Modelling Groundwater Hydraulics to Design a Groundwater Level Monitoring Network for Sustainable Management of Fresh Groundwater Lens in Lower Indus Basin, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrogeology
2.3. Aquifer Properties
2.4. Groundwater Flow Simulation
2.4.1. Model Conceptualization and Boundary Conditions
2.4.2. Evapotranspiration
2.4.3. Recharge
2.4.4. River Leakage
2.4.5. Pumping
2.4.6. Model Calibration
2.5. Hexagonal Pattern of Sampling
2.6. Principal Component Analysis
2.7. Potentiometric Head Classification
3. Results
3.1. Groundwater Flow Simulation Model
3.2. Hexagonal Pattern of Sampling
3.3. Principal Component Analysis
3.4. Potentiometric Head Classification
4. Discussion
5. Conclusions
- A hexagonal sampling pattern resulted in a 195 well monitoring network, which represented the area with a mean error of 0.098 m compared to the base case.
- PCA resulted in a 135 well monitoring network, which represented the area with a mean error 0.318 m.
- Well reduction based on the contour classification resulted in a 59 well monitoring network, which represented the area with 0.61 m of error.
- Three networks are presented for monitoring and management of the freshwater lenses, which can be established based on the available budget and monitoring targets. One with 195 wells will fully represent the water levels in the freshwater lenses. Designs with 135 and 59 wells will represent the depleting area, but they will not capture the water logging area. As the objective is to monitor the over-exploitation of the freshwater lenses, monitoring networks with 59 wells will help to achieve this objective.
- The objective of this study was to model groundwater hydraulics and design a groundwater level monitoring network that can represent depleting and increasing water levels. As per the physical setting of the aquifer in the LIB, saline water up-coning will take place if the thickness of shallow freshwater lenses becomes thin following over-extraction [27,28,43,44]. It is essential to set a water level threshold that should be kept in freshwater lenses to avoid saline water intrusion. In future studies, we will extend the flow model to perform freshwater–saline water interaction to set a groundwater level threshold. Water level measurements in combination with thresholds will provide regulators with a decision tool to regulate pumping in freshwater lenses by only monitoring levels in the piezometers.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable groundwater management in Pakistan: Challenges and opportunities. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Loaiciga, H.A.; Charbeneau, R.J.; Everett, L.G.; Fogg, G.E.; Hobbs, B.F.; Rouhani, S. Review of ground-water quality monitoring network design. J. Hydraul. Eng. 1992, 118, 11–37. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Das Gupta, A.; Nachabe, M. Evaluation of ground water monitoring network by principal component analysis. Groundwater 2001, 39, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chen, H.; Rana, T. Optimizing ground water observation networks in irrigation areas using principal component analysis. Groundw. Monit. Remediat. 2008, 28, 93–100. [Google Scholar] [CrossRef]
- Jawad, S.B.; Hussien, K.A. Groundwater monitoring network rationalization using statistical analyses of piezometric fluctuation. Hydrol. Sci. J. 1988, 33, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Mirzaie-Nodoushan, F.; Bozorg-Haddad, O.; Loáiciga, H.A. Optimal design of groundwater-level monitoring networks. J. Hydroinform. 2017, 19, 920–929. [Google Scholar] [CrossRef]
- Bhat, S.; Motz, L.H.; Pathak, C.; Kuebler, L. Geostatistics-based groundwater-level monitoring network design and its application to the upper floridan aquifer, USA. Environ. Monit. Assess. 2015, 187, 4183. [Google Scholar] [CrossRef]
- Khalili, K. Comparison of geostatistical methods for interpolation groundwater level (case study: Lake Urmia basin). J. Appl. Environ. Biol. Sci. 2014, 4, 15–23. [Google Scholar]
- Shen, Y.; Wu, Y. Optimization of marine environmental monitoring sites in the Yangtze River estuary and its adjacent sea, China. Ocean Coast. Manag. 2013, 73, 92–100. [Google Scholar] [CrossRef]
- Yang, F.-g.; Cao, S.-y.; Liu, X.-n.; Yang, K.-j. Design of groundwater level monitoring network with ordinary kriging. J. Hydrodyn. 2008, 20, 339–346. [Google Scholar] [CrossRef]
- Leach, J.M.; Coulibaly, P.; Guo, Y. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Adv. Water Res. 2016, 96, 108–119. [Google Scholar] [CrossRef]
- Janardhanan, S.; Gladish, D.; Gonzalez, D.; Pagendam, D.; Pickett, T.; Cui, T. Optimal design and prediction-independent verification of groundwater monitoring network. Water 2020, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, I.; Huang, G.; Huang, Y. A groundwater monitoring design through site characterization, numerical simulation and statistical analysis-a north American case study. J. Environ. Inform. 2004, 3, 1–23. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N.; Vigliotti, M.; Ruberti, D. Modelling actual and future seawater intrusion in the Variconi Coastal Wetland (Italy) due to climate and landscape changes. Water 2019, 11, 1502. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Langevin, C.D. User’s Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2002.
