Providing a Visual Understanding of Holography Through Phase Space Representations
Abstract
:Featured Application
Abstract
1. Introduction
Related Work
2. Point-Spread Functions in Phase Space
2.1. Rigorous Form
2.2. Fresnel Approximation
2.3. Fraunhofer Approximation
3. Explicit Calculation of Phase Space Representations of Arbitrary Digital Holograms
3.1. Selecting the Right Phase Space Representation
3.2. Introduction to Spectrograms
3.3. Introduction to the S-Method
S-method (, frequency window with peak at )
.th term is the spectrogram For () ▹l.th refinement For () For () return |
- If one obtains the spectrogram, that is . Thereby is commonly normalized by Equation (13).
- If one obtains the pseudo Wigner–Ville representation [40], which initially was constructed as restriction by windowing of the space-lags considered during the computation of the Wigner–Ville representation. It is .
- If , and one obtains the regular Wigner–Ville representation, that is .
- If are of even parity, and the following standard requirements hold , , one obtains the smoothed pseudo Wigner–Ville representation [40], that is . signifies the discrete Fourier transform.
3.4. On the Application of Phase Space Representations to Digital Holograms
3.5. Important Properties for Phase Space Visualization of Digital Holograms
4. Capture of Holograms: Interference of Object and Reference Waves
5. Applications of Phase Space Representations in Digital Holography
5.1. Exploring an Arbitrary Hologram
5.2. Optimizing Space-Frequency Bandwidth Product
5.3. Depth Estimation
5.4. Diagnosis of Distortions of Digital Holograms
5.4.1. Quantization Errors
5.4.2. Tracing Missing Space-Frequency Information
5.4.3. Compression of Static Holograms
- 1
- reduced signal to noise ratio due to the introduction of discontinuities (impulses) through block based coding, and use of a basis, poorly localized in frequency (discrete cosine transform with short spatial windows w, cf. Section 3.2).
- 2+5
- added DC term and opposite diffraction orders, due to separate compression of real and imaginary parts, cf. Section 5.5.5.
- 3+4
- missing information due to the bitrate-distortion optimization being tuned for natural images.
- 6
- clipped signal, due to thresholding during rate-distortion optimization.
5.5. Some Simple, Global Operations on Digital Holograms
5.5.1. Perspective
5.5.2. Rotation
5.5.3. Translation
5.5.4. Transition between On- and Off-Axis Holograms
- 1.
- Fourier transform on-axis hologram.
- 2.
- Zeropad hologram to twice its length in every dimension.
- 3.
- Shift the padded hologram by half its original size in every dimension.
- 4.
- Inverse Fourier transform the hologram.
- 5.
- The real part of these manipulations is the off-axis hologram.
5.5.5. Splitting into Real/Imaginary Parts
5.5.6. Transversal Magnification
5.6. Analysis of Degree of Surface Roughness
5.7. Multi-Object Hologram Segmentation and Motion Compensation
5.8. Quality Assessment of Digital Holograms
5.9. Design and Understanding of Limitations of Digital Holography Setups
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DH | Digital holography / digital hologram |
H.265/HEVC | High Efficiency Video Coding (name of a video compression standard) |
PSF | point-spread function |
SBP | space-bandwidth product |
SLM | spatial light modulator |
STFT | short-term Fourier transform |
PSR | phase space representation / time-frequency / space-spatial frequency representation |
WV | Wigner–Ville |
Appendix A. Estimating Space-Frequency Bandwidth Utilization
Appendix B. Estimating Depth through Linear Curve Fitting—An Explicit Example
References
- Lohmann, A.; Testorf, M.; Ojeda-Castaneda, J. Selected Papers on Phase-Space Optics; SPIE Press Book: Bellingham, WA, USA, 2006; Volume MS181, p. 11. [Google Scholar]
