The Mineral Composition of Milk from High-Yielding Dairy Cows Depending on the Month of Lactation and Udder Health
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raikos, V.; Dassios, T. Health-promoting properties of bio-active peptides derived from milk proteins in infant food: A review. Dairy Sci. Technol. 2014, 94, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litwińczuk, Z.; Barłowska, J.; Chabuz, W.; Brodziak, A. Nutritional Value and Technological Suitability of Milk from Cows of Three Polish Breeds Included in the Genetic Resources Conservation Programme. Ann. Anim. Sci. 2012, 12, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Kuczyńska, B.; Nałęcz-Tarwacka, T.; Puppel, K. Bioactive components as an indicator of the health-beneficial quality of the milk. Medycyna Rodzinna 2013, 1, 11–18, (In Polish with English abstract). [Google Scholar]
- LeBlanc, S.J.; Lissemore, K.D.; Kelton, D.F.; Duffield, T.F.; Leslie, K.E. Major advances in disease prevention in dairy cattle. J. Dairy Sci. 2006, 89, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Kroll, J.; Cais-Sokolińska, D.; Pikul, J. Hygienic quality of raw milk. Medycyna Weterynaryjna 2000, 56, 129–131, (In Polish with English abstract). [Google Scholar]
- Friggens, N.C.; Rasmussen, M.D. Milk quality in automatic milking systems: Accounting for the effects of variable intervals between milkings on milk composition. Livest. Prod. Sci. 2001, 73, 45–54. [Google Scholar] [CrossRef]
- Bradley, A.J. Bovine mastitis: An evolving disease. Vet. J. 2002, 164, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Japertiene, R.; Jouzaitiene, V.; Kriauziene, J.; Rudejeviene, J.; Japertas, S. The interrelationships between milk ability traits and subclinical mastitis in cows. Polish J. Vet. Sci. 2007, 10, 255–261. [Google Scholar]
- Sawa, A.; Neja, W.; Bogucki, N. Relationships between cytological quality and composition of milk and the effect of some environmental factors on the frequency of recurrent mastitis in cows. J. Cent. Eur. Agric. 2007, 8, 295–300. [Google Scholar]
- Nogalska, A.; Momot, M.; Sobczuk-Szul, M.; Pogorzelska-Przybyłek, P.; Nogalski, Z. Calcium and magnesium contents in the milk of high-yielding cows. J. Elementol. 2017, 22, 809–815. [Google Scholar] [CrossRef]
- Nogalska, A.; Momot, M.; Sobczuk-Szul, M.; Pogorzelska-Przybyłek, P.; Nogalski, Z. The effect of milk production performance of Polish Holstein-Friesian (PHF) cows on the mineral content of milk. J. Elementol. 2018, 23, 589–597. [Google Scholar] [CrossRef]
- Renner, E. Investigations on some parameters of milk for the detection of subclinical mastitis. Archiv fur Lebensmittelhygiene 1975, 26, 163–171. [Google Scholar]
- Rapid and Accurate Enumeration of Bacteria and Somatic Cells. Available online: https://bentleyinstruments.com/products/bacteria-counting/ibc-m (accessed on 6 July 2020).
- ISO 8070:2007 [IDF 119:2007]. Milk and Milk Products. Determination of Calcium, Sodium, Potassium and Magnesium Contents. Atomic absorption spectrometric method. Available online: https://www.iso.org/standard/44079.html (accessed on 6 July 2020).
- ISO 8070:1987. Dried Milk. Determination of Sodium and Potassium Contents. Flame emission spectrometric method. Available online: https://www.iso.org/standard/15091.html (accessed on 6 July 2020).
