Fabrication and Characterization of Ferrofluidic-Based Wire-Wound and Wire-Bonded Type Inductor for Continuous RF Tunable Inductor
Abstract
:Featured Application
Abstract
1. Introduction
2. Implementation of Tunable Microfluidic Inductor
2.1. Wire-Wound Inductor
2.2. Wire Bond Inductor
3. Measurement Setup and Ferrofluidic Properties
3.1. Characterization of Tunable Inductor
3.2. Ferrofluidic Properties
4. Results and Discussion
4.1. Wire-Wound Solenoid Inductor
4.2. Wire Bond Solenoid Inductor
4.3. Comparison Fabricated Inductor to Previous Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, E.-C.; Choi, Y.-S.; Yoon, J.-B.; Hong, S.; Yoon, E. Fully integrated low phase-noise VCOs with on-chip MEMS inductors. IEEE Trans. Microw. Theory Tech. 2003, 51, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.H.; Hung, Y.J.; Juang, Y.Z.; Lu, M.S.C. A 5.8-GHz VCO with CMOS-compatible MEMS inductors. Sens. Actuators A: Phys. 2007, 139, 187–193. [Google Scholar]
- El Ahmady, H.; Zaki, A.; Elsimary, H.; Hassan, H. Design of Integrated CMOS LNA using Suspended MEMS Inductor for Wireless Applications. In Proceedings of the International Conference on Signals, Circuits and Systems (SCS), Jerba, Tunisia, 6–8 November 2009; pp. 374–379. [Google Scholar]
- Domingue, F.; Fouladi, S.; Kouki, A.B.; Mansour, R.R. Design Methodology and Optimization of Distributed MEMS Matching Networks for Low-Microwave-Frequency Applications. IEEE Trans. Microw. Theory Tech. 2009, 57, 3030–3041. [Google Scholar] [CrossRef]
- Lu, Y.; Peroulis, D.; Mohammadi, S.; Katehi, L.P.B. A MEMS reconfigurable matching network for a class AB amplifier. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 437–439. [Google Scholar]
- Sjoblom, P.; Sjoland, H. Measured CMOS Switched High-Quality Capacitors in a Reconfigurable Matching Network. IEEE Trans. Circuits Syst. II Express Briefs 2007, 54, 858–862. [Google Scholar]
- Entesari, K.; Obeidat, K.; Brown, A.R.; Rebeiz, G.M. A 25–75-MHz RF MEMS Tunable Filter. IEEE Trans. Microw. Theory Tech. 2007, 55, 2399–2405. [Google Scholar] [CrossRef]
- Fischer, G.; Eckl, W.; Kaminski, G. RF-MEMS and SiC/GaN as enabling technologies for a reconfigurable multi-band/multi-standard radio. Bell Labs Tech. J. 2003, 7, 169–189. [Google Scholar] [CrossRef]
- Lubecke, V.M.; Barber, B.; Chan, E.; Lopez, D.; Gross, M.E.; Gammel, P. Self-assembling MEMS variable and fixed RF inductors. IEEE Trans. Microw. Theory Tech. 2001, 49, 2093–2098. [Google Scholar]
- Wen-An, T.; Che-Sheng, C.; Chun-Kai, W.; Chen, K.C.J.; Svu-Hsien, W.; Kuei-Ann, W. Analysis for efficiency improvement of CMOS class-E power amplifiers with MEMS inductors. In Proceedings of the Microwave Conference, 2009. APMC 2009. Asia Pacific, Singapore, 7–10 December 2009; pp. 1683–1686. [Google Scholar]
- Debogovic, T.; Perruisseau-Carrier, J. MEMS-Reconfigurable Metamaterials and Antenna Applications. Int. J. Antennas Propag. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Meng, X. Small-Size Eight-Band Frequency Reconfigurable Antenna Loading a MEMS Switch for Mobile Handset Applications. Int. J. Antennas Propag. 2014, 2014, 6. [Google Scholar] [CrossRef]
- Yeom, I.; Choi, J.; Kwoun, S.-S.; Lee, B.; Jung, C. Analysis of RF Front-End Performance of Reconfigurable Antennas with RF Switches in the Far Field. Int. J. Antennas Propag. 2014, 2014, 14. [Google Scholar]
