A Review of Emerging Technologies for an Assessment of Safety and Seismic Vulnerability and Damage Detection of Existing Masonry Structures
Abstract
:1. Introduction
2. The Assessment Methods for Condition Inspection and Identification of Seismic Vulnerability of Existing Masonry Buildings
3. UAV Platform for Multi-Sensor Photogrammetry Aerial Mapping
3.1. Multi-Sensors System for Photogrammetry Data Acquisition
3.2. Remote Sensing Methods for Automatic Detection and Mapping of Weak Structural Parts and Components
3.2.1. Photogrammetric Three-Dimensional (3D) Building Modeling Methods
3.2.2. Automatic Methods for Building Damage Detection and Mapping
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Fregonese, L.; Frigeri, A. Assessing the seismic vulnerability of a historical building. Eng. Struct. 2013, 57, 523–535. [Google Scholar] [CrossRef]
- Atalić, J.; Šavor Novak, M.; Uroš, M. Seismic risk for Croatia: Overview of research activities and present assessments with guidelines for the future. Appl. Sci. 2019, 71, 923–947. [Google Scholar]
- Geiss, C.; Klotz, M.; Taubenb, H. Remote sensing for seismic building vulnerability assessment. In Proceedings of the Second European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25–29 August 2014. [Google Scholar]
- Antolinc, D.; Žarni, R.; Stepinać, M.; Rajčič, V.; Krstevska, L.; Tashkov, L. Simulation of earthquake load imposed on timber-glass composite shear wall panel. In COST Action TU0905 Mid-Term Conference Structural Glass; Belis, J., Louter, C., Mocibob, D., Eds.; CRC Press: London, UK, 2013. [Google Scholar]
- Fragiacomo, M.; Dujic, B.; Sustersic, I. Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Eng. Struct. 2011, 33, 3043–3053. [Google Scholar] [CrossRef]
- Pejovic, J.; Jankovic, S. Seismic fragility assessment for reinforced concrete high-rise buildings in Southern Euro-Mediterranean zone. Bull. Earthq. Eng. 2016, 14, 185–212. [Google Scholar] [CrossRef]
- Hancilar, U.; Taucer, F.; Corbane, C. Empirical fragility functions based on remote sensing and field data after the 12 January 2010 Haiti earthquake. Earthq. Spectra 2013, 27, 157–177. [Google Scholar] [CrossRef]
- Hancilar, U.; Çaktı, E.; Erdik, M. Earthquake performance assessment and rehabilitation of two historical unreinforced masonry buildings. Bull. Earthq. Eng. 2012, 10, 307–330. [Google Scholar] [CrossRef]
- Mendes, N.; Lourenço, P.B. Sensitivity analysis of the seismic performance of existing masonry buildings. Eng. Struct. 2014, 11, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Stepinac, M.; Šušteršič, I.; Gavrić, I.; Rajčić, V. Seismic design of timber buildings: Highlighted challenges and future trends. Appl. Sci. 2020, 10, 1380. [Google Scholar] [CrossRef] [Green Version]
- Bedon, C.; Amadio, C. Enhancement of the seismic performance of multi-storey buildings by means of dissipative glazing curtain walls. Eng. Struct. 2017, 152, 320–334. [Google Scholar] [CrossRef] [Green Version]
- Kišiček, T.; Renić, T.; Lazarević, D.; Hafner, I. Compressive shear strength of reinforced concrete walls at high ductility levels. Sustainability 2020, 12, 4434. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Miremadi, M.; Bughin, J.; George, K.; Wilmott, P.; Dewhurst, M. A Future That Works: Automation, Employment, and Productivity. Available online: https://www.semanticscholar.org/paper/A-future-that-works%3A-automation%2C-employment%2C-and-Manyika-Chui/e3ac9558f18234cdf92b730a7386ff16d446a1af (accessed on 1 January 2017).
