Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review
Abstract
:1. Introduction
2. Theory of ATR
3. THz Wave Modulation and Devices Based on ATR
3.1. Amplitude Modulation
3.2. Polarization Modulation
4. THz Surface Plasmon Resonance Sensing and Devices Based on ATR
4.1. Surface Plasmon and Surface Plasmon Resonance
4.2. SPR Devices Based on Otto Geometry
4.3. SPR Devices Based on Kretschmann Configuration
5. Spectroscopy Analysis
5.1. Dielectric Properties and Absorption Characteristics
5.2. Hydrogen Bonds and Hydration State
5.3. Component Analysis
5.4. In Situ Research for Biomaterials
6. Imaging Application
7. Conclusions and Perspectives
- (1)
- Ultra-sensitivity to the conductive interface makes ATR an ideal platform for modulation; active modulation would also be realized by materials with tunable conductive properties.
- (2)
- The evanescent field supported by ATR offers great opportunity for realizing SPR with specific materials and structures which support the SPP mode.
- (3)
- In situ research for biomaterials and biomedicine can be convenient and effective through ATR geometry.
- (1)
- For modulation and sensing, the performance is determined by the fabrication, thus attention on the uniformity, repeatability, and stability of graphene, PVDF, and other tunable conductive layers should be paid. Especially for SPR sensing, a tiny difference from thickness and properties in each layer even would make it invalid.
- (2)
- Present SPR sensing based on ATR could be a challenge for their application due to the optical path needed to be adjusted accordingly. Fixing the incident angle while using continuous-wave could be a better way to solve this problem.
- (3)
- Spectra characteristics of the material should be further mined, which could be realized by some advanced algorithms such as deep learning. Besides, theoretical explanations for the spectroscopy response in the THz region also need to be further supplemented and completed. A simulation study, such as molecular dynamic and vibration, could offer guidance.
- (4)
- Reducing environmental disturbance and standardizing the test process are in great need for reliable spectroscopy and imaging results. The ambient temperature should be stabilized in a certain range and humidity should be controlled as low as possible. For thin-films and powder samples, the pressure, which was usually applied on the sample in order to make the sample and the ATR prism surface contact well, can also affect the result and should be optimized.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathanker, S.K.; Weckler, P.R.; Wang, N. Terahertz (THz) applications in food and agriculture: A review. Trans. ASABE 2013, 56, 1213–1226. [Google Scholar]
- Smith, R.M.; Arnold, M.A. Terahertz time-domain spectroscopy of solid samples: Principles, applications, and challenges. Appl. Spectrosc. Rev. 2011, 46, 636–679. [Google Scholar]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar]
- Qin, J.Y.; Ying, Y.B.; Xie, L.J. The detection of agricultural products and food using terahertz spectroscopy: A review. Appl. Spectrosc. Rev. 2013, 48, 439–457. [Google Scholar]
- Shen, Y.C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int. J. Pharm. 2011, 417, 48–60. [Google Scholar]
- Naftaly, M.; Molloy, J.F.; Magnusson, B.; Andreev, Y.M.; Lanskii, G.V. Silicon carbide-a high-transparency nonlinear material for THz applications. Opt. Express 2016, 24, 2590–2595. [Google Scholar]
- Wang, Z.F.; Liu, F. Self-assembled Si (111) surface states: 2D Dirac material for THz plasmonics. Phys. Rev. Lett. 2015, 115, 026803. [Google Scholar]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar]
- Li, Z.; Guan, L.; Li, C.X.; Radwan, A. A secure intelligent spectrum control strategy for future THz mobile heterogeneous networks. IEEE Commun. Mag. 2018, 56, 116–123. [Google Scholar]