- Carrasco, E.; Barba, M.; Arrebola, M.; Encinar, J.A. Recent Developments of Reflectarray Antennas for Reconfigurable Beams Using Surface-Mounted RF-MEMS. Int. J. Antennas Propag. 2012, 2012, 12. [Google Scholar] [CrossRef]
- Rosas-Guevara, G.; Murphy-Arteaga, R.; Moreno, W. Small Antenna Based on MEMS and Metamaterial Properties for Reconfigurable Applications. Int. J. Antennas Propag. 2013, 2013, 10. [Google Scholar] [CrossRef]
- Shifang, Z.; Xi-Qing, S.; William, N.C. A monolithic variable inductor network using microrelays with combined thermal and electrostatic actuation. J. Micromech. Microeng. 1999, 9, 45. [Google Scholar]
- Tassetti, C.M.; Lissorgues, G.; Gilles, J.P. Tunable RF MEMS micro inductors for future communication systems. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2003. IMOC 2003, Foz do Iguacu, Brazil, 20–23 September 2003; Volume 1, pp. 541–545. [Google Scholar]
- Chang, S.; Sivoththaman, S. A Tunable RF MEMS Inductor on Silicon Incorporating an Amorphous Silicon Bimorph in a Low-Temperature Process. IEEE Electron Device Lett. 2006, 27, 905–907. [Google Scholar] [CrossRef]
- Pehlke, D.; Burstein, A.; Chang, M. Extremely high-Q tunable inductor for Si-based RF integrated circuit applications. In Proceedings of the Electron Devices Meeting, 1997. IEDM’97. Technical Digest, International, Washington, DC, USA, 10 December 1997; pp. 63–66. [Google Scholar]
- Lim, S.; Yeo, K.; Ma, J.; Do, M.; Chew, K.; Chu, S.-F. Extremely high-Q stacked transformer-type inductors for RF applications. In Proceedings of the 2003 International Symposium on VLSI Technology, Systems, and Applications, Hsinchu, Taiwan, 6–8 October 2003; pp. 147–150. [Google Scholar]
- Mukhopadhyay, R.; Park, Y.; Sen, P.; Srirattana, N.; Lee, J.; Lee, C.-H.; Nuttinck, S.; Joseph, A.; Cressler, J.D.; Laskar, J. Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end. IEEE Trans. Microw. Theory Tech. 2005, 53, 81–93. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, X.-Q.; Carr, W.N. A micro variable inductor chip using MEMS relays. In Proceedings of the International Conference Solid State Sensors and Actuators Conference 1997. TRANSDUCERS’97, Chicago, IL, USA, 19 June 1997; pp. 1137–1140. [Google Scholar]
- Zine-El-Abidine, I.; Okoniewski, M.; McRory, J.G. A new class of tunable RF MEMS inductors. In Proceedings of the International Conference on MEMS, NANO and Smart Systems, Banff, AB, Canada, 23 July 2003; p. 114. [Google Scholar]
- Zine-El-Abidine, I.; Okoniewski, M.; McRory, J.G. RF MEMS tunable inductor. In Proceedings of the Proc. IEEE Microw, Radar Wireless Conf, Warsaw, Poland, 17–19 May 2004; pp. 817–819. [Google Scholar]
- Banitorfian, F.; Eshghabadi, F.; Manaf, A.A.; Noh, N.M.; Mustaffa, M.T. A Novel Ferrofluidics-Based High-Tuning High-Q Variable Solenoid Inductor for Frequency-Reconfigurable Circuits Applications. In Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS 2015), Holiday Villa, Langkawi, Malaysia, 2–4 September 2015. [Google Scholar]
- Razy, A.H.M.; Mustaffa, M.T.; Manaf, A.A.; Noh, N.M. Design of Ferrofluid-Based Fine-Tuneable Solenoid MEMS inductor using wire bonding technique for Ultra High Frequency applications. IOSR J. Electr. Electron. Eng. 2019, 14, 43–51. [Google Scholar]
