The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Carbon-Supported Pt and Pt-Based NRs
2.2. Characterizations of the Catalysts
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Cullen, D.A.; Sasaki, K.; Marinkovic, N.S.; More, K.; Adzic, R.R. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C–C Bond. J. Am. Chem. Soc. 2013, 135, 132–141. [Google Scholar] [CrossRef]
- Akhairi, M.A.F.; Kamarudin, S.K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrog. Energy 2016, 41, 4214–4228. [Google Scholar] [CrossRef]
- Tan, J.L.; De Jesus, A.M.; Chua, S.L.; Sanetuntikul, J.; Shanmugam, S.; Tongol, B.J.V.; Kim, H. Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell. Appl. Catal. A Gen. 2017, 531, 29–35. [Google Scholar] [CrossRef]
- Bach Delpeuch, A.; Jacquot, M.; Chatenet, M.; Cremers, C. The influence of mass-transport conditions on the ethanol oxidation reaction (EOR) mechanism of Pt/C electrocatalysts. Phys. Chem. Chem. Phys. 2016, 18, 25169–25175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, R.F.B.; Parreira, L.S.; Silva, J.C.M.; Simões, F.C.; Calegaro, M.L.; Giz, M.J.; Camara, G.A.; Neto, A.O.; Santos, M.C. PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR “in-situ” studies. Int. J. Hydrog. Energy 2011, 36, 11519–11527. [Google Scholar] [CrossRef]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Kamarudin, M.Z.F.; Kamarudin, S.K.; Masdar, M.S.; Daud, W.R.W. Review: Direct ethanol fuel cells. Int. J. Hydrog. Energy 2013, 38, 9438–9453. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Sheng, T.; Wang, Y.-X.; Qu, X.-M.; Zhang, J.-M.; Zhang, Z.-C.; Liao, H.-G.; Zhu, F.-C.; Dou, S.-X.; Jiang, Y.-X.; et al. Platinum–Cobalt Bimetallic Nanoparticles with Pt Skin for Electro-Oxidation of Ethanol. ACS Catal. 2017, 7, 892–895. [Google Scholar] [CrossRef] [Green Version]
- Antolini, E. Catalysts for direct ethanol fuel cells. J. Power Sources 2007, 170, 1–12. [Google Scholar] [CrossRef]
- Zignani, S.C.; Baglio, V.; Linares, J.J.; Monforte, G.; Gonzalez, E.R.; Aricò, A.S. Endurance study of a solid polymer electrolyte direct ethanol fuel cell based on a Pt–Sn anode catalyst. Int. J. Hydrog. Energy 2013, 38, 11576–11582. [Google Scholar] [CrossRef]
- González-Quijano, D.; Pech-Rodríguez, W.J.; Escalante-García, J.I.; Vargas-Gutiérrez, G.; Rodríguez-Varela, F.J. Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Sn/C anodes. Int. J. Hydrog. Energy 2014, 39, 16676–16685. [Google Scholar] [CrossRef]
- Magee, J.W.; Zhou, W.-P.; White, M.G. Promotion of Pt surfaces for ethanol electro-oxidation by the addition of small SnO2 nanoparticles: Activity and mechanism. Appl. Catal. B Environ. 2014, 152–153, 397–402. [Google Scholar] [CrossRef]
- Shironita, S.; Sato, K.; Yoshitake, K.; Umeda, M. Pt-Ru/C anode performance of polymer electrolyte fuel cell under carbon dioxide atmosphere. Electrochim. Acta 2016, 206, 254–258. [Google Scholar] [CrossRef]
- Garrick, T.R.; Diao, W.; Tengco, J.M.; Stach, E.A.; Senanayake, S.D.; Chen, D.A.; Monnier, J.R.; Weidner, J.W. The Effect of the Surface Composition of Ru-Pt Bimetallic Catalysts for Methanol Oxidation. Electrochim. Acta 2016, 195, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Jeon, T.-Y.; Lee, K.-S.; Yoo, S.J.; Cho, Y.-H.; Kang, S.H.; Sung, Y.-E. Effect of Surface Segregation on the Methanol Oxidation Reaction in Carbon-Supported Pt−Ru Alloy Nanoparticles. Langmuir 2010, 26, 9123–9129. [Google Scholar] [CrossRef]
