Next Article in Journal
Cross-Layer Installed Cable-Bracing Inerter System for MDOF Structure Seismic Response Control
Previous Article in Journal
Novel Faulted Section Location Method for Distribution Network Based on Status Information of Fault Indicating Equipment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Optical Amplifiers for Access and Passive Optical Networks: A Tutorial

1
Department of Telecommunication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic
2
Independent Consultant, 16 000 Prague, Czech Republic
3
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
*
Author to whom correspondence should be addressed.
Appl. Sci. 2020, 10(17), 5912; https://doi.org/10.3390/app10175912
Submission received: 20 July 2020 / Revised: 14 August 2020 / Accepted: 22 August 2020 / Published: 26 August 2020
(This article belongs to the Section Electrical, Electronics and Communications Engineering)

Abstract

:
For many years, passive optical networks (PONs) have received a considerable amount of attention regarding their potential for providing broadband connectivity, especially in remote areas, to enable better life conditions for all citizens. However, it is essential to augment PONs with new features to provide high-quality connectivity without any transmission errors. For these reasons, PONs should exploit technologies for multigigabit transmission speeds and distances of tens of kilometers, which are costly features previously reserved for long-haul backbone networks only. An outline of possible optical amplification methods (2R) and electro/optical methods (3R) is provided with respect to specific conditions of deployment of PONs. We suggest that PONs can withstand such new requirements and utilize new backbone optical technologies without major flaws, such as the associated high cost of optical amplifiers. This article provides a detailed principle explanation of 3R methods (reamplification, reshaping, and retiming) to reach the extension of passive optical networks. The second part of the article focuses on optical amplifiers, their advantages and disadvantages, deployment, and principles. We suggest that PONs can satisfy such new requirements and utilize new backbone optical technologies without major flaws, such as the associated high cost.

1. Introduction

Passive optical network (PON) technologies find their major deployment in access networks [1,2,3,4,5,6,7] owing to their low requirements on optical distribution networks (ODNs), such as single and shared optical fibers between customers and the central office (CO).
This technique uses point-to-multipoint (P2MP) shared infrastructure, but it should be noted that a shared fiber means some limitations on the customer’s side, such as shared bandwidth, and upstream transmission must be secured with another control mechanism [8,9,10,11,12,13]. Passive optical networks are able to transmit signals from the optical line terminal (OLT) to optical network unit(s) (ONUs) up to 20 km, but in some cases, this distance limitation has to be broken or extended due to extensions of signal transmission in rural areas, remote offices, remote cities, etc. For these purposes, standardization organizations, such as the International Telecommunication Union (ITU) or Institute of Electrical and Electronics Engineers (IEEE), proposed PONs with longer reach [14,15,16,17,18,19]. Furthermore, the extended reach networks require optical amplifiers to extend the distance between the OLT and ONUs [20,21,22,23,24,25,26,27,28,29,30,31,32]. In the following sections, the methods for reach extensions are discussed.
Optical fiber amplifiers were invented back in 1964, three years after the first fiber laser was developed by Elias Snitzer and his colleagues. Both the first laser and amplifier used neodymium as a dopant and operated in the spectral window at approximately 1060 nm. Unfortunately, at that time, no low-loss optical fiber was available, and when such fibers were developed in the 1970s, silica and neodymium amplifiers were not suitable for amplification in available spectral windows in silica fibers, which are well-known windows of 850 nm, 1310 nm and 1550 nm. Another version of optical fiber amplifier based on erbium and suited perfectly to work in the 1550 nm spectral window was invented and developed in the late 1980s by Sir David Payne and Emmanuel Desurvire and their colleagues, and the well-known abbreviation “EDFA”, erbium-doped fiber amplifier, was born [33,34]. Optical fiber amplifiers, and especially EDFAs, enabled long-distance and high-speed transmissions, especially because optical amplifiers replaced rather expensive electronic repeaters, because one optical amplifier can supersede tens of repeaters and all optical amplifiers are almost indifferent to the speed and modulation of transmitted optical signals [35,36,37,38,39,40,41,42]. We may compare optical amplifiers to Ethernet technology, which was developed back in the 1970s to connect computers and printers and other networking devices over short distances (for example, one department or one building) with the help of metallic wires. However, in the last 15 years, Ethernet has also adopted optical fibers as transport media; therefore, Ethernet can be deployed not only in local area networks (LANs) but also in metropolitan and wide area networks. Of course, Ethernet can utilize optical amplifiers to achieve these goals. Moreover, not so long ago, there were many people dismissing Ethernet technology as too simple and not suitable for such tasks, but where are Ethernet-contemporary counterparts such as Token Ring and fiber distributed data interface (FDDI)?
For the same reasons, optical amplifiers can find their way into networking areas that were considered totally inappropriate for such advanced optical technologies. One of these networking areas is certainly PONs, which are considered to be completely detached from the long-haul and high-speed networks of international Internet providers. However, again, PONs have become increasingly popular, and it has started to become clear that new technologies are needed in these “cheap” and completely passive areas of networking. Indeed, new PON standards working with multigigabit speeds at values such as 100 Gbit/s are not only mentioned but seriously considered. Even Ethernet PONs are serious candidates for asynchronous transfer mode (ATM)-based PONs, and it is clear that optical amplifiers should be part of such activities, especially in countries such as Canada, the USA, Norway and Sweden, where the distances to be overcome are certainly longer than those proposed years ago in PON standards (this situation is very similar to that for Ethernet then and now).
Fortunately for PONs, optical amplifiers have come a long way. Today, optical amplifiers with small form factors are widely available, and high-quality EDFAs can be bought even with form factors known from the pluggable transceiver market. This means that optical amplifiers are no longer expensive parts of optical systems and that the power consumption is very promising. Of course, no active elements can be compared to totally passive optical elements such as splitters, but optical amplifiers and Ethernet switches have lower power consumption than OLTs and ONUs (of course, OLTs and ONUs are increasingly better in every generation). Optical amplifiers are perhaps the great unknown for people working in the PON environment, as many of us who work in these areas know, and therefore, it is very desirable to provide such papers as our attempt to bridge long-haul high-speed networks with PONs.
The rest of this paper is organized as follows. Section 2 provides details about the 3R reamplification, reshaping, and retiming methods for signal reconstruction after optical fiber transmission. Section 3 introduces optical amplifiers for telecommunications networks and their usage in passive optical networks along with principle details. Section 4 concludes this paper.

