Process of Formaldehyde and Volatile Organic Compounds’ Removal fromWaste Gases
Abstract
:1. Introduction
2. Production Processes of Formaldehyde
2.1. Formaldehyde Production Using Metal Oxide Catalyst Processes
2.2. Formaldehyde Production Using Silver Catalyst Processes
3. Off-Gas Purification Process
Energy Production
4. Upgrading the Waste Gas Purification Process
4.1. EU Directives on Industrial Emissions
4.2. Kinetics and Chemical Equilibrium in the Hydration of Formaldehyde
- Vapor pressure of pure components, water, formaldehyde, and methylene glycol;
- Constants of the chemical reaction equilibrium for the formation of methylene glycol in the vapor phase and the formation of polyoxymethylene glycols in the liquid phase; and
- UNIFAC parameters for size and surface, and binary parameters for interactions between all groups.
4.3. The Waste Gas Purification Process with Absorbers
5. Co-Incineration of Waste Industrial Gases
6. Economics of Co-Incineration of Waste Gases
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
K | mass-transfer coefficient, m/s |
Kh | chemical equilibrium constant of the formaldehyde hydration, dimensionless number |
kh | reaction rate constant of hydration, s−1 |
kd | reaction rate constant of dehydration, s−1 |
LP | liquid phase |
m | equilibrium constant in gas–liquid system |
ps | pure component vapor pressure, kPa |
VP | vapor phase |
βg | mass-transfer coefficients in a gas phase, m/s |
βl | mass-transfer coefficients in a liquid phase, m/s |
References
- Walker, J.F. Formaldehyde, 3rd ed.; Robert. E. Krieger Publishing Co.: Huntington, NY, USA, 1975. [Google Scholar]
- Aspen, J.; Gao, S.; Hawari, Y.; Lam, E.; Larsson, T. Optimization of Formaldehyde Plant, Feasibility Studies KET050; Haldor Topsøes: Lyngby, Denmark, 2015. [Google Scholar]
- Shawabkeh, R. Production of Formaldehyde from Methanol; Integrated Final Report; King Fahd University of Petroleum & Minerals: Dhahran, Saudi Arabia, 2012. [Google Scholar]
- Bahmanpour, A.M.; Hoadley, A.; Tanksale, A. Critical review and exergy analysis of formaldehyde production processes. Rev. Chem. Eng. 2014. [Google Scholar] [CrossRef]
- Lunev, N.K.; Shmyrko, Y.I.; Pavlenko, N.V.; Norton, B. Selective formation of formaldehyde from carbon dioxide and hydrogen over PtCu/SiO2. Proc. Appl. Organomet. Chem. 2001, 15, 148–150. [Google Scholar]
- Qian, M.; Liauw, M.A.; Emig, G. Formaldehyde synthesis from methanol over silver catalysts. Appl. Catal. A Gen. 2003. [Google Scholar] [CrossRef]
- Millar, G.J.; Collins, M. Industrial Production of Formaldehyde Using Polycrystalline Silver Catalyst. Ind. Eng. Chem. Res. 2017, 56, 9247–9265. [Google Scholar] [CrossRef] [Green Version]
- Directive Council. European Commission Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the production of large volume organic chemicals. Off. J. Eur. Union 2004, 334, 17–119. Available online: http://eur-lex.europa.eu/pri/en/oj/dat/2003/l_285/l_28520031101en00330037.pdf (accessed on 10 December 2019).
- Zhou, X.; Liu, Y.; Song, C.; Wang, X.; Wang, F.; Liu, J. A novel method to determine the formaldehyde emission characteristic parameters of building materials at multiple temperatures. Build. Environ. 2019. [Google Scholar] [CrossRef]
- Chen, W.; Mendell, M.; Li, N.; Kumagai, K. Formaldehyde emissions from seams and cut edges of laminate flooring: Implications for emission testing protocols and exposure estimation. Build. Environ. 2018. [Google Scholar] [CrossRef]
- Li, B.; Cheng, Z.; Yao, R.; Wang, H.; Yu, W.; Bu, Z.; Xiong, J.; Zhang, T.; Essah, E.; Luo, Z.; et al. An investigation of formaldehyde concentration in residences and the development of a model for the prediction of its emission rates. Build. Environ. 2019. [Google Scholar] [CrossRef]