- Fan, K.B.; Suen, J.Y.; Liu, X.Y.; Padilla, W.J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 2017, 4, 601–604. [Google Scholar]
- Stantchev, R.I.; Sun, B.Q.; Hornett, S.M.; Hobson, P.A.; Gibson, G.M.; Padgett, M.J.; Hendry, E. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2016, 2, e1600190. [Google Scholar]
- Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Ouchi, T.; Yamamoto, S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci. Rep. 2016, 6, 30124. [Google Scholar]
- Sizov, F.F. Infrared and terahertz in biomedicine. Semicond. Phys. Quantum Electron. Optoelectron. 2017, 20, 273–283. [Google Scholar]
- Panchenko, A.; Tyndyk, M.; Smolyanskaya, O.; Sulatskiy, M.; Kravtsenyuk, O.; Balbekin, N.; Khodzitsky, M. THz spectroscopy of whole blood, plasma and cells in mice of SHR line with various pathology. Int. Conf. Young Sci. Spec. Opt. 2016, 735, 012081. [Google Scholar]
- Sommer, S.; Raidt, T.; Fischer, B.M.; Katzenberg, F.; Tiller, J.C.; Koch, M. THz-spectroscopy on high density polyethylene with different crystallinity. J. Infrared Millim. Terahertz Waves 2016, 37, 189–197. [Google Scholar]
- Garcia-Wernersson, J.; Rodilla, H.; Diaz-Bolado, A.; Dahlback, R.; Gradinarsky, L.; Josefson, M.; Stake, J. Non-destructive density measurements of pharmaceutical products by THz imaging. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar]
- Hindle, F.; Kuuliala, L.; Mouelhi, M.; Cuisset, A.; Bray, C.; Vanwolleghem, M.; Devlieghere, F.; Mouret, G.; Bocquet, R. Monitoring of food spoilage by high resolution THz analysis. Analyst 2018, 143, 5536–5544. [Google Scholar]
- Shin, H.J.; Choi, S.W.; Ok, G. Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chem. 2018, 245, 282–288. [Google Scholar]
- Qin, J.Y.; Xie, L.J.; Ying, Y.B. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder. Anal. Chem. 2014, 86, 11750–11757. [Google Scholar]
- Xie, L.J.; Yao, Y.; Ying, Y.B. The application of terahertz spectroscopy to protein detection: A review. Appl. Spectrosc. Rev. 2014, 49, 448–461. [Google Scholar]
- Xu, W.D.; Xie, L.J.; Ye, Z.Z.; Gao, W.L.; Yao, Y.; Chen, M.; Qin, J.Y.; Ying, Y.B. Discrimination of transgenic rice containing the Cry1Ab protein using terahertz spectroscopy and chemometrics. Sci. Rep. 2015, 5, 11115. [Google Scholar]
- Wang, C.; Qin, J.Y.; Xu, W.D.; Chen, M.; Xie, L.J.; Ying, Y.B. Terahertz imaging applications in agriculture and food engineering: A review. Trans. Asabe 2018, 61, 411–424. [Google Scholar]
- Sun, Y.W.; Degl’Innocenti, R.; Ritchie, D.A.; Beere, H.E.; Xiao, L.; Ruggiero, M.; Zeitler, J.A.; Stantchev, R.I.; Chen, D.N.; Peng, Z.C.; et al. Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry. Photonics Res. 2018, 6, 1151–1157. [Google Scholar]
- Liu, X.D.; Chen, X.Q.; Parrott EP, J.; Pickwell-Macpherson, E. Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion. Photonics Res. 2017, 5, 299–304. [Google Scholar]
- Endo, T.; Kerman, K.; Nagatani, N.; Takamura, Y.; Tamiya, E. Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 2005, 77, 6976–6984. [Google Scholar]
- Hassani, A.; Dupuis, A.; Skorobogatiy, M. Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies. J. Opt. Soc. Am. B-Opt. Phys. 2008, 25, 1771–1775. [Google Scholar]
- Liu, X.; Chen, X.; Parrott, E.P.; Han, C.; Humbert, G.; Crunteanu, A.; Pickwell-MacPherson, E. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry. APL Photonics 2018, 3, 051604. [Google Scholar]
- Liu, X.D.; Chen, Z.F.; Parrott EP, J.; Ung BS, Y.; Xu, J.B.; Pickwell-MacPherson, E. Graphene based terahertz light modulator in total internal reflection geometry. Adv. Opt. Mater. 2017, 5, 1600697. [Google Scholar]
- Zhu, J.Q.; Ruan, B.X.; You, Q.; Guo, J.; Dai, X.Y.; Xiang, Y.J. Terahertz imaging sensor based on the strong coupling of surface plasmon polaritons between PVDF and graphene. Sens. Actuators B-Chem. 2018, 264, 398–403. [Google Scholar]