- McKinsey Global Institute. Global Media Report 2014. Available online: https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/global-media-report-2014 (accessed on 9 September 2014).
- Machado, J.S.; Riggio, M.; D’Ayala, D. Assessment of structural timber members by non-and semi-destructive methods. Constr. Build. Mater. 2015, 101, 1155–1156. [Google Scholar] [CrossRef]
- Stepinac, M.; Rajčić, V.; Barbalić, J. Inspection and condition assessment of existing timber structures. Gradjevinar 2017, 69, 1380. [Google Scholar] [CrossRef] [Green Version]
- Stepinac, M.; Rajčić, V.; Honfi, D. Condition assessment of timber structures–Quantifying the value of information. In Tomorrow ’s Megastructures, Proceedings of the 40th International Association for Bridge and Structural Engineering Symposium (IABSE), Nantes, Italy, 19–21 September 2018; Curan Associates Inc.: Red Hook, NY, USA, 2018. [Google Scholar]
- Lourenço, P.B. The ICOMOS methodology for conservation of cultural heritage buildings: Concepts, research and application to case studies. In Proceedings of the International Conference on Preservation, Maintenance and Rehabilitation of Historical Buildings and Structures, Tomar, Portugal, 19–21 June 2014. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; De Maria, A.; Sisti, R. Calibration of a visual method for the analysis of the mechanical properties of historic masonry. Procedia Struct. Integr. 2018, 11, 418–427. [Google Scholar] [CrossRef]
- Breysse, D.; Martínez-Fernández, J.L. Assessing concrete strength with rebound hammer: Review of key issues and ideas for more reliable conclusions. Mater. Struct. Constr. 2014, 47, 1589–1604. [Google Scholar] [CrossRef]
- Sýkora, M.; Diamantidis, D.; Holický, M.; Marková, J.; Rózsás, Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 2018, 193, 196–210. [Google Scholar] [CrossRef]
- Agreed, K.; Klysz, G.; Balayssac, J.P. Location of reinforcement and moisture assessment in reinforced concrete with a double receiver GPR antenna. Constr. Build. Mater. 2018, 188, 1119–1127. [Google Scholar] [CrossRef]
- Sajid, S.H.; Ali, S.M.; Carino, N.J.; Saeed, S.; Sajid, H.U.; Chouinard, L. Strength estimation of concrete masonry units using stress-wave methods. Constr. Build. Mater. 2018, 163, 518–528. [Google Scholar] [CrossRef]
- Mesquita, E.; Martini, R.; Alves, A.; Antunes, P.; Varum, H. Non-destructive characterization of ancient clay brick walls by indirect ultrasonic measurements. J. Build. Eng. 2018, 19, 172–180. [Google Scholar] [CrossRef]
- Martini, R.; Carvalho, J.; Barraca, N.; Arêde, A.; Varum, H. Advances on the use of non-destructive techniques for mechanical characterization of stone masonry: GPR and sonic tests. Procedia Struct. Integr. 2017, 5, 1108–1115. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Cescatti, E.; Cardani, G.; Cantini, L.; Zanzi, L.; Colla, C.; Filippo, C. Calibration of sonic pulse velocity tests for detection of variable conditions in masonry walls. Constr. Build. Mater. 2018, 192, 272–286. [Google Scholar] [CrossRef]
- Wai-Lok Lai, W.; Dérobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar] [CrossRef]
- Meola, C. Infrared thermography of masonry structures. Infrared Phys. Technol. 2007, 49, 228–233. [Google Scholar] [CrossRef]
- Parivallal, S.; Kesavan, K.; Ravisankar, K.; Sundram, B.A.; Ahmed, A.K.F. Evaluation of in-situ stress in masonry structures by flat jack technique. In Proceedings of the National Seminar Exhibition on Non-Destructive Evaluation (NDE 2011), Chennai, India, 8–10 December 2011; pp. 8–13. [Google Scholar]
- Simões, A.; Gago, A.; Bento, R.; Lopes, M. Flat-Jack Tests on Old Masonry Buildings. In Proceedings of the 15th International Conference on Experimental Mechanics, Porto, Portugal, 22–27 July 2012; Volume 1, p. 3056. [Google Scholar]
