gerpen, J. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Optimization of pretreatment reaction for methylester production from chicken fat. Fuel 2010, 89, 4035–4039. [Google Scholar] [CrossRef]
- US Department of Energy. Biodiesel Production and Distribution. Alternative Fuels Data Center. 2020. Available online: https://afdc.energy.gov/fuels/biodiesel_production.html (accessed on 6 May 2020).
- Atadashi, I.M. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 2016, 25, 21–31. [Google Scholar]
- Mata, T.M.; Mendes, A.M.; Caetano, N.S.; Martins, A.A. Properties and Sustainability of Biodiesel from Animal Fats and Fish Oil. Chem. Eng. Trans. 2014, 38, 175–180. [Google Scholar]
- Mata, T.M.; Cardoso, N.; Ornelas, M.; Caetano, N.S. Sustainable production of biodiesel from tallow, lard and poultry fat and its quality evaluation. Energy Fuel 2010, 25, 4756–4762. [Google Scholar] [CrossRef]
- Lin, C.-W.; Tsai, S.-W. Production of biodiesel from chicken wastes by various alcohol-catalyst combinations. J. Energy S. Afr. 2017, 26, 36–45. [Google Scholar] [CrossRef]
- Chung, K.-H.; Kim, J.; Lee, K.-Y. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass Bioenergy 2009, 33, 155–158. [Google Scholar] [CrossRef]
- Encinar, J.M.; Sánchez, N.; Martínez, G.; García, L. Study of biodiesel production from animal fats with high free fatty acid content. Bioresour. Technol. 2011, 102, 10907–10914. [Google Scholar] [CrossRef]
- Huong, L.T.T.; Tan, P.M.; Hoa, T.T.V. Biodiesel Production from Fat of Tra Catfish via Heterogeneous Basic-Catalyzed Transesterification Using Ultrasonic Mixing. e-J. Surf. Sci. Nanotechnol. 2011, 9, 477–481. [Google Scholar] [CrossRef]
- Chavan, S.B.; Yadav, M.; Singh, R.; Kumbhar, R.R.; Sharma, Y.C. Production of biodiesel from three indigenous feedstock: Optimization of process parameters and assessment of various fuel properties. Environ. Prog. Sustain. Energy 2017, 36, 788–795. [Google Scholar] [CrossRef]
- He, C.; Mei, Y.; Zhang, Y.; Liu, L.; Li, P.; Zhang, Z.; Jing, Y.; Li, G.; Jiao, Y. Enhanced biodiesel production from diseased swine fat by ultrasound-assisted two-step catalyzed process. Bioresour. Technol. 2020, 304, 123017. [Google Scholar] [CrossRef]
- Mutreja, V.; Singh, S.; Ali, A. Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts. Renew. Energy 2011, 36, 2253–2258. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Optimization of transesterification for methyl ester production from chicken fat. Fuel 2011, 90, 2630–2638. [Google Scholar] [CrossRef]
- Keihani, M.; Esmaeili, H.; Rouhi, P. Biodiesel production from chicken fat using nano-calcium oxide catalyst and improving the fuel properties via blending with diesel. Phys. Chem. Res. 2018, 6, 521–529. [Google Scholar]
- Shi, W.; Li, J.; He, B.; Yan, F.; Cui, Z.; Wu, K.; Lin, L.; Qian, X.; Cheng, Y. Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour. Technol. 2013, 139, 316–322. [Google Scholar] [CrossRef]
- Seffati, K.; Honarvar, B.; Esmaeili, H.; Esfandiari, N. Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 2019, 235, 1238–1244. [Google Scholar] [CrossRef]
- Seffati, K.; Esmaeili, H.; Honarvar, B.; Esfandiari, N. AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat. Renew. Energy 2020, 147, 25–34. [Google Scholar] [CrossRef]
- Ngo, H.L.; Zafiropoulos, N.A.; Foglia, T.A.; Samulski, E.T.; Lin, W. Mesoporous Silica-Supported Diarylammonium Catalysts for Esterification of Free Fatty Acids in Greases. J. Am. Oil Chem. Soc. 2009, 87, 445–452. [Google Scholar] [CrossRef]
- Kim, M.; DiMaggio, C.; Yan, S.; Wang, H.; Salley, S.O.; Ng, K.Y.S. Performance of heterogeneous ZrO2 supported metaloxide catalysts for brown grease esterification and sulfur removal. Bioresour. Technol. 2011, 102, 2380–2386. [Google Scholar] [CrossRef]
- Shin, H.-Y.; Lee, S.-H.; Ryu, J.-H.; Bae, S.-Y. Biodiesel production from waste lard using supercritical methanol. J. Supercrit. Fluids 2011, 61, 134–138. [Google Scholar] [CrossRef]
- Adewale, P.; Dumont, M.-J.; Ngadi, M. Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chem. Eng. J. 2016, 284, 158–165. [Google Scholar] [CrossRef]
