Carbonate-Based Lanthanum Strontium Cobalt Ferrite (LSCF)–Samarium-Doped Ceria (SDC) Composite Cathode for Low-Temperature Solid Oxide Fuel Cells
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Procedure
2.1. Synthesis and Characterization of the Powder
2.2. Electrochemical Characterization
NiO–SDCC|SDCC|LSCF–30SDCC | Cell A |
NiO–SDCC|SDCC|LSCF–40SDCC | Cell B |
NiO–SDCC|SDCC|LSCF–50SDCC | Cell C |
3. Results and Discussion
3.1. Powder Characterizations
3.2. Microstructure Characterization and Single Cell Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan Yusof, W.N.A.; Abdul Samat, A.; Norman, N.W.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A. Synthesis and Characterization of Zn-doped LiCoO2 Material Prepared via Glycinenitrate Combustion Method for Proton Conducting Solid Oxide Fuel Cell Application. J. Kejuruter. 2018, SI1, 11–15. [Google Scholar]
- Shaikh, S.P.S.; Muchtar, A.; Somalu, M.R. A review on the selection of anode materials for solid-oxide fuel cells. Renew. Sustain. Energy Rev. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Cebollero, J.A.; Lahoz, R.; Laguna-Bercero, M.A.; Larrea, A. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance. J. Power Sources 2017, 360, 336–344. [Google Scholar] [CrossRef]
- Javed, H.; Sabato, A.G.; Herbrig, K.; Ferrero, D.; Walter, C.; Salvo, M.; Smeacetto, F. Design and characterization of novel glass-ceramic sealants for solid oxide electrolysis cell (SOEC) applications. Int. J. Appl. Ceram. Technol. 2018, 15, 999–1010. [Google Scholar] [CrossRef]
- Elsayed, H.; Javed, H.; Sabato, A.G.; Smeacetto, F.; Bernardo, E. Novel glass-ceramic SOFC sealants from glass powders and a reactive silicone binder. J. Eur. Ceram. Soc. 2018, 38, 4245–4251. [Google Scholar] [CrossRef]
- Slim, C.; Baklouti, L.; Cassir, M.; Ringuedé, A. Structural and electrochemical performance of gadolinia-doped ceria mixed with alkali chlorides (LiCl-KCl) for Intermediate Temperature-Hybrid Fuel Cell applications. Electrochim. Acta 2014, 123, 127–134. [Google Scholar] [CrossRef]
- Dong, X.; Tian, L.; Li, J.; Zhao, Y.; Tian, Y.; Li, Y. Single layer fuel cell based on a composite of Ce0.8Sm 0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo.5O6-δ. J. Power Sources 2014, 249, 270–276. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, H.; Fan, L.; Wang, C.; Zhu, B. Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect. Int. J. Hydrog. Energy 2014, 39, 12309–12316. [Google Scholar] [CrossRef]
- Zhang, L.; Lan, R.; Tao, S. An intermediate temperature fuel cell based on composite electrolyte of carbonate and doped barium cerate with SrFe0.7Mn0.2Mo0.1O3-δ cathode. Int. J. Hydrog. Energy 2013, 38, 16546–16551. [Google Scholar] [CrossRef] [Green Version]
- Mat, M.D.; Liu, X.; Zhu, Z.; Zhu, B. Development of cathodes for methanol and ethanol fuelled low temperature (300-600 °C) solid oxide fuel cells. Int. J. Hydrog. Energy 2007, 32, 796–801. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, L.; Lund, P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 2013, 106, 163–175. [Google Scholar] [CrossRef]
- Mostafavi, E.; Babaei, A.; Ataie, A. La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for intermediate temperature solid oxide fuel cells: A comparative study. Iran. J. Hydrog. Fuel Cell 2014, 4, 239–246. [Google Scholar]
- Shimura, K.; Nishino, H.; Kakinuma, K.; Brito, M.E.; Uchida, H. Effect of samaria-doped ceria (SDC) interlayer on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ/SDC composite oxygen electrode for reversible solid oxide fuel cells. Electrochim. Acta 2017, 225, 114–120. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Dell’Agli, G.; Accardo, G.; Yoon, S.P.; Frattini, D. Electro-morphological, structural, thermal and ionic conduction properties of Gd/Pr co-doped ceria electrolytes exhibiting mixed Pr3+/Pr4+ cations. Ceram. Int. 2019, 45, 4570–4580. [Google Scholar] [CrossRef]