- Ramos, L.F.; De Roeck, G.; Lourenço, P.B.; Campos-Costa, A. Damage identification on arched masonry structures using ambient and random impact vibrations. Eng. Struct. 2010, 32, 146–162. [Google Scholar] [CrossRef]
- Invernizzi, S.; Lacidogna, G.; Lozano-Ramírez, N.E.; Carpinteri, A. Structural monitoring and assessment of an ancient masonry tower. Eng. Fract. Mech. 2018, 210, 429–443. [Google Scholar] [CrossRef]
- Stepinac, M.; Kisicek, T.; Renić, T.; Hafner, I.; Bedon, C. Methods for the assessment of critical properties in existing masonry structures under seismic loads-the ARES project. Appl. Sci. 2020, 10, 1576. [Google Scholar] [CrossRef] [Green Version]
- Negro, P.; Mola, E. A performance based approach for the seismic assessment and rehabilitation of existing RC buildings. Bull. Earthq. Eng. 2017, 15, 3349–3364. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, P.; Karanikoloudis, G. Seismic behavior and assessment of masonry heritage structures. Needs in engineering judgement and education. RILEM Tech. Lett. 2019, 3, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Piazza, M.; Riggio, M. Visual strength-grading and NDT of timber in traditional structures. J. Build. Apprais. 2008, 3, 267–296. [Google Scholar] [CrossRef] [Green Version]
- Dietsch, P.; Kreuzinger, H. Guideline on the assessment of timber structures: Summary. Eng. Struct. 2011, 33, 2983–2986. [Google Scholar] [CrossRef]
- Croce, P.; Beconcini, M.L.; Formichi, P.; Cioni, P.; Landi, F.; Mochi, C.; Giuri, R. Shear modulus of masonry walls: A critical review. Procedia Struct. Integr. 2018, 11, 339–346. [Google Scholar] [CrossRef]
- Fox, M.; Coley, D.; Goodhew, S.; De Wilde, P. Thermography methodologies for detecting energy related building defects. Renew Sustain. Energy Rev. 2014, 40, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy 2014, 134, 531–549. [Google Scholar] [CrossRef]
- Milovanović, B.; Pečur, I.B. Review of active IR thermography for detection and characterization of defects in reinforced concrete. J. Imaging 2016, 2, 11. [Google Scholar] [CrossRef]
- Carpentier, O.; Chartier, O.; Antczak, E.; Descamp, T.; van Parys, L. Active and quantitative infrared thermography using frequential analysis applied to the monitoring of historic timber structures. In Proceedings of the International Conference on Structural Health Assessment of Timber Structures, Wroclaw, Poland, 11 September 2015; pp. 61–70. [Google Scholar]
- Khan, F.; Bolhassani, M.; Kontsos, A.; Hamid, A.; Bartoli, I. Modeling and experimental implementation of infrared thermography on concrete masonry structures. Infrared Phys. Technol. 2015, 69, 228–237. [Google Scholar] [CrossRef]
- Mader, D.; Blaskow, R.; Westfeld, P.; Weller, C. Potential of UAV-Based laser scanner and multispectral camera data in building inspection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2016, B1, 1135–1142. [Google Scholar] [CrossRef]
- Valença, J.; Gonçalves, L.M.S.; Júlio, E. Damage assessment on concrete surfaces using multi-spectral image analysis. Constr. Build. Mater. 2013, 40, 971–981. [Google Scholar] [CrossRef]
- Ellenberg, A.; Kontsos, A.; Bartoli, I.; Pradhan, A. Masonry crack detection application of an unmanned aerial vehicle. In Proceedings of the International Conference Computing in Civil and Building Engineering, Orlando, FL, USA, 23–25 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.O.; Valença, J.; Júlio, E. Detection of cracks on concrete surfaces by hyperspectral image processing. Autom. Vis. Insp. Mach. Vis. II 2017, 188, 72–79. [Google Scholar] [CrossRef]
- Santos, B.O.; Valença, J.; Júlio, E. Automatic mapping of cracking patterns on concrete surfaces with biological stains using hyper-spectral images processing. Struct. Control Health Monit. 2019, 26. [Google Scholar] [CrossRef]