- Da Rós, P.C.; Silva, G.A.; Mendes, A.A.; Santos, J.C.; De Castro, H.F. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour. Technol. 2010, 101, 5508–5516. [Google Scholar] [CrossRef] [PubMed]
- Pollardo, A.A.; Lee, H.-S.; Lee, D.; Kim, S.; Kim, J. Solvent effect on the enzymatic production of biodiesel from waste animal fat. J. Clean. Prod. 2018, 185, 382–388. [Google Scholar] [CrossRef]
- Lu, J.; Nie, K.; Xie, F.; Wang, F.; Tan, T. Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process. Biochem. 2007, 42, 1367–1370. [Google Scholar] [CrossRef]
- Lee, K.-T.; Foglia, T.A.; Chang, K.-S. Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem. Soc. 2002, 79, 191–195. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Yan, Y. Optimization of Lipase-Catalyzed Transesterification of Lard for Biodiesel Production Using Response Surface Methodology. Appl. Biochem. Biotechnol. 2008, 160, 504–515. [Google Scholar] [CrossRef]
- Li, H.; Lv, P.; Wang, Z.; Miao, C.; Yuan, Z. Biodiesel continuous esterification process experimental study and equipment design. Biomass Conv. Bioref. 2020, in press. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res. 2005, 44, 5353–5363. [Google Scholar] [CrossRef]
- Vicente, G.; Martínez, M.; Aracil, J. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 2004, 92, 297–305. [Google Scholar] [CrossRef]
- Anitha, A.; Dawn, S.S. Performance Characteristics of Biodiesel Produced from Waste Groundnut Oil using Supported Heteropolyacids. Int. J. Chem. Eng. Appl. 2010, 1, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Balat, M. Potential alternatives to edible oils for biodiesel production—A review of current work. Energy Convers. Manag. 2011, 52, 1479–1492. [Google Scholar] [CrossRef]
- Mashad, H.M.; Zhang, R.; Avena-Bustillos, R.J. A two-step process for biodiesel production from salmon oil. Biosyst. Eng. 2008, 99, 220–227. [Google Scholar] [CrossRef]
- Idowu, I.; Pedrola, M.O.; Wylie, S.; Teng, K.; Kot, P.; Phipps, D.; Shaw, A. Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology. Renew. Energy 2019, 142, 535–542. [Google Scholar] [CrossRef]
- Felizardo, P.; Correia, M.J.N.; Raposo, I.; Mendes, J.F.; Berkemeier, R.; Bordado, J. Production of biodiesel from waste frying oils. Waste Manag. 2006, 26, 487–494. [Google Scholar] [CrossRef]
- Kumar, G.N.; Selvan, V.A.M. Effects of alumina nanoparticles in waste chicken fat biodiesel on the operating characteristics of a compression ignition engine. Clean Technol. Environ. Policy 2015, 17, 681–692. [Google Scholar] [CrossRef]
- Predojević, Z.J. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel 2008, 87, 3522–3528. [Google Scholar] [CrossRef]
- Patil, P.; Deng, S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009, 88, 1302–1306. [Google Scholar] [CrossRef]
- Faba, L.; Díaz, E.; Ordóñez, S. Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey. Renew. Sustain. Energy Rev. 2015, 51, 273–287. [Google Scholar] [CrossRef]
- Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 2010, 89, 2267–2271. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Christopher, L.P.; Kumar, H.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Issariyakul, T.; Kulkarni, M.G.; Dalai, A.K.; Bakhshi, N.N. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process. Technol. 2007, 88, 429–436. [Google Scholar] [CrossRef]
- Al-Zuhair, S.; Hasan, M.; Ramachandran, K. Kinetics of the enzymatic hydrolysis of palm oil by lipase. Process. Biochem. 2003, 38, 1155–1163. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Li, D.; Yang, B.; Wang, Y. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresour. Technol. 2017, 235, 18–24. [Google Scholar] [CrossRef]
- Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel production with immobilized lipase: A review. Biotechnol. Adv. 2010, 28, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Helwani, Z.; Othman, M.; Aziz, N.; Kim, J.; Fernando, W. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal. A Gen. 2009, 363, 1–10. [Google Scholar] [CrossRef]
- Kristi, M.; Milbrandt, A.; Lewis, J.; Schwab, A. Bioenergy Industry Status 2017 Report; National Renewable Energy Laboratory: Golden, CO, USA, 2018. Available online: https://www.nrel.gov/docs/fy20osti/75776.pdf (accessed on 5 May 2020).