- Du, W.; Yang, G.; Wong, E.; Deskins, N.A.; Frenkel, A.I.; Su, D.; Teng, X. Platinum-Tin Oxide Core–Shell Catalysts for Efficient Electro-Oxidation of Ethanol. J. Am. Chem. Soc. 2014, 136, 10862–10865. [Google Scholar] [CrossRef]
- Themsirimongkon, S.; Sarakonsri, T.; Lapanantnoppakhun, S.; Jakmunee, J.; Saipanya, S. Carbon nanotube-supported Pt-Alloyed metal anode catalysts for methanol and ethanol oxidation. Int. J. Hydrog. Energy 2019, 44, 30719–30731. [Google Scholar] [CrossRef]
- Lu, S.; Eid, K.; Ge, D.; Guo, J.; Wang, L.; Wang, H.; Gu, H. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, G.; Tao, H.; Li, Z.; Han, L. Highly CO tolerant PtRu/PtNi/C catalyst for polymer electrolyte membrane fuel cell. RSC Adv. 2017, 7, 8453–8459. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.M.; Ianniello, R.; Pastor, E.; González, S. Electrochemical Reactivity of Ethanol on Porous Pt and PtRu: Oxidation/Reduction Reactions in 1 M HClO4. J. Phys. Chem. 1996, 100, 17901–17908. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Zhang, Q. Remarkably stable CO tolerance of a PtRu electrocatalyst stabilized by a nitrogen doped carbon layer. RSC Adv. 2016, 6, 114014–114018. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Zhang, L.; Chan, S.H. Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochim. Acta 2014, 123, 233–239. [Google Scholar] [CrossRef]
- Liu, L.; Chen, L.-X.; Wang, A.-J.; Yuan, J.; Shen, L.; Feng, J.-J. Hydrogen bubbles template-directed synthesis of self-supported AuPt nanowire networks for improved ethanol oxidation and oxygen reduction reactions. Int. J. Hydrog. Energy 2016, 41, 8871–8880. [Google Scholar] [CrossRef]
- Cao, X.; Wang, N.; Han, Y.; Gao, C.; Xu, Y.; Li, M.; Shao, Y. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105–114. [Google Scholar] [CrossRef]
- Kim, S.-M.; Jo, Y.-G.; Lee, S.-Y. The composition-controlled synthesis of Pt-Ag bimetallic nanochains for catalytic methanol oxidation. Electrochim. Acta 2015, 174, 1244–1252. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, J.; Dong, L.; Pan, H.; Yuan, Y.; Wang, Y. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell. Electrochim. Acta 2013, 113, 583–590. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, X.; Zheng, Y.; Shen, J.; Yuan, J.; Wang, A.-J.; Niu, L.; Huang, S. Size-controllable synthesis of ultrafine PtNi nanoparticles uniformly deposited on reduced graphene oxide as advanced anode catalysts for methanol oxidation. Int. J. Hydrog. Energy 2016, 41, 9303–9311. [Google Scholar] [CrossRef]
- Mukherjee, P.; Roy, P.S.; Bhattacharya, S.K. Improved carbonate formation from ethanol oxidation on nickel supported Pt–Rh electrode in alkaline medium at room temperature. Int. J. Hydrog. Energy 2015, 40, 13357–13367. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, D.; Zhang, Z.; Zhou, M.; Wang, Q. Preparation of Rh/C and its high electro-catalytic activity for ethanol oxidation in alkaline media. RSC Adv. 2015, 5, 91829–91835. [Google Scholar] [CrossRef]
- Higuchi, E.; Takase, T.; Chiku, M.; Inoue, H. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction. J. Power Sources 2014, 263, 280–287. [Google Scholar] [CrossRef]
- Bach Delpeuch, A.; Maillard, F.; Chatenet, M.; Soudant, P.; Cremers, C. Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Appl. Catal. B Environ. 2016, 181, 672–680. [Google Scholar] [CrossRef]