- Khan, A.; Gupta, S.; Gupta, S.K. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int. J. Disaster Risk Reduct. 2020, 47, 101642. [Google Scholar] [CrossRef]
- De Silva, L.O.; de Bandeira, R.A.M.; Campos, V.B.G. Proposal to planning facility location using UAV and geographic information systems in a post-disaster scenario. Int. J. Disaster Risk Reduct. 2019, 36, 101080. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.H. Concrete crack identification using a UAV incorporating hybrid image processing. Sensors 2017, 26, 2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grazzini, A.; Chiabrando, F.; Foti, S.; Sammartano, G.; Spanò, A. A multidisciplinary study on the seismic vulnerability of St. Agostino Church in Amatrice following the 2016 seismic sequence. Int. J. Archit. Herit. 2019, 3058, 885–902. [Google Scholar] [CrossRef]
- Federman, A.; Santana Quintero, M.; Kretz, S.; Gregg, J.; Lengies, M.; Ouimet, C.; Laliberte, J. UAV photgrammetric workflows: A best practice guideline. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Services (ISPRS Archives), 26th International CIPA Symposium, Ottawa, CA, Canada, 28 August–1 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Barrile, V.; Candela, G.; Fotia, A. Point cloud segmentation using image processing techniques for structural analysis. In Proceedings of the Remote Sensing and Spatial Information Services (ISPRS Annual Photogrammetry), 2nd International Conference of Geomatics and Restoration, Milan, Italy, 8–10 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Purdie, H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring–A review. Geoenviron. Disasters 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Chuang, R.Y.; Yen, J.Y.; Chen, Y.C.; Kuo, Y.T.; Wu, B.L.; Huang, S.-Y.; Yang, C.-J. Mapping surface breakages of the 2018 Hualien earthquake by using UAS photogrammetry. Terr. Atmos. Ocean Sci. 2019, 30, 351–366. [Google Scholar] [CrossRef] [Green Version]
- Hirose, M.; Xiao, Y.; Zuo, Z.; Kamat, V.R.; Zekkos, D.; Lynch, J. Implementation of UAV localization methods for a mobile post-earthquake monitoring system. In Proceedings of the IEEE Work. Environmental Energy and Structural Monitoring Systems (EESMS 2015), Trento, Italy, 9–10 July 2015. [Google Scholar] [CrossRef]
- Hudnut, K.W.; Brooks, B.A.; Scharer, K.; Hernandez, J.L.; Dawson, T.E.; Oskin, M.E.; Arrowsmith, J.R.; Goulet, C.A.; Blake, K.; Boggie, M.A.; et al. Airborne lidar and electro-optical imagery along surface ruptures of the 2019 ridgecrest earthquake sequence, Southern California. Seismol Res. Lett. 2020, 11, 3082. [Google Scholar] [CrossRef]
- Jaydev, P.D.; Gregory, D.; Oussama, K.; Vijay, K. (Eds.) Experimental Robotics; Springer: Heidelberg, Germany, 2013; Volume 88, pp. 733–743. [Google Scholar] [CrossRef]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing accuracy and repeatability of UAV blocks oriented with gnss-supported aerial triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, C.; Nex, F.; Koeva, M.; Gerke, M. Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. In Proceedings of the International Archives Photogrammetry Remote Sensing and Spatial Information Sciences (ISPRS Archives), Bonn, Germany, 4–7 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Jurjević, L.; Gašparović, M.; Milas, A.S.; Balenović, I. Impact of UAS image orientation on accuracy of forest inventory attributes. Remote Sens 2020, 12, 404. [Google Scholar] [CrossRef] [Green Version]