- Kapusta, A.; Kuczyńska, B.; Pupel, K. Relationship between the degree of antioxidant protection and the level of malondialdehyde in high-performance Polish Holstein-Friesian cows in peak of lactation. PLoS ONE 2018, 13, e0193512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollot, G.E. Deconstructing milk yield and composition during lactation using biologically based lactation models. J. Dairy Sci. 2004, 87, 2375–2387. [Google Scholar] [CrossRef]
- Nogalski, Z.; Wroński, M.; Lewandowska, B.; Pogorzelska, P. Changes in the blood parameters and body condition of high yielding Holstein cows with retained placenta and ketosis. Acta Vet. Brno 2012, 4, 389–394. [Google Scholar] [CrossRef]
- Borkowska, D.; Januś, E. The effect of somatic cell counts on the yield and chemical composition of milk from Black and White x Holstein-Friesian cows. Przegląd Mleczarski 2002, 9, 417–420. (In Polish) [Google Scholar]
- Kowalczuk, E.; Klebaniuk, R. Nutritional approach to mastitis prevention. Higiena 2007, 2, 12–14. (In Polish) [Google Scholar]
- Franzoi, M.; Manuelian, C.L.; Penasa, M.; De Marchi, M. Effects of somatic cell score on milk yield and mid-infrared predicted composition and technological traits of Brown Swiss, Holstein Friesian, and Simmental cattle breeds. J. Dairy Sci. 2020, 103, 791–804. [Google Scholar] [CrossRef]
- Górska, A.; Mróz, B. Effect of the inflammation of the mammary gland on the content of macro- and microelements in milk. Medycyna Weterynaryjna 2012, 68, 697–699. [Google Scholar]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Samaržija, D. Mineral elements in milk and dairy products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Litwińczuk, A.; Litwińczuk, Z.; Barłowska, J.; Florek, M. Animal Materials—Evaluation and Use; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 2004. (In Polish) [Google Scholar]
- Stasiuk, E.; Przybyłowski, P. Content of calcium and magnesium in samples of milk of different origin. Bromatologia i Chemia Toksykologiczna 2011, 44, 581–584, (In Polish with English abstract). [Google Scholar]
- Gaignon, P.; Gelé, M.; Hurtaud, C.; Boudon, A. Characterization of the nongenetic causes of variation in the calcium content of bovine milk on French farms. J. Dairy Sci. 2018, 101, 4554–4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabryszczuk, M.; Słoniewski, K.; Metera, E.; Sakowski, T. Content of mineral elements in milk and hair of cows from organic farms. J. Elementol. 2010, 15, 259–267. [Google Scholar]
- Litwińczuk, Z.; Koperska, N.; Chabuz, W.; Kędzierska-Matysek, M. Basic chemical composition and mineral content of the milk of cows of various breeds raised on organic farms and on traditional farms using intensive and traditional feeding systems. Medycyna Weterynaryjna 2018, 74, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, R. Somatic cell count in bulk tank milk in relation to management and technological factors. Medycyna Weterynaryjna 2002, 58, 632–635, (In Polish with English abstract). [Google Scholar]
- Olsson, I.M.; Jonsson, S.; Oskarsson, A. Cadmium and zinc in kidney, liver, muscle and mammary tissue from dairy cows in conventional and organic farming. J. Environ. Monit. 2001, 3, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Hosnedlová, B.; Travniček, J.; Chrastný, V. Zinc and copper concentration in milk of dairy cows in the South Bohemia region. In Proceedings of the XIIth ISAH Congress on Animal Hygiene, Warsaw, Poland, 4–8 September 2005. [Google Scholar]
- Arancibia, V.; Peña, C.; Segura, R. Evaluation of powdered infant formula milk as chelating agent for copper under simulated gastric conditions of baby’s stomach. Anal. Sci. 2006, 22, 1197–1200. [Google Scholar] [CrossRef] [Green Version]
- Klebaniuk, R.; Grela, E. Effectiveness of various dietary zinc and copper sources in cow nutrition. Medycyna Weterynaryjna 2008, 64, 1252–1255, (In Polish with English abstract). [Google Scholar]