- Viaroli, S.; Lotti, F.; Mastrorillo, L.; Paolucci, V.; Mazza, R. Simplified two-dimensional modelling to constrain the deep groundwater contribution in a complex mineral water mixing area, Riardo Plain, southern Italy. Hydrogeo. J. 2019, 27, 1459–1478. [Google Scholar] [CrossRef] [Green Version]
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Prieto, C.; Kotronarou, A.; Destouni, G. The influence of temporal hydrological randomness on seawater intrusion in coastal aquifers. J. Hydrol. 2006, 330, 285–300. [Google Scholar] [CrossRef]
- Kopsiaftis, G.; Tigkas, D.; Christelis, V.; Vangelis, H. Assessment of drought impacts on semi-arid coastal aquifers of the Mediterranean. J. Arid Environ. 2017, 137, 7–15. [Google Scholar] [CrossRef]
- Carneiro, J.F.; Boughriba, M.; Correia, A.; Zarhloule, Y.; Rimi, A.; El Houadi, B. Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environ. Earth Sci. 2010, 61, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Palmier, C.; Atteia, O.; Class, H. Multiphase simulation model for validating the estimate of light Non-aqueous phase liquids (LNAPL) transmissivity using bail-down test. Arab. J. Sci. Eng. 2019, 44, 6099–6107. [Google Scholar] [CrossRef]
- Ashraf, A.; Ahmad, Z. Regional groundwater flow modelling of Upper Chaj Doab of Indus Basin, Pakistan using finite element model (Feflow) and geoinformatics. Geophys. J. Int. 2008, 173, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Rana, T.; Ullah, K.; Christen, E.; Nafees, M. Investigating Conjunctive Water Management Options Using a Dynamic Surface-Groundwater Modelling Approach: A Case Study of Rechna Doab; Technical Report; CSIRO Land and Water: Canberra, Australia, 2003. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005.
- Zheng, C. MT3D: A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; SS Papadopulos & Associates: San Francisco, CA, USA, 1992. [Google Scholar]
- Punthakey, J.; Khan, M.; Ahmad, R.N.; Riaz, M.; Javed, M.; Zakir, G.; Usman, M.; Amin, M.; Culas, R.; Baig, I.A. Optimising Canal and Groundwater Management to Assist Water User Associations in Maximizing Crop Production and Managing Salinisation in Australia and Pakistan; Final Report; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2016.