- Gan, C.H. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett. 2012, 101, 111609. [Google Scholar]
- Arikawa, T.; Nagai, M.; Tanaka, K. Hydration structures of 2-butoxyethanol monomer and micelle in solution. Chem. Phys. Lett. 2009, 477, 95–101. [Google Scholar]
- Soltani, A.; Gebauer, D.; Duschek, L.; Fischer, B.M.; Colfen, H.; Koch, M. Crystallization caught in the act with terahertz spectroscopy: Non-classical pathway for L-(+)-tartaric acid. Chem. A Eur. J. 2017, 23, 14128–14132. [Google Scholar]
- Liu, H.X.; Wang, Y.Y.; Xu, D.G.; Wu, L.M.; Yan, C.; Yan, D.X.; Tang, L.H.; He, Y.X.; Feng, H.; Yao, J.Q. High-sensitivity attenuated total internal reflection continuous-wave terahertz imaging. J. Phys. D Appl. Phys. 2017, 50, 375103. [Google Scholar]
- Shiraga, K.; Ogawa, Y.; Kondo, N.; Irisawa, A.; Imamura, M. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chem. 2013, 140, 315–320. [Google Scholar]
- Soltani, A.; Jahn, D.; Duschek, L.; Castro-Camus, E.; Koch, M.; Withayachumnankul, W. Attenuated total reflection terahertz time-domain spectroscopy: Uncertainty analysis and reduction scheme. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 32–39. [Google Scholar]
- Soltani, A.; Probst, T.; Busch, S.F.; Schwerdtfeger, M.; Castro-Camus, E.; Koch, M. Error from delay drift in terahertz attenuated total reflection spectroscopy. J. Infrared Millim. Terahertz Waves 2014, 35, 468–477. [Google Scholar]
- Cherkasova, O.P.; Nazarov, M.M.; Angeluts, A.A.; Shkurinov, A.P. Analysis of blood plasma at terahertz frequencies. Opt. Spectrosc. 2016, 120, 50–57. [Google Scholar]
- Nakanishi, A.; Kawada, Y.; Yasuda, T.; Akiyama, K.; Takahashi, H. Terahertz time domain attenuated total reflection spectroscopy with an integrated prism system. Rev. Sci. Instrum. 2012, 83, 033103. [Google Scholar]
- Nagai, M.; Yada, H.; Arikawa, T.; Tanaka, K. Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution. Int. J. Infrared Millim. Waves 2006, 27, 505–515. [Google Scholar]
- Harada, Y.; Ukhtary, M.S.; Wang, M.J.; Srinivasan, S.K.; Hasdeo, E.H.; Nugraha AR, T.; Noe, G.T.; Sakai, Y.; Vajtai, R.; Vajtai, R.; et al. Giant terahertz-wave absorption by monolayer graphene in a total internal reflection geometry. ACS Photonics 2017, 4, 121–126. [Google Scholar]
- Li, J.S. Switching terahertz wave with grating-coupled Kretschmann configuration. Opt. Express 2017, 25, 19422–19428. [Google Scholar]
- Purkayastha, A.; Srivastava, T.; Jha, R. Ultrasensitive THz-plasmonics gaseous sensor using doped graphene. Sens. Actuators B-Chem. 2016, 227, 291–295. [Google Scholar]
- Srivastava, T.; Purkayastha, A.; Jha, R. Graphene based surface plasmon resonance gas sensor for terahertz. Opt. Quantum Electron. 2016, 48, 334. [Google Scholar]
- Zhang, Z.X.; Su, H.; Gong, H.B.; Wang, S.X.; Zhang, M.; Liang, H.W.; Zhang, C. Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (Piers—Fall), Singapore, 19–22 November 2017; pp. 3068–3072. [Google Scholar]
- Ruan, B.X.; You, Q.; Zhu, J.Q.; Wu, L.M.; Guo, J.; Dai, X.Y.; Xiang, Y.J. Terahertz biochemical sensor based on strong coupling between waveguide mode and surface plasmons of double-layer graphene. IEEE Sens. J. 2018, 18, 7436–7441. [Google Scholar]
- Li, X.J.; Song, J.; Zhang, J.X.J. Integrated terahertz surface plasmon resonance on polyvinylidene fluoride layer for the profiling of fluid reflectance spectra. Plasmonics 2016, 11, 1093–1100. [Google Scholar]
- Hirori, H.; Yamashita, K.; Nagai, M.; Tanaka, K. Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 2004, 43, L1287–L1289. [Google Scholar]
- Newnham, D.A.; Taday, P.F. Pulsed terahertz attenuated total reflection spectroscopy. Appl. Spectrosc. 2008, 62, 394–398. [Google Scholar]
