A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Avicel PH-101 powder
Roller Compaction
Ball Milling
2.2.2. Powder Characterization
Bulk Density Measurement
True Density Measurement
Particle Size and Particle Size Distribution
Porosity of Powders
Scanning Electron Microscopy Analysis
X-ray Powder Diffraction (XRPD)
2.2.3. Compact Characterization (Analysis)
Crushing Strength
Compression Analysis Using Heckel and Kawakita Models
3. Results
3.1. Bulk Density
3.2. Particle Size
3.3. Porosity of Powders
3.4. Scanning Electron Microscopy (SEM)
3.5. X-ray Powder Diffraction (XRPD) Analyses
3.6. Compact (Tablet) Crushing Strength
3.7. Compacts Porosity
3.8. Compression Analyses
3.8.1. Heckel Analysis
3.8.2. Kawakita Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fittolani, G.; Seeberger, P.H.; Delbianco, M. Helical polysaccharides. Pept. Sci. 2020, 112, e2412. [Google Scholar] [CrossRef] [Green Version]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Jasmania, L.; Thielemans, W. Preparation of nanocellulose and its potential application. Int. J. Nanomater. Nanotechnol. Nanomed. 2018, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules 2018, 23, 2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Sabapathi, S.N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 2015, 8, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfa, J.; Chukwu, A.; Udeala, O.K. Compression and Compaction Behaviour of Microcrystalline Cellulose from Sorghum and Andropogon Stalks. J. Pharm. Res. Int. 2017, 19, 1–11. [Google Scholar] [CrossRef]
- Albers, J.; Knop, K.; Kleinebudde, P. Brand-to-brand and batch-to-batch uniformity of microcrystalline cellulose in direct tableting with a pneumohydraulic tablet press. Pharm. Ind. 2006, 68, 1420–1428. [Google Scholar]
- Suzuki, T.; Nakagami, H. Effect of crystallinity of microcrystalline cellulose on the compactibility and dissolution of tablets. Eur. J. Pharm. Biopharm. 1999, 47, 225–230. [Google Scholar] [CrossRef]
- Kusumattaqiin, F.; Chonkaew, W. Preparation and characterization of microcrystalline cellulose (MCC) by acid hydrolysis using microwave assisted method from cotton wool. Macromol. Symp. 2015, 354, 35–41. [Google Scholar] [CrossRef]
- Ioelovich, M. Study of fractal dimensions of microcrystalline cellulose obtained by the spray-drying method. Fractal Fract. 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Law, Y.; Chakrabarti, S. Physical properties and compact analysis of commonly used direct compression binders. Am. Assoc. Pharm. Sci. PharmSciTech. 2003, 4, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoorens, G.; Krier, F.; Leclercq, B.; Carlin, B.; Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int. J. Pharm. 2014, 473, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Carlin, B. Direct compression and the role of filler-binders. In Pharmaceutical Dosage Forms-Tablets; Augsburger, L.L., Augsburger, L.L., Hoag, S.W., Hoag, S.W., Eds.; Informa: London, UK, 2008; pp. 173–216. [Google Scholar]
- Haware, R.V.; Tho, I.; Bauer-Brandl, A. Application of multivariate methods to compression behavior evaluation of directly compressible materials. Eur. J. Pharm. Biopharm. 2009, 72, 148–155. [Google Scholar] [CrossRef]
- Abdel-Hamid, S.; Alshihabi, F.; Betz, G. Investigating the effect of particle size and shape on high speed tableting through radial die-wall pressure monitoring. Int. J. Pharm. 2011, 413, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhang, N.; Zhao, G.; Zhang, J.; Liang, X.; Zhong, S. Multivariate analysis approach for correlations between material properties and tablet tensile strength of microcrystalline cellulose. Pharmazie 2012, 67, 774–780. [Google Scholar] [PubMed]
- Pönni, R.; Vuorinen, T.; Kontturi, E. Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResource 2012, 7, 6077–6108. [Google Scholar] [CrossRef]
- Westermarck, S.; Juppo, AM.; Kervinen, L.; Yliruusi, J. Microcrystalline cellulose and its microstructure in pharmaceutical processing. Eur. J. Pharm. Biopharm. 1999, 481, 99–206. [Google Scholar] [CrossRef]
- Johansson, B.; Alderborn, G. The effect of shape and porosity on the compression behaviour and tablet forming ability of granular materials formed from microcrystalline cellulose. Eur. J. Pharm. Biopharm. 2001, 52, 347–357. [Google Scholar] [CrossRef]