- Kuramshina, K.S.; Pavlova, K.A. Physical and chemical analysis of formaldehyde absorption process. J. Eng. Appl. Sci. 2016, 11, 9655–9663. [Google Scholar]
- Winkelman, J.G.M.; Voorwinde, O.K.; Ottens, M.; Beenackers, A.A.C.M.; Janssen, L.P.B.M. Kinetics and chemical equilibrium of the hydration of formaldehyde. Chem. Eng. Sci. 2002. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.; Garcia, B.G.; Kreiter, C.; Maurer, G. Vapor-liquid and chemical equilibria of formaldehyde-water mixtures. AIChE J. 1999. [Google Scholar] [CrossRef]
- Maurer, G. Vapor-Liquid Equilibrium of Formaldehyde- and Water-Containing Multicomponent Mixtures. AIChE J. 1986, 32, 932–948. [Google Scholar] [CrossRef]
- Hahnenstein, I.; Albert, M.; Hasse, H.; Kreiter, C.G.; Maurer, G. NMR Spectroscopic and Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water, Deuterium Oxide, and Methanol. Ind. Eng. Chem. Res. 1995. [Google Scholar] [CrossRef]
- Hahnenstein, I.; Hasse, H.; Kreiter, C.G.; Maurer, G. 1H- and 13C-NMR-Spectroscopic Study of Chemical Equilibria in Solutions of Formaldehyde in Water, Deuterium Oxide, and Methanol. Ind. Eng. Chem. Res. 1994. [Google Scholar] [CrossRef]
- Hahnenstein, I.; Hasse, H.; Liu, Y.Q.; Maurer, G. Thermodynamic Properties of Formaldehyde Containing Mixtures for Separation Process Design. In AIChE Symposium Series; American Institute of Chemical Engineers: New York, NY, USA, 1994; p. 141. [Google Scholar]
- Fredenslund, A. Vapor—Liquid Equilibria Using UNIFAC, a Group Contribution Method; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Kogan, L.V. State of the Vapor Phase above Solutions of Formaldehyde in Water and Methanol. Zhur. Prikl. Khim. 1979, 52, 2576–2578. [Google Scholar]
- Winkelman, J.G.M.; Beenackers, A.A.C.M. Correlations for the density and viscosity of aqueous formaldehyde solutions. Ind. Eng. Chem. Res. 2000. [Google Scholar] [CrossRef]
- Seyedan, B.; Dhar, P.L.; Gaur, R.R.; Bindra, G.S. Computer simulation of a combined cycle power plant. Heat Recover. Syst. CHP 1995. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Gómez-Camazón, D.; Rosales-Asensio, E.; Blanes-Peiró, J.J. Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants. Appl. Energy 2018. [Google Scholar] [CrossRef]
N | (A) | kg/hr | Weight% | N | (B) | kg/hr | Weight% |
---|---|---|---|---|---|---|---|
1 | N2 | 13,492 | 89.4667 | 1 | N2 | 13,492 | 89.94667 |
2 | O2 | 916 | 6.10667 | 2 | O2 | 594 | 3.96000 |
3 | CO | 221 | 1.47333 | 3 | CO | 0.284 | 0.00189 |
4 | Dimethyl ether | 82 | 0.54667 | 4 | Dimethyl ether | 0.583 | 0.00389 |
5 | Formaldehyde | 3.5 | 0.02333 | 5 | Formaldehyde | 0.033 | 0.00022 |
6 | Methanol | 15.5 | 0.10333 | 6 | Methanol | 0.10 | 0.00067 |
7 | Water | 270 | 1.80000 | 7 | Water | 400 | 2.66667 |
8 | CO2 | 0 | 0% | 8 | CO2 | 513 | 3.42000 |
15,000 | 100 | 15,000 | 100 |
Component | A | B | C |
---|---|---|---|
Formaldehyde | 4.4625 | −2204.13 | −30.15 |
Water | 6.2886 | −3816.44 | −46.13 |
Methylene glycol | 19.5527 | −6189.19 | −9.15 |
Stream Name | Units | 8 | 9 | 10 | 11 | 12 | WATER |
---|---|---|---|---|---|---|---|
Phase | VP | VP | VP | LP | VP | LP | |
Temperature | C | 72.30551 | 30 | 20.30396 | 21.85142 | 64.02441 | 20 |
Pressure | bar | 1 | 1 | 1 | 1 | 1 | 1 |
Mass Vapor Fraction | 1 | 1 | 0.999996 | 0 | 1 | 0 | |
Mass Liquid Fraction | 0 | 0 | 4.33 × 10−6 | 1 | 0 | 1 | |
Mass Flows | kg/hr | 15,000 | 15,000 | 14,641.68 | 80,358.31 | 14,641.68 | 80,000 |
Water | kg/hr | 400.0001 | 399.9996 | 223.4809 | 80,176.42 | 223.4811 | 80,000 |
CO2 | kg/hr | 513.0002 | 513.0002 | 441.0303 | 71.99611 | 441.0303 | 0 |