- Yoo, J.S.; Kim, H.T.; Joh, H.-I.; Kim, H.; Moon, S.H. Preparation of a CO-tolerant PtRuxSny/C electrocatalyst with an optimal Ru/Sn ratio by selective Sn-deposition on the surfaces of Pt and Ru. Int. J. Hydrog. Energy 2011, 36, 1930–1938. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, C.; Ge, C.; Dong, X.; Liu, X.; Liu, Y.; Fang, Y.; Wang, H.; Li, Z. Ternary Pt–Ru–SnO2 hybrid architectures: Unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation. J. Mater. Chem. 2012, 22, 7104–7107. [Google Scholar] [CrossRef]
- Huang, T.-H.; Zheng, H.-S.; Cheng, Y.-M.; Liu, C.-W.; Lee, S.-W.; Wang, J.-H.; Wang, K.-W. The preparation and mechanistic study of highly effective PtSnRu ternary nanorod catalysts toward the ethanol oxidation reaction. Sustain. Energy Fuels 2019, 3, 3352–3362. [Google Scholar] [CrossRef]
- Xu, Z.-F.; Wang, Y. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd). J. Phys. Chem. C 2011, 115, 20565–20571. [Google Scholar] [CrossRef] [Green Version]
- Sheng, T.; Sun, S.-G. Insight into the promoting role of Rh doped on Pt(111) in methanol electro-oxidation. J. Electroanal. Chem. 2016, 781, 24–29. [Google Scholar] [CrossRef]
- Rao, L.; Jiang, Y.-X.; Zhang, B.-W.; Cai, Y.-R.; Sun, S.-G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662–13671. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Rachi, Y.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Performance of ternary PtRuRh/C electrocatalyst with varying Pt:Ru:Rh ratio for methanol electro-oxidation. J. Appl. Electrochem. 2006, 36, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bagot, P.A.J.; Marquis, E.A.; Tsang, S.C.E.; Smith, G.D.W. Characterization of Oxidation and Reduction of Pt–Ru and Pt–Rh–Ru Alloys by Atom Probe Tomography and Comparison with Pt–Rh. J. Phys. Chem. C 2012, 116, 17633–17640. [Google Scholar] [CrossRef]
- Luo, Z.; Lu, J.; Flox, C.; Nafria, R.; Genç, A.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Morante, J.R.; Cabot, A. Pd2Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. J. Mater. Chem. A 2016, 4, 16706–16713. [Google Scholar] [CrossRef]
- Dai, S.; Huang, T.-H.; Yan, X.; Yang, C.-Y.; Chen, T.-Y.; Wang, J.-H.; Pan, X.; Wang, K.-W. Promotion of Ternary Pt–Sn–Ag Catalysts toward Ethanol Oxidation Reaction: Revealing Electronic and Structural Effects of Additive Metals. ACS Energy Lett. 2018, 3, 2550–2557. [Google Scholar] [CrossRef]
- He, Y.-B.; Li, G.-R.; Wang, Z.-L.; Ou, Y.-N.; Tong, Y.-X. Pt Nanorods Aggregates with Enhanced Electrocatalytic Activity toward Methanol Oxidation. J. Phys. Chem. C 2010, 114, 19175–19181. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Chen, H.-S.; Liu, C.-W.; Yeh, T.-H.; Wang, K.-W. The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods. J. Mater. Chem. A 2014, 2, 4270–4275. [Google Scholar] [CrossRef]
- Scofield, M.E.; Koenigsmann, C.; Wang, L.; Liu, H.; Wong, S.S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363. [Google Scholar] [CrossRef]
- Song, P.; Li, S.-S.; He, L.-L.; Feng, J.-J.; Wu, L.; Zhong, S.-X.; Wang, A.-J. Facile large-scale synthesis of Au–Pt alloyed nanowire networks as efficient electrocatalysts for methanol oxidation and oxygen reduction reactions. RSC Adv. 2015, 5, 87061–87068. [Google Scholar] [CrossRef]