- Król, J.; Litwińczuk, Z.; Matwijczuk, A. The effect of the production season on the basic chemical composition and mineral content of milk produced on low-input farms. Annales Universitatis Mariae Curie Skłodowska EE 2016, 34, 29–36, (In Polish with English abstract). [Google Scholar]
- Vidovic, M.; Sadibasic, A.; Cupic, S.; Lausevic, M. Cd and Zn in atmospheric deposit, soil, wheat, and milk. Environ. Res. 2005, 97, 26–31. [Google Scholar] [CrossRef]
- Tomza-Marciniak, A.; Pilarczyk, B.; Bąkowska, M.; Pilarczyk, R.; Wójcik, J. Heavy metals and other elements in serum of cattle from organic and conventional farms. Biol. Trace Elem. Res. 2011, 143, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Javed, M.T.; Khan, A. Changes in some biochemical parameters and somatic cell counts in the milk of buffalo and cattle suffering from mastitis. Pak. Vet. J. 2012, 32, 418–421. [Google Scholar]
- Singh, M.; Yadav, P.; Sharma, A.; Garg, V.K.; Mittal, D. Estimation of mineral and trace element profile in bubaline milk affected with subclinical mastitis. Biol. Trace Elem. Res. 2017, 176, 305–310. [Google Scholar] [CrossRef]
- Stocco, G.; Summer, A.; Cipolat-Gotet, C.; Zanini, L.; Vairani, D.; Dadousis, C.; Zecconi, A. Differential Somatic Cell Count as a Novel Indicator of Milk Quality in Dairy Cows. Animals 2020, 10, 753. [Google Scholar] [CrossRef] [PubMed]
Parameter | Month of Lactation (ML) | Somatic Cell Count (SCC), ths mL−1 | SE | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | ≤200 | 201–400 | 501–1000 | ≥1000 | ML | SCC | ML × SCC | ||
Number of milk samples | 76 | 76 | 76 | 76 | 76 | 261 | 42 | 50 | 27 | - | - | - | - |
SCC, ths mL−1 | 193.6 | 349.2 a | 307.8 | 333.5 | 149.8 b | 52.3 A | 279.6 B | 650.5 C | 1666.1 D | 24.98 | 0.022 | 0.000 | 0.233 |
SCC, Ln | 11.4 | 11.5 | 11.7 | 11.5 | 10.8 | 10.5 A | 12.5 B | 13.4 C | 14.2 D | 0.07 | 0.842 | 0.000 | 0.877 |
Daily milk yield, kg | 46.3 A | 49.1 A | 45.8 A | 41.9 B | 37.9 B | 45.2 | 48.4 A | 44.3 | 42.4 B | 0.49 | 0.001 | 0.000 | 0.172 |
Mineral | Month of Lactation (ML) | Somatic Cell Count (SCC), ths mL−1 | SE | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | ≤200 | 201–400 | 501–1000 | ≥1000 | ML | SCC | ML × SCC | ||
K | 1376.1 b | 1388.3 b | 1439.2 b | 1534.8 a | 1628.3 a | 1513.6 A | 1385.4 B | 1341.1 B | 1450.4 | 13.95 | 0.044 | 0.002 | 0.053 |
Ca | 993.1 A | 799.3 B | 811.8 B | 760.8 B | 829.9 B | 815.8 | 874.5 | 910.1 | 875.8 | 13.12 | 0.000 | 0.113 | 0.624 |
Na | 371.7 a | 338.1 | 323.4 b | 344.9 | 347.1 | 335.1 a | 322.5 B | 367.0 a,b | 401.3 A,a | 4.10 | 0.032 | 0.000 | 0.521 |
Mg | 103.4 Aa | 96.8 b | 97.7 | 94.5 B | 96.5 b | 96.1 b | 103.4 a | 104.8 a | 94.6 b | 0.87 | 0.007 | 0.031 | 0.220 |
Zn | 5.42 a | 4.78 | 4.74 | 4.24 b | 4.21 b | 4.45 B | 4.90 | 5.16 A | 5.60 A | 0.06 | 0.000 | 0.000 | 0.000 |
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Daily milk yield | - | −0.20 ** | −0.38 ** | 0.11 * | 0.021 | 0.063 | 0.14 * |
2. SCC | - | −0.08 | 0.11 * | 0.256 ** | 0.13 * | 0.30 ** | |
3. Potassium | - | −0.116 * | 0.178 ** | −0.150 ** | −0.10 * | ||
4. Calcium | - | 0.268 ** | 0.408 ** | 0.542 ** | |||
5. Sodium | - | 0.166 ** | 0.249 ** | ||||
6. Magnesium | - | 0.349 ** | |||||
7. Zinc | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogalska, A.; Momot, M.; Nogalski, Z. The Mineral Composition of Milk from High-Yielding Dairy Cows Depending on the Month of Lactation and Udder Health. Appl. Sci. 2020, 10, 4803. https://doi.org/10.3390/app10144803
Nogalska A, Momot M, Nogalski Z. The Mineral Composition of Milk from High-Yielding Dairy Cows Depending on the Month of Lactation and Udder Health. Applied Sciences. 2020; 10(14):4803. https://doi.org/10.3390/app10144803
Chicago/Turabian StyleNogalska, Anna, Martyna Momot, and Zenon Nogalski. 2020. "The Mineral Composition of Milk from High-Yielding Dairy Cows Depending on the Month of Lactation and Udder Health" Applied Sciences 10, no. 14: 4803. https://doi.org/10.3390/app10144803