- Kumar, M.; Sharma, M.P. Selection of potential oils for biodiesel production. Renew. Sustain. Energy Rev. 2016, 56, 1129–1138. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- Canoira, L.; Rodríguez-Gamero, M.; Querol, E.; Alcántara, R.; Lapuerta, M.; Oliva, F. Biodiesel from Low-Grade Animal Fat: Production Process Assessment and Biodiesel Properties Characterization. Ind. Eng. Chem. Res. 2008, 47, 7997–8004. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Park, J.; Hashemi, B.; Yadav, K.K.; Kwon, E.E.; Hur, J.; Cho, J. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers. Manag. 2019, 201, 112155. [Google Scholar] [CrossRef]
- Sander, A.; Košćak, M.A.; Kosir, D.; Milosavljević, N.; Vuković, J.P.; Magić, L. The influence of animal fat type and purification conditions on biodiesel quality. Renew. Energy 2018, 118, 752–760. [Google Scholar] [CrossRef]
- Atadashi, I.; Aroua, M.K.; Aziz, A.A. High quality biodiesel and its diesel engine application: A review. Renew. Sustain. Energy Rev. 2010, 14, 1999–2008. [Google Scholar] [CrossRef]
- Jagadale, S.S.; Jugulkar, L.M. Production and analysis of chemical properties of chicken fat based biodiesel and its various blends. Int. J. Eng. Res. Dev. 2012, 1, 34–37. [Google Scholar]
- Herskowirz, M.; Landau, M.; Reizner, I.; Kaliya, M. Production of Diesel Fuel from Vegetable and Animal Oils. U.S. Patent Application US2006207166, 28 September 2006. [Google Scholar]
- Herskowitz, M. Reaction System for Production of Diesel Fuel from Vegetable and Animal Oils. World Patent WO2008035155, 20 March 2008. [Google Scholar]
- Hoff, M.V.; Benson, T.; Bell, J.; Pugh, M. Biodiesel Fuel Production, Separation Methods and Systems. U.S. Patent 13765782, 16 February 2012. [Google Scholar]
- Lavella, P.S.R.; Pullo, P.; Pullo, G.V. Method and System for Integrated Biodiesel Production. U.S. Patent US20140020282A1, 23 January 2014. [Google Scholar]
- Scott, M. Process for Producing Biodiesel and Related Products. World Patent WO2014202980A3, 19 June 2014. [Google Scholar]
- Scott, M. Process for Producing Biodiesel and Related Products. China Patent CN106753812A, 31 May 2017. [Google Scholar]
- Matsumura, M. Method for Producing Biodiesel Fuel. Japanese Patent JP2005350632A, 22 December 2015. [Google Scholar]
- Matsumura, M. Technique for Producing Low-Exhaust Type Biodiesel Fuel. Japanese Patent JP2005350630A, 22 December 2015. [Google Scholar]
- Stavarache, C.; Vinatoru, M.; Maeda, Y. Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason. Sonochem. 2007, 14, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Breccia, A.; Esposito, B.; Fratadocchi, G.B.; Fini, A. Reaction Between Methanol and Commercial Seed Oils Under Microwave Irradiation. J. Microw. Power Electromagn. Energy 1999, 34, 3–8. [Google Scholar] [CrossRef]
- Thompson, J.C.; He, B.B. Biodiesel Production Using Static Mixers. Trans. ASABE 2007, 50, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Canter, N. Making biodiesel in a microreactor. Tribol. Lubr. Technol. 2006, 62, 15–17. [Google Scholar]
- Sun, J.; Ju, J.; Ji, L.; Zhang, L.; Xu, N. Synthesis of Biodiesel in Capillary Microreactors. Ind. Eng. Chem. Res. 2008, 47, 1398–1403. [Google Scholar] [CrossRef]