- Zhou, W.-P.; Li, M.; Koenigsmann, C.; Ma, C.; Wong, S.S.; Adzic, R.R. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles. Electrochim. Acta 2011, 56, 9824–9830. [Google Scholar] [CrossRef]
- Shen, Y.; Gong, B.; Xiao, K.; Wang, L. In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol. ACS Appl. Mater. Interfaces 2017, 9, 3535–3543. [Google Scholar] [CrossRef]
- Ding, K.; Zhao, Y.; Liu, L.; Cao, Y.; Wang, Q.; Gu, H.; Yan, X.; Guo, Z. Pt–Ni bimetallic composite nanocatalysts prepared by using multi-walled carbon nanotubes as reductants for ethanol oxidation reaction. Int. J. Hydrog. Energy 2014, 39, 17622–17633. [Google Scholar] [CrossRef]
- Vidaković, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606–5613. [Google Scholar] [CrossRef]
- You, D.J.; Kwon, K.; Joo, S.H.; Kim, J.H.; Kim, J.M.; Pak, C.; Chang, H. Carbon-supported ultra-high loading Pt nanoparticle catalyst by controlled overgrowth of Pt: Improvement of Pt utilization leads to enhanced direct methanol fuel cell performance. Int. J. Hydrog. Energy 2012, 37, 6880–6885. [Google Scholar] [CrossRef]
- Antolini, E. Effect of the Structural Characteristics of Binary Pt–Ru and Ternary Pt–Ru–M Fuel Cell Catalysts on the Activity of Ethanol Electrooxidation in Acid Medium. ChemSusChem 2013, 6, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, A.; Zhang, Q.; Liu, Q. Preparation of PtRu/C core–shell catalyst with polyol method for alcohol oxidation. Int. J. Hydrog. Energy 2016, 41, 11359–11368. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Wang, C.; Zhang, K.; Liu, D.; Haleem, Y.A.; Zheng, X.; Ge, B.; Song, L. Role of Ru Oxidation Degree for Catalytic Activity in Bimetallic Pt/Ru Nanoparticles. J. Phys. Chem. C 2016, 120, 6569–6576. [Google Scholar] [CrossRef]
- Papaderakis, A.; Pliatsikas, N.; Prochaska, C.; Papazisi, K.; Balomenou, S.; Tsiplakides, D.; Patsalas, P.; Sotiropoulos, S. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Front. Chem. 2019, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.-W.; Huang, S.-Y.; Yeh, C.-T. Promotion of Carbon-Supported Platinum−Ruthenium Catalyst for Electrodecomposition of Methanol. J. Phys. Chem. C 2007, 111, 5096–5100. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Liu, C.-W.; Chang, W.-J.; Wang, K.-W. Promotion of Pt–Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction. J. Alloy. Compd. 2011, 509, 535–541. [Google Scholar] [CrossRef]
- Fang, L.; Vidal-Iglesias, F.J.; Huxter, S.E.; Attard, G.A. A study of the growth and CO electrooxidation behaviour of PtRh alloys on Pt{100} single crystals. J. Electroanal. Chem. 2008, 622, 73–78. [Google Scholar] [CrossRef]
- De la Fuente, J.L.G.; Pérez-Alonso, F.J.; Martínez-Huerta, M.V.; Peña, M.A.; Fierro, J.L.G.; Rojas, S. Identification of Ru phases in PtRu based electrocatalysts and relevance in the methanol electrooxidation reaction. Catal. Today 2009, 143, 69–75. [Google Scholar] [CrossRef]
- Di Noto, V.; Negro, E. A new Pt–Rh carbon nitride electrocatalyst for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Synthesis, characterization and single-cell performance. J. Power Sources 2010, 195, 638–648. [Google Scholar] [CrossRef]
- Ochal, P.; Gomez de la Fuente, J.L.; Tsypkin, M.; Seland, F.; Sunde, S.; Muthuswamy, N.; Rønning, M.; Chen, D.; Garcia, S.; Alayoglu, S.; et al. CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J. Electroanal. Chem. 2011, 655, 140–146. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Lu, S.; Jiang, S.P. Facile synthesis of sub-monolayer Sn, Ru, and RuSn decorated Pt/C nanoparticles for formaldehyde electrooxidation. J. Electroanal. Chem. 2014, 712, 55–61. [Google Scholar] [CrossRef]