- Spiridigliozzi, L. Doped-Ceria Electrolytes: Synthesis, Sintering and Characterization; SpringerBriefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-99394-2. [Google Scholar]
- Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Uppadhya, S.; Parkash, O. A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloys Compd. 2019, 781, 984–1005. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, K.; Zhao, L.; Chi, B.; Pu, J. Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions. Int. J. Hydrog. Energy 2014, 39, 15868–15876. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.S.C.; Kuhn, J.; Kesler, O. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes: Influence of carbon black pore former on performance and degradation. J. Power Sources 2016, 316, 72–84. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, C.; Liang, L.; Li, K.; Jia, L.; Pu, J.; Jian, L.; Li, X.; Zhang, T. Degradation analysis and durability improvement for SOFC 1-cell stack. Appl. Energy 2016, 175, 414–420. [Google Scholar] [CrossRef]
- Furukawa, N.; Sameshima, S.; Hirata, Y.; Shimonosono, T. Influence of cathode on electric power of solid oxide fuel cells. J. Ceram. Soc. Jpn. 2014, 122, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Mosiaek, M.; Kdra, A.; Krzan, M.; Bielaska, E.; Tatko, M. Ba0.5Sr0.5Co0.8Fe0.2O3-La0.6Sr0.4Co0.8Fe0.2O3-composite cathode for solid oxide fuel cell. Arch. Metall. Mater. 2016, 61, 1137–1142. [Google Scholar] [CrossRef]
- Jaiswal, N.; Upadhyay, S.; Kumar, D.; Parkash, O. Enhanced ionic conductivity in La3+ and Sr2+ co-doped ceria: Carbonate nanocomposite. Ionics 2015, 21, 2277–2283. [Google Scholar] [CrossRef]
- Raza, R.; Wang, X.; Ma, Y.; Liu, X.; Zhu, B. Improved ceria-carbonate composite electrolytes. Int. J. Hydrog. Energy 2010, 35, 2684–2688. [Google Scholar] [CrossRef]
- Fan, L.; Wang, C.; Chen, M.; Zhu, B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 2013, 234, 154–174. [Google Scholar] [CrossRef]
- Ristoiu, T.; Petrisor, T.; Gabor, M.; Rada, S.; Popa, F.; Ciontea, L.; Petrisor, T. Electrical properties of ceria/carbonate nanocomposites. J. Alloys Compd. 2012, 532, 109–113. [Google Scholar] [CrossRef]
- Ali, A.; Rafique, A.; Kaleemullah, M.; Abbas, G.; Ajmal Khan, M.; Ahmad, M.A.; Raza, R. Effect of Alkali Carbonates (Single, Binary, and Ternary) on Doped Ceria: A Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2018, 10, 806–818. [Google Scholar] [CrossRef]
- Huang, J.; Mao, Z.; Liu, Z.; Wang, C. Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes. J. Power Sources 2008, 175, 238–243. [Google Scholar] [CrossRef]
- Rahman, H.A.; Muchtar, A.; Muhamad, N.; Abdullah, H. La0.6Sr0.4Co0.2Fe0.8O3-δ-SDC carbonate composite cathodes for low-temperature solid oxide fuel cells. Mater. Chem. Phys. 2013, 141, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.A.; Muchtar, A.; Muhamad, N.; Abdullah, H. Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3-δ-SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells. Ceram. Int. 2012, 38, 1571–1576. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Anwar, M.; Ashikin, N.; Muchtar, A.; Somalu, M.R. Influence of oxygen ion enrichment on optical, mechanical, and electrical properties of LSCF perovskite nanocomposite. Ceram. Int. 2018, 44, 10433–10442. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Muchtar, A.; Bakar Sulong, A.; Muhamad, N.; Herianto Majlan, E. Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceram. Int. 2013, 39, 5813–5820. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Rosli, R.E.; Muchtar, A.; Sulong, A.B.; Somalu, M.R.; Majlan, E.H. Effect of sintering temperature on surface morphology and electrical properties of samarium-doped ceria carbonate for solid oxide fuel cells. Ceram. Int. 2015, 41, 1323–1332. [Google Scholar] [CrossRef]