- Kori, S.; Qureshi, A.; Lashari, B.; Memon, N. Optimum strategies of groundwater pumping regime under scavenger tubewells in lower Indus Basin, Sindh, Pakistan. Int. Water Technol. J. 2013, 3, 138–145. [Google Scholar]
- Qureshi, A.; Lashari, B.; Kori, S.; Lashari, G. Hydro-salinity behavior of shallow groundwater aquifer underlain by salty groundwater in Sindh Pakistan. In Proceedings of the 15th International Water Technology Conference, Alexandria, Egypt, 31 March–2 April 2011. [Google Scholar]
- Chandio, A.; Lee, T.; Mirjat, M. The extent of waterlogging in the lower Indus Basin (Pakistan)–a modeling study of groundwater levels. J. Hydrol. 2012, 426, 103–111. [Google Scholar] [CrossRef]
- Olea, R.A. Sampling design optimization for spatial functions. J. Int. Assoc. Math. Geol. 1984, 16, 369–392. [Google Scholar] [CrossRef]
- Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J. Appl. Geol. 2013, 5. [Google Scholar] [CrossRef]
- Mott, H.T.S.L.a.S. Lower Indus Report; WAPDA: Islamabad, Pakistan, 1965.
- IWASRI. Drainage Atlas of Pakistan; International Water Logging and Salinity Research Institute: Lahore, Pakistan, 2005. [Google Scholar]
- Bonsor, H.; MacDonald, A.; Ahmed, K.; Burgess, W.; Basharat, M.; Calow, R.; Dixit, A.; Foster, S.; Gopal, K.; Lapworth, D. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol. J. 2017, 25, 1377–1406. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.; Rehman, A.; Sheikh, J.; Ali, S. Analysis of Pumping Tests in the Punjab Region of West Pakistan; US Geological Survey Water Supply Paper; U.S. Government Printing Ofiice: Washington, DC, USA, 1969.
- Shroder, J.F., Jr. Himalaya to the sea: Geomorphology and the Quaternary of Pakistan in the regional context. In Himalaya to the Sea; Routledge: Abingdon, UK, 2002; pp. 21–47. [Google Scholar]
- MacDonald, S.M. LBOD Stage 1 Project, Mirpurkhas, Pilot Study: Hydrogeology, Special Wells, Preliminary Well Design, Well Numbers and Spacing; The World Bank: Washinton, DC, USA, 1990. [Google Scholar]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Shah, N.; Nachabe, M.; Ross, M. Extinction depth and evapotranspiration from ground water under selected land covers. Groundwater 2007, 45, 329–338. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. Supplement: Supplement to the NCEP climate forecast reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, ES9–ES25. [Google Scholar] [CrossRef]
- Van Steenbergen, F.; Oliemans, W. A review of policies in groundwater management in Pakistan 1950–2000. Water Policy 2002, 4, 323–344. [Google Scholar] [CrossRef]
- National Water Policy; Government of Pakistan: Islamabad, Pakistan, 2018.
- Zardari, N.H.; Shirazi, S.M.; Yusop, Z.; Naubi, I.; Mangrio, M.A. A comparison of current and design operational efficiencies of scavenger wells in lower Indus Basin of Pakistan and possibility of upconing problem. Arab. J. Geosci. 2015, 8, 8669–8680. [Google Scholar] [CrossRef]
- Ali, G.; Asghar, M.N.; Latif, M.; Hussain, Z. Optimizing operational strategies of scavenger wells in lower Indus basin of Pakistan. Agric. Water Manag. 2004, 66, 239–249. [Google Scholar] [CrossRef]