- Schumann, T.; Redfern, M.S.; Furman, J.M.; El-Jaroudi, A.; Chaparro, L.F. Time-frequency analysis of postural sway. J. Biomech. 1995, 28, 603–607. [Google Scholar] [CrossRef]
- Quiroga, R.Q. Quantitative Analysis of EEG Signals: Time-Frequency Methods and Chaos Theory. Ph.D. Thesis, Medical University Lübeck, Lübeck, Germany, 1998. [Google Scholar]
- Stanković, S.; Orović, I.; Krylov, A. Two-dimensional Hermite S-method for high-resolution inverse synthetic aperture radar imaging applications. IET Signal Process. 2010, 4, 352–362. [Google Scholar] [CrossRef]
- Jokanovic, B.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Multi-window time–frequency signature reconstruction from undersampled continuous-wave radar measurements for fall detection. IET Radar Sonar Navig. 2015, 9, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Purves, S. Phase and the Hilbert transform. Lead. Edge 2014, 33, 1164–1166. [Google Scholar] [CrossRef]
- Boashash, B. Time-Frequency Signal Analysis and Processing, Second Edition: A Comprehensive Reference, 2nd ed.; Eurasip and Academic Press Series in Signal and Image Processing; Academic Press: Oxford, UK, 2016. [Google Scholar]
- Brown, J.C. Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 1991, 89, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Nichols, C. Brahms at the Piano: An Analysis of Data from the Brahms Cylinder. Leonardo Music. J. 1994, 4, 23–30. [Google Scholar] [CrossRef]
- Kawahara, H.; Kuroda, T.; Takiwaki, T.; Hayama, K.; Kotake, K. A Linear and Quadratic Time-Frequency Analysis of Gravitational Waves from Core-collapse Supernovae. Astrophys. J. 2018, 867, 126. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, P.L. Digital Signal Processing: With selected topics: Adaptive Systems, Time-Frequency Analysis, Sparse Signal Processing; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2015. [Google Scholar]
- Stankovic, L. A method for time-frequency analysis. IEEE Trans. Signal Process. 1994, 42, 225–229. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; W.H. Freeman: New York, NY, USA, 2018. [Google Scholar]
- Markus, T.; Bryan, H.; Jorge, O. Phase-Space Optics: Fundamentals and Applications; McGraw-Hill Professional: London, UK, 2009. [Google Scholar]
- Tian, L. Phase-Space Representation of Digital Holographic and Light Field Imaging with Application to Two-Phase Flows. PhD Thesis, Massachusetts Institute of Technology, Cambridge, USA, 2010. [Google Scholar]
- Onural, L.; Özgen, M.T. Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis. J. Opt. Soc. Am. A 1992, 9, 252–260. [Google Scholar] [CrossRef]
- El Rhammad, A.; Gioia, P.; Gilles, A.; Cagnazzo, M.; Pesquet-Popescu, B. View-dependent compression of digital hologram based on matching pursuit. Proc. SPIE 2018, 10679. [Google Scholar] [CrossRef]
- Rhammad, A.E.; Gioia, P.; Gilles, A.; Cagnazzo, M. Progressive hologram transmission using a view-dependent scalable compression scheme. Ann. Telecommun.-Ann. Télécommunications 2019, 75, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Lucente, M. Holographic bandwidth compression using spatial subsampling. Opt. Eng. 1996, 35, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Shimobaba, T.; Ito, T. Fast generation of computer-generated holograms using wavelet shrinkage. Opt. Express 2017, 25, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Javidi, B. General sampling theorem and application in digital holography. In Optical Information Systems II; SPIE 5557: Denver, CO, USA, 2004. [Google Scholar] [CrossRef]
- Adolf, W. Lohmann, Markus E. Testorf, J.O.C. Holography and the Wigner function. Proc. SPIE 2002, 4737. [Google Scholar] [CrossRef]