- Ogawa, Y.; Cheng, L.; Hayashi, S.; Fukunaga, K. Attenuated total reflection spectra of aqueous glycine in the terahertz region. IEICE Electron. Express 2009, 6, 117–121. [Google Scholar]
- Soltani, A.; Stubling, E.M.; Koch, M. Monitoring the crystallization of NaCl and NaI with THz ATR Spectroscopy. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015. [Google Scholar]
- Sasaki, K.; Mizuno, M.; Wake, K.; Watanabe, S. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz. Phys. Med. Biol. 2017, 62, 6993. [Google Scholar]
- Palka, N.; Szala, M.; Czerwinska, E. Characterization of prospective explosive materials using terahertz time-domain spectroscopy. Appl. Opt. 2016, 55, 4575–4583. [Google Scholar]
- Roth, C.; Peppel, T.; Fumino, K.; Kockerling, M.; Ludwig, R. The importance of hydrogen bonds for the structure of ionic liquids: Single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region. Angew. Chem. 2010, 49, 10221–10224. [Google Scholar]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar]
- Yada, H.; Nagai, M.; Tanaka, K. The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy. Chem. Phys. Lett. 2009, 473, 279–283. [Google Scholar]
- Grognot, M.; Gallot, G. Relative contributions of core protein and solvation shell in the terahertz dielectric properties of protein solutions. J. Phys. Chem. B 2017, 121, 9508–9512. [Google Scholar]
- Arikawa, T.; Nagai, M.; Tanaka, K. Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 457, 12–17. [Google Scholar]
- Huang, H.C.; Liu, Q.; Zhu, L.G.; Li, Z.R. Characterizing the hydration state of L-threonine in solution using terahertz time-domain attenuated total reflection spectroscopy. In Proceedings of the 2017 International Conference on Optical Instruments and Technology—IRMMW-THz Technologies and Their Applications, Beijing, China, 28–30 October 2017; Volume 10623. [Google Scholar]
- Shiraga, K.; Suzuki, T.; Kondo, N.; De Baerdemaeker, J.; Ogawa, Y. Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network. Carbohydr. Res. 2015, 406, 46–54. [Google Scholar]
- Hishida, M.; Tanaka, K. Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy. Phys. Rev. Lett. 2011, 106, 158102. [Google Scholar]
- Morales-Hernandez, J.A.; Singh, A.K.; Villanueva-Rodriguez, S.J.; Castro-Camus, E. Hydration shells of carbohydrate polymers studied by calorimetry and terahertz spectroscopy. Food Chem. 2019, 291, 94–100. [Google Scholar]
- Hishida, M.; Tanaka, K. Transition of the hydration state of a surfactant accompanying structural transitions of self-assembled aggregates. J. Phys. Condens. Matter 2012, 24, 284113. [Google Scholar]
- Naito, H.; Ogawa, Y.; Shiraga, K.; Kondo, N.; Hirai, T.; Osaka, I.; Kubota, A. Inspection of milk components by terahertz attenuated total reflectance (THz-ATR) spectrometer equipped temperature controller. In Proceedings of the 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, Japan, 20–22 December 2011. [Google Scholar]
- Cherkasova, O.; Nazarov, M.; Shkurinov, A. Noninvasive blood glucose monitoring in the terahertz frequency range. Opt. Quantum Electron. 2016, 48, 217. [Google Scholar]
- Takeya, K.; Muto, K.; Ishihara, Y.; Kawase, K. Monitoring theophylline concentrations in saline using terahertz ATR spectroscopy. Appl. Sci. 2016, 6, 72. [Google Scholar]
- Dohi, M.; Momose, W.; Yamashita, K.; Hakomori, T.; Sato, S.; Noguchi, S.; Terada, K. Application of terahertz attenuated total reflection spectroscopy to detect changes in the physical properties of lactose during the lubrication process required for drug formulation. Chem. Pharm. Bull. 2017, 65, 186–193. [Google Scholar]
- Liu, W.; Zhang, Y.Y.; Yang, S.; Han, D.H. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 123–130. [Google Scholar]