- Madhawan, A.; Arora, A.; Das, J.; Kuila, A.; Sharma, S. Microreactor technology for biodiesel production: A review. Biomass Convers. Biorefinery 2017, 8, 485–496. [Google Scholar] [CrossRef]
- Junior, J.M.C.; Naveira-Cotta, C.P.; De Moraes, D.B.; Neto, P.I.; Maia, I.A.; Da Silva, J.V.L.; Alves, H.; Tiwari, M.K.; Souza, C.G. Innovative Metallic Microfluidic Device for Intensified Biodiesel Production. Ind. Eng. Chem. Res. 2019, 59, 389–398. [Google Scholar] [CrossRef]
- Harvey, A.P.; Mackley, M.R.; Seliger, T. Process intensification of biodiesel production using a continuous oscillatory flow reactor. J. Chem. Technol. Biotechnol. 2003, 78, 338–341. [Google Scholar] [CrossRef]
- Marulanda, V.F.; Anitescu, G.; Tavlarides, L.L. Investigations on supercritical transestrification of chicken fat for biodiesel production from low cost lipid feedstocks. J. Supercrit. Fluids 2010, 54, 53–60. [Google Scholar] [CrossRef]
- Sánchez, M.; Marchetti, J.M.; Boulifi, N.E.; Aracil, J.; Martínez, M. Kinetics of Jojoba oil methanolysis using a waste from fish industry as catalyst. Chem. Eng. J. 2015, 262, 640–647. [Google Scholar] [CrossRef]
- Kouzu, M.; Kajita, A.; Fujimori, A. Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel 2016, 182, 220–226. [Google Scholar] [CrossRef]
- Di Bitonto, L.; Pastore, C. Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel. Renew. Energy 2019, 143, 1193–1200. [Google Scholar] [CrossRef]
- Ndiaye, M.; Arhaliass, A.; Legrand, J.; Roelens, G.; Kerihuel, A. Reuse of waste animal fat in biodiesel: Biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renew. Energy 2020, 145, 1073–1079. [Google Scholar] [CrossRef]
- Kpan, J.; Krahl, J. Sustaining the Oxidation Stability of Biodiesel and Its Blends in Plug-in Hybrid Vehicles Using Adsorbents. Energy Fuels 2019, 33, 11181–11186. [Google Scholar] [CrossRef]
- Saeong, P.; Saisriyoot, M.; Thanapimmetha, A.; Srinophakun, P. The response surface optimization of steryl glucosides removal in palm biodiesel using silica adsorption. Fuel 2017, 191, 1–9. [Google Scholar] [CrossRef]
- Neste Renewable Synthetic Diesel. 2020. Available online: https://web.archive.org/web/20100418133813/http://www.climatechange.ca.gov/events/2006-06-27+28_symposium/presentations/CalHodge_handout_NESTE_OIL.PDF (accessed on 5 May 2020).
Animal Fat | Catalyst | Weight | Reaction | Alcohol:Oil | Operating | References |
---|---|---|---|---|---|---|
(% to Fat) | Yield (%) | Ratio | Conditions | |||
Beef tallow | KOH | 0.8 | 90.8 | 6:1 | 60 °C, 2 h | [57,58] |
Pork Lard | KOH | 0.8 | 91.4 | 6:1 | 60 °C, 2 h | [57,58] |
Poultry fat | KOH | 0.8 | 76.8 | 6:1 | 60 °C, 2 h | [57,58] |
Chicken waste | KOH | 1 | - | 6:1 | 60 °C, 2 h | [59] |
Duck tallow | KOH | 1 | 97.1 | 3:1 | 65 °C, 3 h | [60] |
Pork fat | KOH | 0.5 | 97.3 | 6:1 | 65 °C, 2 h | [61] |
Catfish fat | KOH | 0.8 | 92.7 | 6:1 | 50 °C, 0.75 h | [62] |
Chicken fat | KOH | 0.8 | 82.0 | 8:1 | 60 °C, 1 h | [63] |
Swine lard | KOH | 1.1 | 98.0 | 7.4:1 | 65 °C, 3 h | [64] |
Mutton fat | MgO-KOH | 20 | 98.0 | 22:1 | 65 °C, 20 min | [65] |
Chicken fat | H2SO4 | 1.25 | 99.0 | 1:30 | 50 °C, 24 h, | [24] |
Mutton tallow | H2SO4 | 1.25 | 93.2 | 1:30 | 60 °C, 24 h | [24] |
