Brewer’s Spent Grains: Possibilities of Valorization, a Review
Abstract
:1. Introduction
2. BSG: A Valuable By-Product
- drying in the oven is considered the most suitable but must be carried out at temperatures below 60 °C, with the disadvantage of a high energy consumption;
- drying by overheated steam in a thin layer brings the advantage of less consumption and improved drying efficiency;
- autoclaving at 121 °C for one hour has the disadvantage of solubilization of polysaccharides and phenolic compounds;
- drying by freezing with the disadvantage of the need for large storage spaces;
- pressing and filtration through the membrane followed by vacuum drying and drying 2 days in the air to bring moisture to 10% with the advantage that the products in which it was used no longer show microbial growth for 6 months [18].
3. Possible Uses of BSG
3.1. BSG as Animal Feed
3.2. BSG in Food
3.3. BSG Used as a Substrate
3.3.1. Substrate for the Cultivation of Microorganisms and the Production of Enzymes
3.3.2. A Substrate in Fermentation Processes
Production of Xylitol
Production of Lactic Acid
Ethanol Production
Lignocellulosic Yeast Carrier (LCYC)
3.3.3. Prebiotics
3.4. Obtaining Building Materials (Bricks)
3.5. Adsorbent
3.6. Source of Phenolic Compounds
3.7. Biogas Production
3.8. Food/Composite Packaging
3.9. Proteins, Protein Hydrolysates, Bioactive Peptides
- protein containing flour up to 65% protein;
- protein hydrolysates containing concentrates between 65–90% protein;
- protein isolates containing more than 90% protein [67].
- dry extraction techniques: fractions with high impurity and agglomerated particles. This category includes two-step electrostatic separation, which involves loading particles and separating them in an electric field [67];
- wet extraction techniques: acidic extractions are less effective because they do not degrade the cell wall, resulting in less protein in the extraction environment. Alkaline extractions are more effective but at high alkaline concentrations after the Maillard reaction, which affects the nutritional properties of proteins. Extracts with organic solvents are also used [68]. Combinations of water with enzymes, water in subcritical conditions, or protein extraction through reverse smalls attract more and more of the attention of researchers [67]. Alkalis are used as extraction solvents at high temperatures, followed by precipitation with alcohol or isoelectric precipitation, treatment with NaOH/KOH (0.1 M, 0.5 M, 4 M) for 24 h at room temperature, acidification with citric acid up to pH = 3, then precipitation with ethanol, an enzymatic hydrolysis-effective technique for extractions [9];
- other extraction methods are microwave-assisted extraction (MAE), ultrasonic-assisted extraction (EAU), electrically pulsed energy extraction, or extraction using high hydrostatic pressure [67].
3.10. Source of Fiber
3.11. Polymers
3.12. Other Application
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Roth, M.; Jekle, M.; Becker, T. Opportunities for upcycling cereal byproducts with special focus on Distiller’s grains. Trends Food Sci. Technol. 2019, 91, 282–293. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Loosdrecht, M. Cellulose: A key polymer for a greener, healthier, and bio-based future. Biofuel Res. J. 2016, 3, 482. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, C.K.; Qin, F.; Mussatto, S.I. Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenerg. 2018, 119, 54–60. [Google Scholar] [CrossRef]
- Statista. Beer Production Worldwide from 1998 to 2018. Available online: https://www.statista.com/statistics/270275/worldwide-beer-production/ (accessed on 20 May 2020).