- Soltani, A.; Busch, S.F.; Plew, P.; Balzer, J.C.; Koch, M. THz ATR spectroscopy for inline monitoring of highly absorbing liquids. J. Infrared Millim. Terahertz Waves 2016, 37, 1001–1006. [Google Scholar]
- Qin, J.Y.; Xie, L.J.; Ying, Y.B. Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy. Food Chem. 2017, 224, 262–269. [Google Scholar]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345. [Google Scholar]
- Shiraga, K.; Ogawa, Y.; Suzuki, T.; Kondo, N.; Irisawa, A.; Imamura, M. Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region. Appl. Phys. Lett. 2013, 102, 053702. [Google Scholar]
- Shiraga, K.; Ogawa, Y.; Suzuki, T.; Kondo, N.; Irisawa, A.; Imamura, M. Characterization of dielectric responses of human cancer cells in the terahertz region. J. Infrared Millim. Terahertz Waves 2014, 35, 493–502. [Google Scholar]
- Grognot, M.; Gallot, G. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection. Appl. Phys. Lett. 2015, 107, 103702. [Google Scholar]
- Zou, Y.; Liu, Q.; Yang, X.; Huang, H.C.; Li, J.; Du, L.H.; Li, Z.R.; Zhao, J.H.; Zhu, L.G. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy. BioMed. Opt. Express 2018, 9, 14–24. [Google Scholar]
- Liu, H.X.; Wang, Y.Y.; Xu, D.G.; Duan, P.; Nie, M.T.; Shi, J.; Yan, C.; He, Y.X.; Chen, T.N.; Feng, H.; et al. Attenuated total internal reflection imaging with continuous terahertz wave. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar]
- Liu, H.X.; Wang, Y.Y.; Xu, D.G.; Jiang, Z.N.; Li, J.N.; Wu, L.M.; Yan, C.; Tang, L.H.; He, Y.X.; Yan, D.X.; et al. Optimization for vertically scanning terahertz attenuated total reflection imaging. Opt. Express 2018, 26, 20744–20757. [Google Scholar]
- Wojdyla, A.; Gallot, G. Attenuated internal reflection terahertz imaging. Opt. Lett. 2013, 38, 112–114. [Google Scholar]
- Martinez-Meza, L.H.; Rojas-Landeros, S.C.; Castro-Camus, E.; Alfaro-Gomez, M. Evaluation of skin moisturizer effects using terahertz time domain imaging. In Proceedings of the Photonics in Dermatology and Plastic Surgery 2018, San Francisco, CA, USA, 27 January–1 February 2018; Volume 10467. [Google Scholar]
Material | State | Region (THz) | Parameters | Reference |
---|---|---|---|---|
Water | Liquid | 0.1–1.6 | , | [47] |
Water | 0.3–3.6 | [48] | ||
Water | 0.5–12 | [49] | ||
Aqueous glycine solution | 0.5–12 | |||
Methanol | 0.3–3.6 | [48] | ||
2-Propanol | 0.3–3.6 | |||
NaCl | 0.2–1.1 | , , | ||
NaI | [50] | |||
L-(+)-tartaric acid | 0.2–1.2 | , | [32] | |
InAs | Solid | 1.0–2.1 | [47] | |
Porcine tissues | 0.01–1.00 | [51] | ||
Pyridoxine (vitamin B6) | 0.3–3.6 | [48] | ||
Riboflavin (vitamin B2) Thiamine hydrochloride (vitamin B1) | ||||
L-tartaric acid | ||||
D-mannitol | ||||
D-sorbitol | ||||
Xylitol | ||||
glycine powder | 0.5–12 | [49] | ||
Azotetrazolate (explosive materials) Pentahydrate (explosive materials) | 0.2–3.2 | [52] | ||
Diammonium (explosive materials) azotetrazolate | ||||
Guanidinium azotetrazolate (explosive materials) | ||||
Triaminoguanidinium azotetrazolate (explosive materials) | ||||
Hexanitrohexaazaisowurtzitane (explosive materials) | ||||
Tetraoxadinitroisowurtzitane (explosive materials) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Singh, R.; Xie, L.; Ying, Y. Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. Appl. Sci. 2020, 10, 4688. https://doi.org/10.3390/app10144688
Huang Y, Singh R, Xie L, Ying Y. Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. Applied Sciences. 2020; 10(14):4688. https://doi.org/10.3390/app10144688
Chicago/Turabian StyleHuang, Yuxin, Ranjan Singh, Lijuan Xie, and Yibin Ying. 2020. "Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review" Applied Sciences 10, no. 14: 4688. https://doi.org/10.3390/app10144688
APA StyleHuang, Y., Singh, R., Xie, L., & Ying, Y. (2020). Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. Applied Sciences, 10(14), 4688. https://doi.org/10.3390/app10144688