- Healy, J.J.; Sheridan, J.T. Space–bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms. J. Opt. Soc. Am. A 2011, 28, 786–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, D.; Iliescu, D.; Bryanston-Cross, P. Quantitative space-bandwidth product analysis in digital holography. Appl. Opt. 2011, 50, H116–H127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özgen, M.T.; Demirbaş, K. Cohens bilinear class of shift-invariant space/spatial-frequency signal representations for particle-location analysis of in-line Fresnel holograms. J. Opt. Soc. Am. A 1998, 15, 2117–2137. [Google Scholar] [CrossRef]
- Özgen, M.T. Automatic kernel design procedure for Cohen’s bilinear class of representations as applied to in-line Fresnel holograms. Opt. Commun. 2000, 174, 51–67. [Google Scholar] [CrossRef]
- Blinder, D.; Schretter, C.; Ottevaere, H.; Munteanu, A.; Schelkens, P. Unitary Transforms Using Time-Frequency Warping for Digital Holograms of Deep Scenes. IEEE Trans. Comput. Imaging 2018, 4, 206–218. [Google Scholar] [CrossRef]
- Birnbaum, T.; Ahar, A.; Blinder, D.; Schretter, C.; Kozacki, T.; Schelkens, P. Wave atoms for digital hologram compression. Appl. Opt. 2019, 58, 6193–6203. [Google Scholar] [CrossRef]
- Muhamad, R.K.; Blinder, D.; Symeonidou, A.; Birnbaum, T.; Watanabe, O.; Schretter, C.; Schelkens, P. Exact global motion compensation for holographic video compression. Appl. Opt. 2019, 58, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, T.; Blinder, D.; Muhamad, R.K.; Schretter, C.; Symeonidou, A.; Schelkens, P. Object-based digital hologram segmentation and motion compensation. Opt. Express 2020, 28, 11861–11882. [Google Scholar] [CrossRef] [PubMed]
- Blinder, D.; Schelkens, P. Accelerated computer generated holography using sparse bases in the STFT domain. Opt. Express 2018, 26, 1461–1473. [Google Scholar] [CrossRef]
- Kozacki, T.; Falaggis, K. Angular spectrum method with compact space–bandwidth: Generalization and full-field accuracy. Appl. Opt. 2016, 55, 5014–5024. [Google Scholar] [CrossRef]
- Kozacki, T.; Finke, G.; Garbat, P.; Zaperty, W.; Kujawińska, M. Wide angle holographic display system with spatiotemporal multiplexing. Opt. Express 2012, 20, 27473–27481. [Google Scholar] [CrossRef] [PubMed]
- Finke, G.; Kujawińska, M.; Kozacki, T. Visual perception in multi SLM holographic displays. Appl. Opt. 2015, 54, 3560–3568. [Google Scholar] [CrossRef]
- Makowski, P.L.; Kozacki, T.; Zaperty, W. Orthoscopic real-image display of digital holograms. Opt. Lett. 2017, 42, 3932–3935. [Google Scholar] [CrossRef]
- Haist, T.; Osten, W. Holography using pixelated spatial light modulators—Part 1: Theory and basic considerations. J. Micro/Nanolithography MEMS MOEMS 2015, 14, 1–10. [Google Scholar] [CrossRef]
- Vakman, D. On the analytic signal, the Teager-Kaiser energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. Signal Process. 1996, 44, 791–797. [Google Scholar] [CrossRef]
- Adams, C.S.; Hughes, I.G. Optics f2f: From Fourier to Fresnel; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Franz Hlawatsch, F.A. Time-Frequency Analysis: Concepts and Methods; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Szmajda, M.; Mroczka, J. Comparison of Gabor-Wigner Transform and SPWVD as tools of harmonic computation. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’11), Bergamo, Italy, 26–29 September 2011; pp. 1–6. [Google Scholar]
- Rajshekhar, G.; Gorthi, S.S.; Rastogi, P. Estimation of the phase derivative using an adaptive window spectrogram. J. Opt. Soc. Am. A 2010, 27, 69–75. [Google Scholar] [CrossRef]
- Cakrak, F.; Loughlin, P.J. Multiwindow time-varying spectrum with instantaneous bandwidth and frequency constraints. IEEE Trans. Signal Process. 2001, 49, 1656–1666. [Google Scholar] [CrossRef]
- Orovic, I.; Stankovic, S.; Thayaparan, T.; Stankovic, L. Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis. IET Signal Process. 2010, 4, 363–370. [Google Scholar] [CrossRef]
- Leith, E.N.; Upatnieks, J. Reconstructed Wavefronts and Communication Theory. J. Opt. Soc. Am. 1962, 52, 1123–1130. [Google Scholar] [CrossRef]
- Available online: http://erc-interfere.eu (accessed on 9 July 2020).