- Jarot, R.; Muchtar, A.; Wan Daud, W.R.; Muhamad, N.; Majlan, E.H. Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering. Appl. Mech. Mater. 2011, 52, 488–493. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Zhang, H.; Xue, Q.; Xu, H.; Wang, L.; Feng, Z. The effect of powder grain size on the microstructure and electrical properties of 8 mol% Y2O3-stabilized ZrO2. RSC Adv. 2017, 7, 39153–39159. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, Y.; Li, B.; Sparks, T.D.; Wei, X.; Pan, W. Ceria (Sm3+, Nd3+)/carbonates composite electrolytes with high electrical conductivity at low temperature. Compos. Sci. Technol. 2010, 70, 181–185. [Google Scholar] [CrossRef]
- Kosinski, M.R.; Baker, R.T. Preparation and property-performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes. J. Power Sources 2011, 196, 2498–2512. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, Y.; Gao, H.; He, T.; Liu, J. Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 2005, 395, 322–325. [Google Scholar] [CrossRef]
- Liu, Y.; Hashimoto, S.; Nishino, H.; Takei, K.; Mori, M. Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3-δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs. J. Power Sources 2007, 164, 56–64. [Google Scholar] [CrossRef]
- Rondão, A.I.B.; Patrício, S.G.; Figueiredo, F.M.L.; Marques, F.M.B. Composite electrolytes for fuel cells: Long-term stability under variable atmosphere. Int. J. Hydrog. Energy 2014, 39, 5460–5469. [Google Scholar] [CrossRef]
- Khan, I.; Asghar, M.I.; Lund, P.D.; Basu, S. High conductive (LiNaK)2CO3–Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. Int. J. Hydrog. Energy 2017, 42, 20904–20909. [Google Scholar] [CrossRef]
- Li, C.; Zeng, Y.; Wang, Z.; Ye, Z.; Zhang, Y.; Shi, R. Preparation of SDC-NC nanocomposite electrolytes with elevated densities: Influence of prefiring and sintering treatments on their microstructures and electrical conductivities. RSC Adv. 2016, 6, 99615–99624. [Google Scholar] [CrossRef]
- Irshad, M.; Siraj, K.; Raza, R.; Javed, F.; Ahsan, M.; Shakir, I.; Rafique, M.S. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC. AIP Adv. 2016, 6, 025202. [Google Scholar] [CrossRef]
- Anwar, M.; Muhammed Ali, S.A.; Muchtar, A.; Somalu, M.R. Synthesis and characterization of M-doped ceria-ternary carbonate composite electrolytes (M=erbium, lanthanum and strontium) for low-temperature solid oxide fuel cells. J. Alloys Compd. 2019, 775, 571–580. [Google Scholar] [CrossRef]
- Fan, L.; He, C.; Zhu, B. Role of carbonate phase in ceria-carbonate composite for low temperature solid oxide fuel cells: A review. Int. J. Energy Res. 2017, 41, 465–481. [Google Scholar] [CrossRef]
- Raza, R.; Zhu, B.; Rafique, A.; Naqvi, M.R.; Lund, P. Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review. Mater. Today Energy 2020, 15, 100373. [Google Scholar] [CrossRef]
- Qin, C.; Gladney, A. DFT study of CO42- and CO52- relevant to oxygen reduction with the presence of molten carbonate in solid oxide fuel cells. Comput. Theor. Chem. 2012, 999, 179–183. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Anwar, M.; Mahmud, L.S.; Kalib, N.S.; Muchtar, A.; Somalu, M.R. Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode. J. Solid State Electrochem. 2019, 23, 1155–1164. [Google Scholar] [CrossRef]