- Fărcaş, A.C.; Socaci, S.A.; Dulf, F.V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar]
- Ikram, S.; Huang, L.Y.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Roberto, I.C. Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J. Sci. Food Agric. 2005, 85, 2453–2460. [Google Scholar] [CrossRef]
- McCarthy, A.L.; O’Callaghan, Y.C.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain; Bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Ombra, M.N.; D’Acierno, A.; Coppola, R. Recovery of biomolecules of high benefit from food waste. Curr. Opin. Food Sci. 2018, 22, 43–54. [Google Scholar] [CrossRef]
- Montesano, D.; Gallo, M.; Blasi, F.; Cossignani, L. Biopeptides from vegetable proteins: New scientific evidences. Curr. Opin. Food Sci. 2020, 31, 31–37. [Google Scholar] [CrossRef]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Guido, L.F.; Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: A Review. Food Bioprocess Technol. 2017, 10, 1192–1209. [Google Scholar] [CrossRef] [Green Version]
- El-Shafey, E.I.; Gameiro, M.L.F.; Correia, P.F.M.; De Carvalho, J.M.R. Dewatering of brewer’s spent grain using a membrane filter press: A pilot plant study. Sep. Sci. Technol. 2004, 39, 3237–3261. [Google Scholar] [CrossRef]
- Treimo, J.; Westereng, B.; Horn, S.J.; Forssell, P.; Robertson, J.A.; Faulds, G.B.; Waldron, K.W.; Buchert, J.; Eijsink, V.G.H. Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases. J. Agric. Food Chem. 2009, 57, 3316–3324. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Nigam, P.S. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Manag. 2017, 62, 255–261. [Google Scholar] [CrossRef]
- Amorim, C.; Silvério, S.C.; Silva, S.P.; Coelho, E.; Coimbra, M.A.; Prather, K.L.J.; Rodrigues, L.R. Single-step production of arabino-xylooligosaccharides by recombinant Bacillus subtilis 3610 cultivated in brewers’ spent grain. Carbohydr. Polym. 2018, 199, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I. Biotechnological Potential of Brewing Industry By-Products. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Nigam, S.N., Pandey, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 313–326. [Google Scholar]
- Qin, F.; Johansen, A.Z.; Mussatto, S.I. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Ind. Crops Prod. 2018, 125, 443–453. [Google Scholar] [CrossRef]
- Paz, A.; da Silva Sabo, S.; Vallejo, M.; Marguet, E.; Pinheiro de Souza Oliveira, R.; Domínguez, J.M. Using brewer’s spent grain to formulate culture media for the production of bacteriocins using Patagonian strains. LWT Food Sci. Technol. 2018, 96, 166–174. [Google Scholar] [CrossRef]
- Del Río, J.C.; Prinsen, P.; Gutiérrez, A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. J. Cereal Sci. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.S.; Tian, Y.J.; He, Y.Z.; Li, L.; Hu, S.Q.; Li, B. Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech J. Food Sci. 2010, 28, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Jayant, M.; Hassan, M.A.; Srivastava, P.P.; Meena, D.K.; Kumar, P.; Kumar, A.; Wagde, M.S. Brewer’s spent grains (BSGs) as feedstuff for striped catfish, Pangasianodon hypophthalmus fingerlings: An approach to transform waste into wealth. J. Clean. Prod. 2018, 199, 716–722. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P. The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem. 2008, 110, 865–872. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; O’Shea, N.; Gallagher, E. Rheological properties of wheat dough supplemented with functional by-products of food processing: Brewer’s spent grain and apple pomace. J. Food Eng. 2013, 116, 362–368. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoǧlu, S. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J. Cereal Sci. 2008, 47, 469–479. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Crofton, E.; Scannell, A.G.M.; Hannon, J.A.; Kilcawley, K.N.; Gallagher, E. Sensory properties and aromatic composition of baked snacks containing brewer’s spent grain. J. Cereal Sci. 2013, 57, 384–390. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Del Nobile, M.A. Microencapsulation of extracted bioactive compounds from brewer’s spent grain to enrich fish-burgers. Food Bioprod. Process. 2016, 100, 450–456. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Fruet, A.P.B.; Trombetta, F.; Franco da Fonseca, P.A.; dos Santos da Silva, M.; Stefanello, S.; Nörnberg, J.L. Stability of vacuum-packed meat from finishing steers fed different inclusion levels of brewer’s spent grain. Meat Sci. 2019, 147, 155–161. [Google Scholar] [CrossRef]
- Cappa, C.; Alamprese, C. Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. LWT Food Sci. Technol. 2017, 82, 464–470. [Google Scholar] [CrossRef]
- Gupta, S.; Jaiswal, A.K.; Abu-Ghannam, N. Optimization of fermentation conditions for the utilization of brewing waste to develop a nutraceutical rich liquid product. Ind. Crops Prod. 2013, 44, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour. Technol. 2004, 93, 1–10. [Google Scholar] [CrossRef]