N2 | kg/hr | 13,492.01 | 13,492.01 | 13,388.47 | 103.5946 | 13,388.47 | 0 |
Methanol | kg/hr | 0.1 | 0.1 | 6.52 × 10−6 | 0.099935 | 6.52 × 10−6 | 0 |
Dimetyle | kg/hr | 0.58 | 0.58 | 0.022383 | 0.557619 | 0.022383 | 0 |
CO | kg/hr | 0.28 | 0.28 | 0.277746 | 0.002256 | 0.277746 | 0 |
O2 | kg/hr | 594.0003 | 594.0003 | 588.3943 | 5.609134 | 588.3943 | 0 |
Formald | kg/hr | 0.032856 | 0.032041 | 0.005188 | 0.026854 | 0.00557 | 0 |
Methylen | kg/hr | 0.00023 | 0.001533 | 0.000642 | 0.000891 | 3.17 × 10−6 | 0 |
Volume Flow | m3/s | 4.26106 | 3.739237 | 3.515835 | 0.022417 | 4.039626 | 0.022271 |
Stream Name | Units | 3 | 4 | 5 | 10 | 11 | OFF-GAS | AIR-IN | NAT-GAS |
---|---|---|---|---|---|---|---|---|---|
Phase | VP | VP | VP | VP | VP | VP | VP | VP | |
Temperature | C | 504.91 | 1270 | 607.882 | 135 | 328.048 | 27 | 20 | 20 |
Pressure | bar | 20 | 20 | 1.05 | 1.05 | 0.05 | 1.28 | 1 | 20 |
Mass Vapor Fraction | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Mass Liquid Fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Mass Flows | kg/hr | 35,772.3 | 36,349.8 | 36,349.8 | 36,349.8 | 6120 | 15,000 | 20,772.3 | 577.539 |
Water | kg/hr | 270 | 1691.95 | 1691.95 | 1691.95 | 6120 | 270 | 0 | 0 |
CO2 | kg/hr | 0 | 2215.27 | 2215.27 | 2215.27 | 0 | 0 | 0 | 0 |
N2 | kg/hr | 29,426.1 | 29,426.1 | 29,426.1 | 29,426.1 | 0 | 13,492 | 15,934.1 | 0 |
Methanol | kg/hr | 15.5 | 6.21 × 10−18 | 6.21 × 10−18 | 6.21 × 10−18 | 0 | 15.5 | 0 | 0 |
Dimetyle | kg/hr | 82 | 1.42 × 10−40 | 1.42 × 10−40 | 1.42 × 10−40 | 0 | 82 | 0 | 0 |
CO | kg/hr | 221 | 0.0109448 | 0.0109448 | 0.0109448 | 0 | 221 | 0 | 0 |
O2 | kg/hr | 5754.22 | 3016.54 | 3016.54 | 3016.54 | 0 | 916 | 4838.22 | 0 |
Formald | kg/hr | 3.5 | 3.42 × 10−9 | 3.42 × 10−9 | 3.42 × 10−9 | 0 | 3.5 | 0 | 0 |
Methylen | kg/hr | 0 | 8.00 × 10−14 | 8.00 × 10−14 | 8.00 × 10−14 | 0 | 0 | 0 | 0 |
Methane | kg/hr | 0 | 6.748.00 × 10−21 | 6.74 × 10−21 | 6.74 × 10−21 | 0 | 0 | 0 | 577.539 |
Stream Name | Units | 3 | 4 | 5 | 10 | 11 | AIR-IN | NAT-GAS |
---|---|---|---|---|---|---|---|---|
Phase | VP | VP | VP | VP | VP | VP | VP | |
Temperature | C | 499.72 | 1270 | 607.52 | 135 | 328.048 | 20 | 20 |
Pressure | bar | 20 | 20 | 1.05 | 1.05 | 0.05 | 1 | 20 |
Mass Vapor Fraction | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Mass Liquid Fraction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Mass Flows | kg/hr | 35,936.1 | 36,652.2 | 36,652.2 | 36,652.2 | 6120 | 35,936.1 | 716.149 |
Water | kg/hr | 0 | 1608.4 | 1608.4 | 1608.4 | 6120 | 0 | 0 |
CO2 | kg/hr | 0 | 1964.6 | 1964.6 | 1964.6 | 0 | 0 | 0 |
N2 | kg/hr | 27,565.9 | 27,565.9 | 27,565.9 | 27,565.9 | 0 | 27,565.9 | 0 |
O2 | kg/hr | 8370.12 | 5513.27 | 5513.27 | 5513.27 | 0 | 8370.12 | 0 |
Methane | kg/hr | 0 | 5.95 × 10−18 | 5.95 × 10−18 | 5.95 × 10−18 | 0 | 0 | 716.149 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mursics, J.; Urbancl, D.; Goricanec, D. Process of Formaldehyde and Volatile Organic Compounds’ Removal fromWaste Gases. Appl. Sci. 2020, 10, 4702. https://doi.org/10.3390/app10144702
Mursics J, Urbancl D, Goricanec D. Process of Formaldehyde and Volatile Organic Compounds’ Removal fromWaste Gases. Applied Sciences. 2020; 10(14):4702. https://doi.org/10.3390/app10144702
Chicago/Turabian StyleMursics, Jozsef, Danijela Urbancl, and Darko Goricanec. 2020. "Process of Formaldehyde and Volatile Organic Compounds’ Removal fromWaste Gases" Applied Sciences 10, no. 14: 4702. https://doi.org/10.3390/app10144702
APA StyleMursics, J., Urbancl, D., & Goricanec, D. (2020). Process of Formaldehyde and Volatile Organic Compounds’ Removal fromWaste Gases. Applied Sciences, 10(14), 4702. https://doi.org/10.3390/app10144702