Chicken fat | NaOMe | 1 | 88.5 | 6:1 | 60 °C, 4 h | [66] |
Chicken fat | Nano CaO | 1 | 88.5 | 9:1 | 60 °C, 5 h | [67] |
Chicken fat | Composite membrane & NaOMe | 1 | 98.1 | 1:1 | 70 °C, 3 h | [68] |
Chicken fat | CaO/CuFe2O4 | 3 | 94.5 | 15:1 | 70 °C, 4 h | [69] |
Lard | 35%CaO/zeolite | 8 | 90.9 | 30:1 | 65 °C, 1.25 h | [15] |
Chicken fat | AC/CuFe2O4 encapsulated with CaO | 3 | 95.6 | 12:1 | 65 °C, 4 h | [70] |
Brown grease | Mesoporous silica diphenylammonium triflate | 15 | 98.0 | 15:1 | 95 °C, 2 h | [71] |
Brown grease | ZnO/ZrO2 | 0.8 | 78.0 | 1:1.5 | 200 °C, 2 h | [72] |
Lard | Supercritical methanol | - | 89.9 | 45:1 | 335 °C, 20 MPa, 15 min Agitation 500 rpm | [73] |
Waste lard | Immobilized lipase from Candida antarctica | 6 | 96.8 | 6:1 | 50 °C, 30 min Ultrasound assisted | [74] |
Beef tallow | Immobilized lipase from Burkholderia cepacia | 20 | 89.7 | 12:1 | 50 °C, 48 h | [75] |
Animal fat | Immobilized lipase from Candida antarctica | 10 | 79 | 50:6 | 40 °C, 6 h | [76] |
Lard | Lipase from Candida sp | 20 | 87.4 | 3:1 | 40 °C, 30 h | [77] |
Lard | Lipase from Candida antarctica | 10 | 74 | 1:1 | 30 °C, 72 h | [78] |
Lard | Lipase from Candida antarctica | 2–6 | 97.2 | 5:1 | 50 °C, 20 h | [79] |
Animal Feedstock | Particular Conditions | Catalyst | Biodiesel Characteristics | References |
---|---|---|---|---|
Lard oil, tallow oil, fish oil, | Hydrodeoxygenation and hydroisomerization of the oil in a single step | Pt and Pd and an acidic component | Mixture of C14 to C18 paraffins having a ratio of iso to normal paraffins of 2 to 8; less than 5 ppm sulfur; and acceptable lubricity | [100,109,110] |
Animal oil, fish oil, lard, rendered fats, tallow | Unwanted water removed by cross-flow filtration | Immobilized lipase | Separation of formed crude biodiesel and crude glycerol from the second reaction medium by using a fourth cross-flow filtration cassette | [111] |
Animal fats | Degumming; physical refining (heating and vacuum pulling); and glycerolysis | H2SO4, ZnO | Possibility of using various starting feed stocks with heat integration to minimize operating costs | [112] |
Animal fats incl. 10–20% free fatty acids | Esterification in two steps | 96% H2SO4 | The amount of FFA in the mixture is reduced to <3% by weight | [113,114] |
Animal fats | Esterification reaction of free fatty acids if higher than a set value | Alkali catalyst KOH | Distillation to remove byproducts like glycerol and alcohol | [115] |
Beef oil, pork oil, animal fats such as fish oil | Transesterification with lower alcohol content | Alkali catalyst KOH | Reducing costs by producing glycerin and glycerin derivatives in high yield and purity | [116] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toldrá-Reig, F.; Mora, L.; Toldrá, F. Trends in Biodiesel Production from Animal Fat Waste. Appl. Sci. 2020, 10, 3644. https://doi.org/10.3390/app10103644
Toldrá-Reig F, Mora L, Toldrá F. Trends in Biodiesel Production from Animal Fat Waste. Applied Sciences. 2020; 10(10):3644. https://doi.org/10.3390/app10103644
Chicago/Turabian StyleToldrá-Reig, Fidel, Leticia Mora, and Fidel Toldrá. 2020. "Trends in Biodiesel Production from Animal Fat Waste" Applied Sciences 10, no. 10: 3644. https://doi.org/10.3390/app10103644