- Dell’Agli, G.; Spiridigliozzi, L.; Pansini, M.; Accardo, G.; Yoon, S.P.; Frattini, D. Effect of the carbonate environment on morphology and sintering behaviour of variously co-doped (Ca, Sr, Er, Pr) Samarium-doped Ceria in co-precipitation/hydrothermal synthesis. Ceram. Int. 2018, 44, 17935–17944. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, C.; Xu, Z.; Li, Y. Validation of H+/O2- conduction in doped ceria-carbonate composite material using an electrochemical pumping method. Int. J. Hydrog. Energy 2012, 37, 11378–11382. [Google Scholar] [CrossRef]
- Baek, S.W.; Bae, J.; Kim, J.H. Oxygen reduction mechanism at Sm0.5Sr0.5CoO3-δ/Sm0.2Ce0.8O1.9 composite cathode for solid oxide fuel cell. In Proceedings of the FUELCELL2008, 6th International Conference on Fuel Cell Science, Engineering and Technology, Denver, CO, USA, 16–18 July 2008; pp. 1–4. [Google Scholar]
- Shah, M.; Barnett, S.A. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-Doped Ceria. Solid State Ionics 2008, 179, 2059–2064. [Google Scholar] [CrossRef]
- Sar, J.; Dessemond, L.; Djurado, E. Electrochemical properties of graded and homogeneous Ce0.9Gd0.1O2−δ–La0.6Sr0.4Co0.2Fe0.8O3-δ composite electrodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2016, 41, 17037–17043. [Google Scholar] [CrossRef]
Samples | Surface Area (m2/g) | Average Particle Size (nm) | Crystallite Size (nm) | |
---|---|---|---|---|
LSCF | SDCC | |||
LSCF–30SDCC | 7.42 | 560 | 42 | 81 |
LSCF–40SDCC | 4.39 | 642 | 49 | 102 |
LSCF–50SDCC | 4.04 | 655 | 48 | 99 |
Electrolyte | Cathode | Anode | Fuel (Anode/Cathode) | Current Collecting Layer | Operating Temperature (°C) | Power Density (mW/cm2) | Reference |
---|---|---|---|---|---|---|---|
SDC–30 wt % Li1.34Na0.66CO3 | LSCF–30 wt % SDC–Li1.34Na0.66CO3 | NiO–40 wt % SDC–Li1.34Na0.66CO3 | H2/air | - | 650 | 75.4 | This study |
SDC–20 wt % (LiNa)2CO3 | lithiated NiO-SDC–(LiNa)2CO3 | NiO–SDC–(LiNa)2CO3 | H2/O2 | - | 575 | 600 | [8] |
SDC–20 wt % (LiNa)2CO3 | LSCF–50 wt % SDC–(LiNa)2CO3 | NiO–50 wt % SDC–(LiNa)2CO3 | H2/O2 | Silver | 550 | 120.4 | [28] |
SDC–35 wt % (LiNaK)2CO3 | LSCF–45 wt % SDC–(LiNaK)2CO3 | NiO–45 wt % SDC–(LiNaK)2CO3 | H2/O2 + CO2 | - | 550 | 801 | [40] |
SDC–46.8 wt % Na2CO3 | lithiated NiO–60 wt % SDC–Na2CO3 | NiO–60 wt % SDC–Na2CO3 | H2/air | Silver | 550 | 342 | [41] |
SDC–(LiNa)2CO3 | LiNiCuZnO | LiNiCuZnO–SDCC | H2/air | - | 600 | 617 | [26] |
SDC–(LiNa)2CO3 | LiNiCuZnO–SDCC | LiNiCuZnO–SDCC | H2/O2 | Silver | 580 | 520 | [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S.A., M.A.; Raharjo, J.; Anwar, M.; Khaerudini, D.S.; Muchtar, A.; Spiridigliozzi, L.; Somalu, M.R. Carbonate-Based Lanthanum Strontium Cobalt Ferrite (LSCF)–Samarium-Doped Ceria (SDC) Composite Cathode for Low-Temperature Solid Oxide Fuel Cells. Appl. Sci. 2020, 10, 3761. https://doi.org/10.3390/app10113761
S.A. MA, Raharjo J, Anwar M, Khaerudini DS, Muchtar A, Spiridigliozzi L, Somalu MR. Carbonate-Based Lanthanum Strontium Cobalt Ferrite (LSCF)–Samarium-Doped Ceria (SDC) Composite Cathode for Low-Temperature Solid Oxide Fuel Cells. Applied Sciences. 2020; 10(11):3761. https://doi.org/10.3390/app10113761
Chicago/Turabian StyleS.A., Muhammed Ali, Jarot Raharjo, Mustafa Anwar, Deni Shidqi Khaerudini, Andanastuti Muchtar, Luca Spiridigliozzi, and Mahendra Rao Somalu. 2020. "Carbonate-Based Lanthanum Strontium Cobalt Ferrite (LSCF)–Samarium-Doped Ceria (SDC) Composite Cathode for Low-Temperature Solid Oxide Fuel Cells" Applied Sciences 10, no. 11: 3761. https://doi.org/10.3390/app10113761