- Lima, F.H.B.; Gonzalez, E.R. Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim. Acta 2008, 53, 2963–2971. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, G.; Xin, Q. Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim. Acta 2009, 54, 1511–1518. [Google Scholar] [CrossRef]
- Liu, C.-W.; Chang, Y.-W.; Wei, Y.-C.; Wang, K.-W. The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts. Electrochim. Acta 2011, 56, 2574–2581. [Google Scholar] [CrossRef]
- Beyhan, S.; Léger, J.-M.; Kadırgan, F. Understanding the influence of Ni, Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy. Appl. Catal. B Environ. 2014, 144, 66–74. [Google Scholar] [CrossRef]
- González-Quijano, D.; Pech-Rodríguez, W.J.; González-Quijano, J.A.; Escalante-García, J.I.; Vargas-Gutiérrez, G.; Alonso-Lemus, I.; Rodríguez-Varela, F.J. Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part II: Effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Ru/C anodes. Int. J. Hydrog. Energy 2015, 40, 17291–17299. [Google Scholar] [CrossRef]
- Dinesh, B.; Saraswathi, R. Enhanced performance of Pt and Pt–Ru supported PEDOT–RGO nanocomposite towards methanol oxidation. Int. J. Hydrog. Energy 2016, 41, 13448–13458. [Google Scholar] [CrossRef]
- Bach Delpeuch, A.; Chatenet, M.; Rau, M.S.; Cremers, C. Influence of H- and OH-adsorbates on the ethanol oxidation reaction—A DEMS study. Phys. Chem. Chem. Phys. 2015, 17, 10881–10893. [Google Scholar] [CrossRef]
- Maiyalagan, T.; Alaje, T.O.; Scott, K. Highly Stable Pt–Ru Nanoparticles Supported on Three-Dimensional Cubic Ordered Mesoporous Carbon (Pt–Ru/CMK-8) as Promising Electrocatalysts for Methanol Oxidation. J. Phys. Chem. C 2012, 116, 2630–2638. [Google Scholar] [CrossRef]
- Sedighi, M.; Rostami, A.A.; Alizadeh, E. Enhanced electro-oxidation of ethanol using Pt–CeO2 electrocatalyst prepared by electrodeposition technique. Int. J. Hydrog. Energy 2017, 42, 4998–5005. [Google Scholar] [CrossRef]
Sample | ECSAH (m2/g(Pt)) | I06 | Imax | SA06 | SAmax | If/Ib | I06-7200 (A/g(Pt)) |
---|---|---|---|---|---|---|---|
(A/g(Pt)) | (mA/cm2(ECSAH)) | ||||||
Pt | 30.8 | 6.6 | 178.8 | 0.15 | 3.57 | 0.83 | 4.1 |
PtRu | 32.3 | 9.4 | 223.7 | 0.20 | 4.35 | 0.97 | 5.9 |
PtRh | 33.0 | 10.9 | 214.3 | 0.24 | 4.24 | 1.06 | 5.2 |
PtRuRh | 60.2 | 29.4 | 603.9 | 0.38 | 7.31 | 1.02 | 15.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-H.; Bhalothia, D.; Lin, S.; Huang, Y.-R.; Wang, K.-W. The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods. Appl. Sci. 2020, 10, 3923. https://doi.org/10.3390/app10113923
Huang T-H, Bhalothia D, Lin S, Huang Y-R, Wang K-W. The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods. Applied Sciences. 2020; 10(11):3923. https://doi.org/10.3390/app10113923
Chicago/Turabian StyleHuang, Tzu-Hsi, Dinesh Bhalothia, Shuan Lin, Yu-Rewi Huang, and Kuan-Wen Wang. 2020. "The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods" Applied Sciences 10, no. 11: 3923. https://doi.org/10.3390/app10113923
APA StyleHuang, T.-H., Bhalothia, D., Lin, S., Huang, Y.-R., & Wang, K.-W. (2020). The Ethanol Oxidation Reaction Performance of Carbon-Supported PtRuRh Nanorods. Applied Sciences, 10(11), 3923. https://doi.org/10.3390/app10113923