- Kozacki, T. On resolution and viewing of holographic image generated by 3D holographic display. Opt. Express 2010, 18, 27118–27129. [Google Scholar] [CrossRef]
- Oh, S.; Hwang, C.Y.; Jeong, I.K.; Lee, S.K.; Park, J.H. Fast focus estimation using frequency analysis in digital holography. Opt. Express 2014, 22, 28926–28933. [Google Scholar] [CrossRef]
- Naughton, T.J.; Frauel, Y.; Javidi, B.; Tajahuerce, E. Compression of digital holograms for three-dimensional object reconstruction and recognition. Appl. Opt. 2002, 41, 4124–4132. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Nitta, K.; Matoba, O.; Awatsuji, Y. Effect of intensity quantization level in parallel phase-shifting digital holography. Opt. Rev. 2013, 20, 463–468. [Google Scholar] [CrossRef]
- Shi, L.; Huang, F.C.; Lopes, W.; Matusik, W.; Luebke, D. Near-eye Light Field Holographic Rendering with Spherical Waves for Wide Field of View Interactive 3D Computer Graphics. ACM Trans. Graph. 2017, 36, 236:1–236:17. [Google Scholar] [CrossRef]
- Weruaga, L.; Képesi, M. The fan-chirp transform for non-stationary harmonic signals. Signal Process. 2007, 87, 1504–1522. [Google Scholar] [CrossRef]
- Blinder, D.; Ahar, A.; Bettens, S.; Birnbaum, T.; Symeonidou, A.; Ottevaere, H.; Schretter, C.; Schelkens, P. Signal processing challenges for digital holographic video display systems. Signal Process. Image Commun. 2019, 70, 114–130. [Google Scholar] [CrossRef]
- Blinder, D.; Schretter, C.; Schelkens, P. Global motion compensation for compressing holographic videos. Opt. Express 2018, 26, 25524–25533. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K. Formulation of the rotational transformation of wave fields and their application to digital holography. Appl. Opt. 2008, 47, D110–D116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo-Ginori, J.V. An Approach to the 2D Hilbert Transform for Image Processing Applications. In Image Analysis and Recognition; Kamel, M., Campilho, A., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2007; pp. 157–165. [Google Scholar]
- Billow, T.; Sommer, G. Multi-dimensional signal processing using an algebraically extended signal representation. In Algebraic Frames for the Perception-Action Cycle; Sommer, G., Koenderink, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 148–163. [Google Scholar]
- Wang, S.; Yan, K.; Xue, L. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method. Opt. Commun. 2017, 383, 537–544. [Google Scholar] [CrossRef]
- Peixeiro, J.P.; Brites, C.; Ascenso, J.; Pereira, F. Holographic Data Coding: Benchmarking and Extending HEVC With Adapted Transforms. IEEE Trans. Multimed. 2018, 20, 282–297. [Google Scholar] [CrossRef]
- Ferraro, P.; Paturzo, M.; Memmolo, P.; Finizio, A. Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms. Opt. Lett. 2009, 34, 2787–2789. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Kozacki, T.; Kujawińska, M.; Finke, G.; Zaperty, W.; Hennelly, B. Holographic Capture and Display Systems in Circular Configurations. J. Display Technol. 2012, 8, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Hlawatsch, F.; Flandrin, P. The interference structure of Wigner distribution and related time-frequency representations. In The Wigner Distribution—Theory and Applications in Signal Processing; Elsevier: Amsterdam, The Netherlands, 1997; pp. 59–133. [Google Scholar]
- Baraniuk, R.G.; Flandrin, P.; Janssen, A.J.E.M.; Michel, O.J.J. Measuring time-frequency information content using the Renyi entropies. IEEE Trans. Inf. Theory 2001, 47, 1391–1409. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birnbaum, T.; Kozacki, T.; Schelkens, P. Providing a Visual Understanding of Holography Through Phase Space Representations. Appl. Sci. 2020, 10, 4766. https://doi.org/10.3390/app10144766
Birnbaum T, Kozacki T, Schelkens P. Providing a Visual Understanding of Holography Through Phase Space Representations. Applied Sciences. 2020; 10(14):4766. https://doi.org/10.3390/app10144766
Chicago/Turabian StyleBirnbaum, Tobias, Tomasz Kozacki, and Peter Schelkens. 2020. "Providing a Visual Understanding of Holography Through Phase Space Representations" Applied Sciences 10, no. 14: 4766. https://doi.org/10.3390/app10144766
APA StyleBirnbaum, T., Kozacki, T., & Schelkens, P. (2020). Providing a Visual Understanding of Holography Through Phase Space Representations. Applied Sciences, 10(14), 4766. https://doi.org/10.3390/app10144766