- Tisdale, J.; Kim, Z.; Hedrick, J. Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. 2009, 16, 35–42. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Navia, J.; Mondragon, I.; Patino, D.; Colorado, J. Multispectral mapping in agriculture: Terrain mosaic using an autonomous quadcopter UAV. In Proceedings of the International Conference Unmanned Aircraft System (ICUAS), Arlington, VA, USA, 7–10 June 2016. [Google Scholar] [CrossRef]
- Luhmann, T.; Fraser, C.; Maas, H.G. Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115. [Google Scholar] [CrossRef]
- Kordić, B.; Gašparović, M.; Oberiter, B.L.; Đapo, A.; Vlastelica, G. Spatial data performance test of mid-cost UAS with direct georeferencing. Period Polytech. Civ. Eng. 2020, 52. [Google Scholar] [CrossRef]
- Kaempchen, N.; Dietmayer, K. Data synchronization strategies for multi-sensor fusion. In Proceedings of the IEEE Conference of Intelligent Transportation System, Shanghai, China, 12–15 October 2003. [Google Scholar]
- Gašparović, M. Radiometric Equalization of Textures on the Photorealistic 3D Models. Ph.D. Thesis, Faculty of Geodesy, Zagreb, Croatia, May 2015. [Google Scholar]
- Burggraaff, O.; Schmidt, N.; Zamorano, J.; Pauly, K.; Pascual, S.; Tapia, C.; Spyrakos, E.; Snik, F. Standardized spectral and radiometric calibration of consumer cameras. Opt. Express 2019, 14, 19075–19101. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Pollefeys, M. Robust radiometric calibration and vignetting correction. IEEE Trans. Pattern. Anal. Mach. Intell. 2008, 30, 562–576. [Google Scholar] [CrossRef]
- Sinha, S.N.; Pollefeys, M. Synchronization and calibration of camera networks from silhouettes. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge UK, 23-26 August 2004. [Google Scholar] [CrossRef] [Green Version]
- Huck, T.; Westenberger, A.; Fritzsche, M.; Schwarz, T.; Dietmayer, K. Precise timestamping and temporal synchronization in multi-sensor fusion. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011. [Google Scholar] [CrossRef]
- Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44–59. [Google Scholar] [CrossRef]
- Liao, W.; Huang, X.; Van Coillie, F.; Gautama, S.; Pižurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2015, 2984–2996. [Google Scholar] [CrossRef]
- Remondino, F.; Gruen, A. Multi-sensor 3D documentation of the Maya site of Copan. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009. [Google Scholar]
- Mathews, A.J.; Jensen, J.L.R. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sens. 2013, 5, 2164–2183. [Google Scholar] [CrossRef] [Green Version]
- Jay, S.; Rabatel, G.; Hadoux, X.; Moura, D.; Gorretta, N. In-field crop row phenotyping from 3D modeling performed using Structure from Motion. Comput. Electron. Agric. 2015, 110, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Jong, S.M.d.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P. Underwater 3D modeling: Image enhancement and point cloud filtering. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.–ISPRS Arch. 2016, 41. [Google Scholar] [CrossRef]
- Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M.Y. Filtering photogrammetric point clouds using standard lidar filters towards dtm generation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Zeybek, M.; Şanlıoğlu, İ. Point cloud filtering on UAV based point cloud. Meas. J. Int. Meas. Confed. 2019, 133, 99–111. [Google Scholar] [CrossRef]
- Pintus, R.; Gobbetti, E.; Callieri, M.; Dellepiane, M. Techniques for Seamless Color Registration and Mapping on Dense 3D Models, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 355–376. [Google Scholar] [CrossRef]
- Dvorožňák, M.; Nejad, S.S.; Jamriška, O.; Jacobson, A.; Kavan, L.; Sýkora, D. Seamless Reconstruction of Part-Based High-Relief Models from Hand-Drawn Images. Available online: https://www.cs.utah.edu/~ladislav/dvoroznak18seamless/dvoroznak18seamless.pdf (accessed on 17 August 2018).