- Hentzschel, C. M, Sakmann A, Leopold, C.S. Comparison of traditional and novel tableting excipients: Physical and compaction properties. Pharm. Dev. Technol. 2012, 17, 649–653. [Google Scholar] [CrossRef]
- Wang, J.; Wen, H.; Desai, D. Lubrication in tablet formulations. Eur. J. Pharm. Biopharm. 2010, 75, 1–15. [Google Scholar] [CrossRef]
- He, X.; Secreast, P.J.; Amidon, G.E. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. J. Pharm. Sci. 2007, 96, 1342–1355. [Google Scholar] [CrossRef] [PubMed]
- Thoorens, G.; Krier, F.; Rozet, E.; Carlin, B.; Evrard, B. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability. Int. J. Pharm. 2015, 490, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Dhumal, S.; Kulkarni, P.A.; Kashikar, V.S.; Baweja, J.; Thottasseri, M. A Review: Roller Compaction for Tablet Dosage Form Development. Res. Rev. J. Pharm. Pharm. Sci. 2013, 2, 68–73. [Google Scholar]
- Miller, R.W. Roller Compaction Technology. In Handbook of Pharmaceutical Granulation Technology, 3rd ed.; Parikh, D.M., Ed.; Marcel Dekker: New York, NY, USA, 2010; pp. 163–182. [Google Scholar]
- He, X. Application of roller compaction in solid formulation development. Am. Pharm. Rev. 2003, 6, 26–33. [Google Scholar]
- Johnston, W.; Gilman, J. Dislocation velocities, dislocation densities and plastic flow in lithium fluoride crystals. J. Appl. Phys. 1959, 30, 129. [Google Scholar] [CrossRef]
- Malkowska, S.; Khan, K.A. Effect of re-conpression on the properties of tablets prepared by dry granulation. Drug Dev. Ind. Pharm. 1983, 9, 331–347. [Google Scholar] [CrossRef]
- Patel, S.; Dahiya, S.; Sun, CC.; Bansa, A. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation. J. Pharm. Sci. 2011, 100, 758–766. [Google Scholar] [CrossRef]
- Sun, C.C.; Himmelspach, M.W. Reduced tabletability of roller compacted granules as a result of granule size enlargement. J. Pharm. Sci. 2006, 95, 200–206. [Google Scholar] [CrossRef]
- Bultmann, J.M. Multiple compaction of microcrystalline cellulose in a roller compactor. Eur. J. Pharm. Biopharm. 2002, 54, 59–64. [Google Scholar] [CrossRef]
- Abu Fara, D.; Al-Hmoud, L.; Rashid, I.; Chowdhry, B.Z.; Badwan, A. Understanding the Performance of a Novel Direct Compression Excipient Comprising Roller Compacted Chitin. Mar. Drugs. 2020, 18, 115. [Google Scholar] [CrossRef] [Green Version]
- Fara, D.A. A comparison of industrial lactose obtained by roller compaction with spray dried lactose and α-lactose monohydrate using compression analysis techniques. J. Excip. Food Chem. 2019, 10, 41–54. [Google Scholar]
- Abu Fara, D.; Rashid, I.; Alkhamis, K.; Al-Omari, M.; Chowdhry, B.; Badwan, A. Modification of a-lactose monohydrate as a direct compression excipient using roller compaction. Drug Dev. Ind. Pharm. 2018, 44, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Rashid, I.; Al-Remawi, M.; Leharne, S.A.; Chowdhry, B.Z.; Badwan, A. A novel multifunctional pharmaceutical excipient: Modification of the permeability of starch by processing with magnesium silicate. Int. J. Pharm. 2011, 411, 18–26. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1962, 29, 786–794. [Google Scholar] [CrossRef]
- Heckel, R.W. An analysis of powder compaction phenomena. Trans. Metall. Soc. Am. Inst. Mech. Eng. AIME. 1961, 221, 1001–1008. [Google Scholar]
- Choi, D.H.; Kim, N.A.; Chu, K.R.; Jung, Y.J.; Yoon, J.H.; Jeong, S.H. Material properties and compressibility using heckel and kawakita equation with commonly used pharmaceutical excipients. J. Pharm. Invest. 2010, 40, 237–244. [Google Scholar]
- Kim, H.; Venkatesh, G.; Fassihi, R. Compactibility characterization of granular pectin for tableting operation using a compaction simulator. Int. J. Pharm. 1998, 161, 149–159. [Google Scholar] [CrossRef]
- Kawakita, K.; Lüdde, K.H. Some considerations on powder compression equations. Powder Technol. 1971, 4, 61–68. [Google Scholar] [CrossRef]
- Guo, M.; Muller, F.; Augsburger, L. Evaluation of the plug formation process of silicified microcrystalline cellulose. Int. J. Pharm. 2002, 233, 99–109. [Google Scholar] [CrossRef]
- Nordström, J.; Klevan, I.; Alderborn, G. A particle rearrangement index ased on the kawakita powder compression equation. J. Pharm. Sci. 2009, 98, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Hancock, B.C.; Colvin, J.T.; Mullarney, M.P.; Zinchuk, A.V. The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablet. Pharm. Technol. 2003, 27, 64–80. [Google Scholar]