- Mussatto, S.I. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 169–185. [Google Scholar]
- Outeiriño, D.; Costa-Trigo, I.; Paz, A.; Deive, F.J.; Rodríguez, A.; Domínguez, J.M. Biorefining brewery spent grain polysaccharides through biotuning of ionic liquids. Carbohydr. Polym. 2019, 203, 265–274. [Google Scholar] [CrossRef]
- Da Silva, S.S.; Chandel, A.K. D-Xylitol: Fermentative Production, Application and Commercialization; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, p. 345. [Google Scholar]
- Mussatto, S.I.; Dragone, G.; Teixeira, J.A.; Roberto, I.C. Total reuse of brewer’s spent grain in chemical and biotechnological processes for the production of added—Value compounds. In Proceedings of the International Conference and Exibition on Bioenergy, Guimarães, Portugal, 6–9 April 2008; pp. 4–5. [Google Scholar]
- Mussatto, S.I.; Roberto, I.C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 2006, 81, 268–274. [Google Scholar] [CrossRef]
- Silva, C.J.S.M.; Mussatto, S.I.; Roberto, I.C. Study of xylitol production by Candida guilliermondii on a bench bioreactor. J. Food Eng. 2006, 75, 115–119. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Moncada, J.; Roberto, I.C.; Cardona, C.A. Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresour. Technol. 2013, 148, 302–310. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Santos, J.C.; Roberto, I.C. Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J. Chem. Technol. Biotechnol. 2004, 79, 590–596. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Kinetic behavior of Candida guilliermondii yeast during xylitol production from brewer’s spent grain hemicellulosic hydrolysate. Biotechnol. Prog. 2005, 21, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.A.; Villarreal, M.L.M.; Almeida e Silva, J.B.; Solenzal, A.I.N.; Canilha, L.; Mussatto, S.I. Uso De Diferentes Materias Primas Para La Producción Biotecnológica De Xilitol. Cienc. Tecnol. Aliment. 2002, 3, 295–301. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Fernandes, M.; Dragone, G.; Mancilha, I.M.; Roberto, I.C. Brewer’s spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnol. Lett. 2007, 29, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wan, C. Carboxylic acid production from Brewer’s spent grain via mixed culture fermentation. Bioresour. Technol. 2015, 182, 179–183. [Google Scholar] [CrossRef]
- Dragone, G.; Mussatto, S.I.; De Almeida, E.; Silva, J.B. Use of concentrated worts for high gravity brewing by continuous process: New tendencies for the productivity increase. Cienc. Tecnol. Aliment. 2007, 27, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Dragone, G.; Mussatto, S.I.; Almeida, E.; Silva, J.B. Influence of temperature on continuous high gravity brewing with yeasts immobilized on spent grains. Eur. Food Res. Technol. 2008, 228, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Brányik, T.; Vicente, A.A.; Machado Cruz, J.M.; Teixeira, J.A. Spent grains—A new support for brewing yeast immobilisation. Biotechnol. Lett. 2001, 23, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Amorim, C.; Silvério, S.C.; Prather, K.L.J.; Rodrigues, L.R. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 2019, 37, 107397. [Google Scholar] [CrossRef] [Green Version]
- Amorim, C.; Silvério, S.C.; Rodrigues, L.R. One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chem. 2019, 270, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Asofiei, I. Nonconventional Techniques for the Separation of Valuable Compounds from Plants. Ph.D. Thesis, Politehnica University, Bucharest, Romania, 2017. [Google Scholar]
- Oarcea, A.I. Effect of Plant Polyphenolson Cancer Cells. Ph.D. Thesis, West University Vasile Goldis of Arad, Arad, Romania, 2016. [Google Scholar]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Vellingiri, V.; Amendola, D.; Spigno, G. Screening of four different agro-food by-products for the recovery of antioxidants and cellulose. Chem. Eng. Trans. 2014, 37, 757–762. [Google Scholar]
- Kitryte, V.; Šaduikis, A.; Venskutonis, P.R. Assessment of antioxidant capacity of brewer’s spent grain and its supercritical carbon dioxide extract as sources of valuable dietary ingredients. J. Food Eng. 2015, 167, 18–24. [Google Scholar] [CrossRef]
- Ghasemi Ghodrat, A.; Tabatabaei, M.; Aghbashlo, M.; Mussatto, S.I. Waste Management Strategies; the State of the Art. In Biogas: Fundamentals, Process, and Operation; Tabatabaei, M., Ghanavati, H., Eds.; Biofuel and Biorefinery Technologies; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018; Volume 6, pp. 1–33. [Google Scholar]