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Tzotsos, A. A support vector machine approach for object based image. In Proceedings of the 1st International Conference Object-Based Image Analysis, Salzburg, Austria, 4–5 July 2006. [Google Scholar]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef] [Green Version]
- Gašparović, M.; Zrinjski, M.; Gudelj, M. Automatic cost-effective method for land cover classification (ALCC). Comput. Environ. Urban Syst. 2019, 76, 1–10. [Google Scholar] [CrossRef]
- Jawak, S.D.; Luis, A.J. A spectral index ratio-based Antarctic land-cover mapping using hyperspatial 8-band WorldView-2 imagery. Polar Sci. 2013, 7, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Morsy, S.; Shaker, A.; El-Rabbany, A.; Larocque, P.E. Airborne multispectral lidar data for land-cover classification and land/water mapping using different spectral indexes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I. Extraction of slum areas from VHR imagery using GLCM variance. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2016, 9, 1830–1840. [Google Scholar] [CrossRef]
- Raiffa, H.; Schlaifer, R. Applied Statistical Decision Theory, 1st ed.; Harvard University Press: Boston, MA, USA, 1961. [Google Scholar]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man. Cybern. 1973, 2, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Gašparović, M.; Dobrinić, D. Comparative assessment of machine learning methods for urban vegetation mapping using multitemporal sentinel-1 imagery. Remote Sens. 2020, 12, 1952. [Google Scholar] [CrossRef]
- Gavarini, C. Seismic risk in historical centers. Soil Dyn. Earthq. Eng. 2001, 21, 459–466. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M. Vulnerability curves vs. Vulnerability indicators: Application of an indicator-based methodology for debris-flow hazards. Nat. Hazards Earth. Syst. Sci. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
- Goretti, A.; Di Pasquale, G. An overview of post-earthquake damage assessment in Italy. In Proceedings of the EERI Invitational Workshop. An Action to Develop Earthquake Damage and Loss Data Protocols, Pasadena, CA, USA, 19–20 September 2002. [Google Scholar]
Method | Advantages | Disadvantages |
Visual inspection |
|
|
Stress wave transmission |
|
|
Ultrasonic & sonic velocity testing, acoustic emission |
|
|
Impact echo |
|
|
Surface penetrating radar |
|
|
Rebound hammer test |
|
|
Flatjack system |
|
|
Technology/Method | Advantages | Disadvantages |
---|---|---|
UAV |
|
|
LiDAR |
|
|
High-resolution cameras |
|
|
Infrared thermography |
|
|
Photogrammetry |
|
|
360 cameras |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepinac, M.; Gašparović, M. A Review of Emerging Technologies for an Assessment of Safety and Seismic Vulnerability and Damage Detection of Existing Masonry Structures. Appl. Sci. 2020, 10, 5060. https://doi.org/10.3390/app10155060
Stepinac M, Gašparović M. A Review of Emerging Technologies for an Assessment of Safety and Seismic Vulnerability and Damage Detection of Existing Masonry Structures. Applied Sciences. 2020; 10(15):5060. https://doi.org/10.3390/app10155060
Chicago/Turabian StyleStepinac, Mislav, and Mateo Gašparović. 2020. "A Review of Emerging Technologies for an Assessment of Safety and Seismic Vulnerability and Damage Detection of Existing Masonry Structures" Applied Sciences 10, no. 15: 5060. https://doi.org/10.3390/app10155060