- Doelker, E. Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev. Ind. Pharm. 1993, 19, 2399–2471. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen. 1918, 26, 98–100. [Google Scholar]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Rojas, J.; Kumar, V. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. Int. J. Pharm. 2011, 416, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Nakai, Y.; Fukuoka, E.; Nakajima, S.; Hasegawa, J. Crystallinity and physical characteristics of microcrystalline cellulose. Chem. Pharm. Bull. 1977, 25, 2490–2496. [Google Scholar] [CrossRef] [Green Version]
- Alebiowu, G.; Osinoiki, KA. Assessment of tapioca starches obtained after different steeping periods as binders in a paracetamol tablet formulation. Farmacia 2010, 58, 341–352. [Google Scholar]
- Patel, S.; Kaushal, A.M.; Bansal, A.K. Compression physics in the formulation development of tablets. Crit. Rev. Ther. Drug Carr. Syst. 2006, 23, 1–65. [Google Scholar] [CrossRef]
- Vaca-Medina, G.; Jallabert, B.; Viet, D.; Peydecastaing, J.; Rouilly, A. Effect of temperature on high pressure cellulose compression. Cellulose 2013, 20, 2311–2319. [Google Scholar] [CrossRef]
- Kumar, V.; Kothari, S.H. Effect of compressional force on the crystallinity of directly compressible cellulose excipients. Int. J. Pharm. 1999, 177, 173–182. [Google Scholar] [CrossRef]
- Ek, R.; Wormald, P.; östelius, J.; Iversen, T.; Nyström, C. Crystallinity index of microcrystalline cellulose particles compressed into tablets. Int. J. Pharm. 1995, 125, 257–264. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Zhorin, V.A.; Shashkin, D.P.; Yenikolopyan, N.S. X-ray diffraction study of cellulose after plastic flow under pressure. Polym. Sci. USSR 1989, 31, 1376–1380. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Pignon, F.D.; Belgacem, M.N. Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J. Mater. Sci. 2015, 50, 531–541. [Google Scholar] [CrossRef]
Powder Type | Pore Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Non-compacted Avicel®® 101 | 0.330 | 1.369 | 19.63 |
Avicel-1st compaction cycle | 0.187 | 1.115 | 34.42 |
Avicel-2nd compaction cycle | 0.146 | 1.104 | 33.89 |
Avicel-3rd compaction cycle | 0.105 | 1.017 | 11.81 |
Powder Type | CrI | FWHM |
---|---|---|
Non-compacted Avicel®® 101 | 0.84 | 1.84 |
Avicel–1st compaction cycle | 0.68 | 4.28 |
Avicel–2nd compaction cycle | 0.67 | 2.55 |
Avicel–3rd compaction cycle | 0.64 | 1.70 |
Powder Type | Heckel Parameters | |||||
---|---|---|---|---|---|---|
Line Slope | Line Intercept (A) | Py | Da | D0 | Db = Da − D0 | |
Non-Compacted Avicel 101 | 0.0044 | 0.860 | 227.3 | 0.577 | 0.41 | 0.167 |
Avicel-1st Compaction Cycle | 0.0048 | 0.760 | 208.3 | 0.532 | 0.45 | 0.081 |
Avicel-2nd Compaction Cycle | 0.0048 | 0.775 | 208.3 | 0.539 | 0.46 | 0.077 |
Avicel-3rd Compaction Cycle | 0.0054 | 0.829 | 185.2 | 0.563 | 0.47 | 0.096 |
Powder Type | Kawakita Parameters | ||||
---|---|---|---|---|---|
Slope (1/a) | Intercept (1/ab) | a | 1/b | ab | |
Non-Compacted Avicel®® 101 | 1.302 | 7.489 | 0.768 | 5.753 | 0.134 |
Avicel-1st Compaction Cycle | 1.387 | 11.922 | 0.721 | 8.593 | 0.084 |
Avicel-2nd Compaction Cycle | 1.460 | 22.940 | 0.685 | 15.711 | 0.044 |
Avicel-3rd Compaction Cycle | 1.606 | 26.334 | 0.623 | 16.396 | 0.038 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Fara, D.; Rashid, I.; Al-Hmoud, L.; Chowdhry, B.Z.; Badwan, A.A. A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing. Appl. Sci. 2020, 10, 4787. https://doi.org/10.3390/app10144787
Abu Fara D, Rashid I, Al-Hmoud L, Chowdhry BZ, Badwan AA. A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing. Applied Sciences. 2020; 10(14):4787. https://doi.org/10.3390/app10144787
Chicago/Turabian StyleAbu Fara, Deeb, Iyad Rashid, Linda Al-Hmoud, Babur Z. Chowdhry, and Adnan A. Badwan. 2020. "A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing" Applied Sciences 10, no. 14: 4787. https://doi.org/10.3390/app10144787
APA StyleAbu Fara, D., Rashid, I., Al-Hmoud, L., Chowdhry, B. Z., & Badwan, A. A. (2020). A New Perspective of Multiple Roller Compaction of Microcrystalline Cellulose for Overcoming Re-Compression Drawbacks in Tableting Processing. Applied Sciences, 10(14), 4787. https://doi.org/10.3390/app10144787