Number of Wells | Statistics | Post Monsoon 2010 | Pre Monsoon 2011 | Post Monsoon 2011 | Pre Monsoon 2012 | Post Monsoon 2012 | Pre Monsoon 2013 | Post Monsoon 2013 | Pre Monsoon 2014 | Average |
---|---|---|---|---|---|---|---|---|---|---|
3415 | Mean [h] | 32.81 | 32.64 | 32.56 | 32.5 | 32.51 | 32.49 | 32.42 | 32.94 | 32.61 |
SD [h] | 5.5 | 5.54 | 5.56 | 5.5 | 5.62 | 5.56 | 5.59 | 5.47 | 5.54 | |
CV [h] | 0.167 | 0.169 | 0.17 | 0.169 | 0.172 | 0.171 | 0.172 | 0.166 | 0.17 | |
195 | Mean [h] | 32.71 | 32.54 | 32.46 | 32.4 | 32.41 | 32.39 | 32.33 | 32.85 | 32.51 |
SD [h] | 5.44 | 5.51 | 5.54 | 5.48 | 5.56 | 5.49 | 5.53 | 5.41 | 5.5 | |
CV [h] | 0.166 | 0.169 | 0.17 | 0.169 | 0.171 | 0.169 | 0.171 | 0.164 | 0.17 | |
Mean [Er] | 0.1 | 0.1 | 0.02 | −0.04 | 0.1 | 0.1 | 0.09 | 0.09 | 0.098 | |
SD [Er] | 0.59 | 0.59 | 0.59 | 0.59 | 0.58 | 0.58 | 0.58 | 0.57 | 0.58 | |
135 | Mean [h] | 32.5 | 32.33 | 32.23 | 32.18 | 32.19 | 32.16 | 32.1 | 32.64 | 32.29 |
SD [h] | 5.28 | 5.36 | 5.59 | 5.33 | 5.42 | 5.34 | 5.39 | 5.25 | 5.37 | |
CV [h] | 0.1624 | 0.1657 | 0.173 | 0.165 | 0.168 | 0.166 | 0.167 | 0.16 | 0.17 | |
Mean [Er] | 0.31 | 0.31 | 0.33 | 0.32 | 0.32 | 0.33 | 0.32 | 0.3 | 0.318 | |
SD [Er] | 0.93 | 0.96 | 0.97 | 0.96 | 0.97 | 0.96 | 0.97 | 0.89 | 0.95 | |
59 | Mean [h] | 32.21 | 32.03 | 31.94 | 31.89 | 31.89 | 31.88 | 31.81 | 32.38 | 32 |
SD [h] | 5.58 | 5.66 | 5.68 | 5.62 | 5.7 | 5.63 | 5.67 | 5.53 | 5.63 | |
CV [h] | 0.173 | 0.176 | 0.177 | 0.176 | 0.178 | 0.176 | 0.178 | 0.17 | 0.18 | |
Mean [Er] | 0.6 | 0.61 | 0.62 | 0.61 | 0.62 | 0.61 | 0.61 | 0.56 | 0.61 | |
SD [Er] | 1.12 | 1.15 | 1.17 | 1.15 | 1.17 | 1.16 | 1.17 | 1.08 | 1.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Rahimoon, Z.A.; Oroza, C.A.; Sarwar, S.; Qureshi, A.L.; Framroze Punthakey, J.; Arfan, M. Modelling Groundwater Hydraulics to Design a Groundwater Level Monitoring Network for Sustainable Management of Fresh Groundwater Lens in Lower Indus Basin, Pakistan. Appl. Sci. 2020, 10, 5200. https://doi.org/10.3390/app10155200
Ahmed W, Rahimoon ZA, Oroza CA, Sarwar S, Qureshi AL, Framroze Punthakey J, Arfan M. Modelling Groundwater Hydraulics to Design a Groundwater Level Monitoring Network for Sustainable Management of Fresh Groundwater Lens in Lower Indus Basin, Pakistan. Applied Sciences. 2020; 10(15):5200. https://doi.org/10.3390/app10155200
Chicago/Turabian StyleAhmed, Waqas, Zulfiqar Ali Rahimoon, Carlos Anthony Oroza, Salman Sarwar, Abdul Latif Qureshi, Jehangir Framroze Punthakey, and Muhammad Arfan. 2020. "Modelling Groundwater Hydraulics to Design a Groundwater Level Monitoring Network for Sustainable Management of Fresh Groundwater Lens in Lower Indus Basin, Pakistan" Applied Sciences 10, no. 15: 5200. https://doi.org/10.3390/app10155200
APA StyleAhmed, W., Rahimoon, Z. A., Oroza, C. A., Sarwar, S., Qureshi, A. L., Framroze Punthakey, J., & Arfan, M. (2020). Modelling Groundwater Hydraulics to Design a Groundwater Level Monitoring Network for Sustainable Management of Fresh Groundwater Lens in Lower Indus Basin, Pakistan. Applied Sciences, 10(15), 5200. https://doi.org/10.3390/app10155200