- Nassary, E.K.; Nasolwa, E.R. Unravelling disposal benefits derived from underutilized brewing spent products in Tanzania. J. Environ. Manag. 2019, 242, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zang, L. Enhancement of biohydrogen production from brewers’ spent grain by calcined-red mud pretreatment. Bioresour. Technol. 2016, 209, 73–79. [Google Scholar] [CrossRef]
- Proaño, J.L.; Salgado, P.R.; Cian, R.E.; Mauri, A.N.; Drago, S.R. Physical, structural and antioxidant properties of brewer’s spent grain protein films. J. Sci. Food Agric. 2020. [Google Scholar] [CrossRef]
- Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, L. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind. Crops Prod. 2017, 108, 844–852. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Duan, Y. A mini-review on brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Mussatto, S.I. Protein and amino acids recovery from brewer’s spent grains by different pretreatment technologies. In Proceedings of the Brazilian Bioenergy Science and Technology Conference 2017 (BBEST 2017): Designing a Sustanable Bioeconomy, Campos do Jordão, Brazil, 17–19 October 2017; p. 193. [Google Scholar]
- Ervin, V.; Alli, I.; Smith, J.P.; Li, Z. Extraction and Precipitation of Proteins From Brewer’s Spent Grain. Can. Inst. Food Sci. Technol. J. 1989, 22, 216–221. [Google Scholar] [CrossRef]
- Cermeño, M.; Connolly, A.; O’Keeffe, M.B.; Flynn, C.; Alashi, A.M.; Aluko, R.E.; FitzGerald, R.J. Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. J. Funct. Foods. 2019, 60, 103455. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem. 2018, 267, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [Green Version]
- Kotlar, C.E.; Ponce, A.G.; Roura, S.I. Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically. LWT Food Sci. Technol. 2013, 50, 378–385. [Google Scholar] [CrossRef]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Technofunctional properties of a brewers’ spent grain protein-enriched isolate and its associated enzymatic hydrolysates. LWT Food Sci. Technol. 2014, 59, 1061–1067. [Google Scholar] [CrossRef]
- Berglund, L.; Noël, M.; Aitomäki, Y.; Öman, T.; Oksman, K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind. Crops Prod. 2016, 92, 84–92. [Google Scholar] [CrossRef]
- He, Y.; Kuhn, D.D.; Ogejo, J.A.; O’Keefe, S.F.; Fernández Fraguas, C.; Wiersema, B.D.; Jin, Q.; Yu, D.; Huang, H. Wet fractionation process to produce high protein and high fiber products from brewer’s spent grain. Food Bioprod. Process. 2019, 117, 266–274. [Google Scholar] [CrossRef]
- Ribau, M.; Guarda, E.C.; Freitas, E.B.; Galinha, C.F.; Duque, A.F.; Reis, M.A.M. Valorization of raw brewers’ spent grain through the production of volatile fatty acids. New Biotechnol. 2020, 57, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Ndayishimiye, J.; Ferrentino, G.; Nabil, H.; Scampicchio, M. Encapsulation of Oils Recovered from brewer’s Spent Grain by Particles from Gas Saturated Solutions Technique. Food Bioprocess Technol. 2020, 13, 256–264. [Google Scholar] [CrossRef]
- Abasiekong, S.F. Effects of Fermentation on Crude Protein Content of Brewers Dried Grains and Spent Sorghum Grains. Bioresour. Technol. 1991, 35, 99–102. [Google Scholar] [CrossRef]
- Amoriello, T.; Vecchiarelli, V.; Pagano, M. Evaluation of Spent Grain Biochar Impact on Hop (Humulus lupulus L.) Growth by Multivariate Image Analysis. Appl. Sci. 2020, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 1–28. [Google Scholar] [CrossRef]
- Atere, V.A. Citric acid production from brewers spent grain by Aspergillus niger and Saccharomyces cerevisiae. Int. J. Res. Biosci. 2013, 2, 30–36. [Google Scholar]
- Dabija, A.; Tulbure, M. Capitalization of By-Products in the Beer Industry; PIM Publishing House: Iasi, Romania, 2010. [Google Scholar]
Proteins | Lipids | Fibers | Carbohydrates | Lignin | Arabinoxilan (AX) | Ashes | Lyzine | Study |
---|---|---|---|---|---|---|---|---|
234 mg/g | - | - | 459 mg/g | - | - | - | - | [19] |
24.69% | - | - | - | - | - | 4.18% | - | [16] |
15–28% | 5–8% | - | - | - | - | 4.5–6% | - | [13] |
20% | - | 50% | - | 10–28% | 40% | - | 14.30% | [8] |
18–35.4% | - | - | - | - | - | - | 14.30% | [14] |
14.2–31% | 3–13% | 59.1–74.1% | - | - | - | - | - | [20] |
15–26% | 3.9–10% | 70% | - | - | - | - | - | [21] |
19.20% | - | - | - | 22.30% | - | 4.54% | - | [22] |
15.4–30% | 10% | - | - | 11.9–27.8% | - | 2–5% | - | [3] |
31% | 9% | - | - | 16% | - | 4% | - | [18] |
15.3–24.6% | - | - | - | 11.9–27.8% | - | 1.2–4.6% | - | [23] |
22.44% | 5.3% | - | 46.52% | 19.57% | - | 3.54% | - | [24] |
31.81% | - | 3.07% | 12.72% | [25] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. https://doi.org/10.3390/app10165619
Chetrariu A, Dabija A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Applied Sciences. 2020; 10(16):5619. https://doi.org/10.3390/app10165619
Chicago/Turabian StyleChetrariu, Ancuța, and Adriana Dabija. 2020. "Brewer’s Spent Grains: Possibilities of Valorization, a Review" Applied Sciences 10, no. 16: 5619. https://doi.org/10.3390/app10165619