- Vroubel, M.; Zhuang, Y.; Rejaei, B.; Burghartz, J.N. Integrated tunable magnetic RF inductor. Electron Device Lett. IEEE 2004, 25, 787–789. [Google Scholar]
- Ning, N.; Li, X.; Fan, J.; Ng, W.; Xu, Y.; Qian, X.; Seet, H. A tunable magnetic inductor. IEEE Trans. Magn. 2006, 42, 1585–1590. [Google Scholar] [CrossRef]
Type | Wire Thickness | Number of Turns | Inner Diameter |
---|---|---|---|
Wire-wound solenoid | 0.5 mm | 10 | 1 mm |
Ferrofluidic Type | Magnetic Permeability | Magnetic Saturation | Particle Concentration |
---|---|---|---|
EMG901 | 5.4 | 66 mT | 11.8% |
EMG905 | 3.1 | 44 mT | 7.8% |
EMG909 | 1.9 | 22 mT | 3.9% |
EMG911 | 1.3 | 11 mT | 2.0% |
Wire-Wound @100MHz | Sim. L | Sim. Q | Meas. L | Meas. Q | Sim. TR% | Meas. TR% |
---|---|---|---|---|---|---|
Vacuum | 54.4 | 300 | 55 | 200 | - | - |
EMG901 | 187.3 | 300 | 101 | 53.7 | 243% | 83.5% |
EMG905 | 105.6 | 300 | 78.6 | 55 | 94.11% | 42.5% |
EMG909 | 86.1 | 300 | 68.8 | 61.1 | 58.27% | 25% |
EMG911 | 65.4 | 300 | 62.4 | 74.4 | 20.22% | 13.3% |
Wire-bonded @150MHz | Sim. L (nH) | Sim. Q | Meas. L (nH) | Meas. Q | Sim. TR% | Meas. TR% |
---|---|---|---|---|---|---|
Vacuum | 46.5 | 21.52 | 42.6 | 39.1 | - | - |
EMG901 | 160.79 | 49.594 | 66.6 | 17.2 | 245.7% | 56.2% |
EMG905 | 100.77 | 44.177 | 54.2 | 22.3 | 116.7% | 27.2% |
EMG909 | 81.19 | 36.067 | 49.8 | 26.2 | 74.6% | 16.9% |
EMG911 | 59.36 | 26.498 | 46.2 | 33.2 | 27.6% | 8.45% |
Parameters | Wire Bond Inductor | Wire Wound Inductor | (Vroubel et al. 2004) [27] | (Ning et al. 2006) [28] |
---|---|---|---|---|
Type | Solenoid | Solenoid | Solenoid | Solenoid |
Technique | Liquid-based core | Liquid-based core | Magnetic core tuned by insulated core | thin-film ferromagnetic (FM) core |
Maximum tuning ratio | 81% | 90.6% | 18% | 85% |
Quality factor | 12.7 | 31.3 | 5 | <2 |
Peak quality factor | 18.4 @108MHz EMG901 | 69 @30MHz EMG901 | 18 | 2 |
Frequency | 310 MHz | 300 MHz | 5 MHz | 100MHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torfian Hoveizavi, F.B.; Abdul Rhaffor, N.; Sal Hamid, S.; Mohamed Zain, K.A.; Kunhi Mohd, S.K.; Mustaffa, M.T.; Abd Manaf, A. Fabrication and Characterization of Ferrofluidic-Based Wire-Wound and Wire-Bonded Type Inductor for Continuous RF Tunable Inductor. Appl. Sci. 2020, 10, 3776. https://doi.org/10.3390/app10113776
Torfian Hoveizavi FB, Abdul Rhaffor N, Sal Hamid S, Mohamed Zain KA, Kunhi Mohd SK, Mustaffa MT, Abd Manaf A. Fabrication and Characterization of Ferrofluidic-Based Wire-Wound and Wire-Bonded Type Inductor for Continuous RF Tunable Inductor. Applied Sciences. 2020; 10(11):3776. https://doi.org/10.3390/app10113776
Chicago/Turabian StyleTorfian Hoveizavi, Fatemeh Bani, Nuha Abdul Rhaffor, Sofiyah Sal Hamid, Khairu Anuar Mohamed Zain, Shukri Korakkottil Kunhi Mohd, Mohd Tafir Mustaffa, and Asrulnizam Abd Manaf. 2020. "Fabrication and Characterization of Ferrofluidic-Based Wire-Wound and Wire-Bonded Type Inductor for Continuous RF Tunable Inductor" Applied Sciences 10, no. 11: 3776. https://doi.org/10.3390/app10113776
APA StyleTorfian Hoveizavi, F. B., Abdul Rhaffor, N., Sal Hamid, S., Mohamed Zain, K. A., Kunhi Mohd, S. K., Mustaffa, M. T., & Abd Manaf, A. (2020). Fabrication and Characterization of Ferrofluidic-Based Wire-Wound and Wire-Bonded Type Inductor for Continuous RF Tunable Inductor. Applied Sciences, 10(11), 3776. https://doi.org/10.3390/app10113776