2. 3R—Reamplification, Reshaping, and Retiming

The specification of gigabit passive optical networks (GPONs) considers two scenarios for reach extension. The first specification is based on optical-electrical-optical (OEO) conversion, and the second specification uses full optical signal processing and amplification. We provide a basic principle of amplifiers based on OEO conversion. In general, these amplifiers can be divided into three categories: 1R, 2R, and 3R. While the current research interest is full optical amplifiers, we discuss all three categories due to the potential usage of 3R amplifiers in xPONs [43,44,45,46,47,48,49].
The main signal degradation in fiber optic systems arises from amplified spontaneous emission (ASE) due to optical amplifiers, pulse spreading due to group velocity dispersion (GVD), which can be corrected by passive dispersion compensation schemes, and polarization mode dispersion (PMD). Nonlinear distortions are attributed to Kerr nonlinearity, such as cross-phase modulation, which can be responsible for time jitter in wavelength division multiplexing (WDM), or Raman amplification, which can induce channel average power discrepancies [50].
The 1R category represents the simplest amplifier of an optical signal. Only the input signal is amplified and transferred to the output. Note that an input signal is not recovered (the shape, position, and phase are exactly the same as those of the input signal). However, 1R amplifiers are simple, which presents some advantages. For example, a processed signal does not depend on the modulation format, transmission speed, or other parameters of a signal. The basic principle of 1R amplifiers is shown in Figure 1. The input signal is degraded, but the output signal is only amplified because 1R amplifiers do not consider the shape and timing of the input signal; they only consider amplification. All known optical amplifiers can be placed in the 1R category.
The second category of R amplifiers works more complexly with an input signal because they are based on the 1R category and add reshaping of an input signal. The shape of a carried signal is degraded with increasing distance from the transmitter side. We consider optical networks and take into account the attenuation of optical fibers. We cannot eliminate the attenuation of optical fibers because we are not able to produce clean silica fibers without admixtures and impurities (additional details about optical fiber manufacturing are provided in [51,52]). The standard attenuation values of the fibers are 0.35 and 0.22 dB/km for 1310 and 1550 nm, respectively. Other important factors are dispersion (additional details about dispersions are provided in [53,54,55]). In general, dispersion causes a carried signal to become deformed in the fiber and spread in the time domain, which produces a range restriction by decreasing the signal-to-noise ratio (SNR), transmission speeds, and improperly logical 0 or 1 decision in the receiver. A 2R amplifier is referred to as a regenerator. A regenerator has an optical signal at an input port, which is converted into an electrical signal; decisions are subsequently made. A decision entails recognition of logical 0 and 1 of the input signal. The signal is subsequently transferred to a transmit circuit. The transmitting circuit converts the signal to the optical domain and transfers to a fiber path. Note that the output signal has recovered its shape and has a higher power level (was amplified), but timing recovery does not occur (the positions of the signal samples are unchanged); refer to Figure 1.
The 3R amplifier adds time synchronization to the basic principle of 2R. The 3R amplifier converts the input signal from the optical domain to the electrical domain, amplifies it and reshapes it. A clock rate is recovered and reconstructed before sending a time position (for example, by a comparator). This output signal is equivalent to the original signal that was transferred to the fiber. Figure 2 shows the principle of 3R amplifiers, and Figure 3 shows the block scheme of a reach extended passive optical network (RE-PON).
Regeneration of 3R can occur in two ways: Inline 3R regeneration and in-node regeneration. Inline 3R regeneration is usually implemented when the physical distance between the end points exceeds the maximal power budget of the optical network. In-node regeneration can occur in the optical cross-connect nodes, where some OEO regenerators are usually deployed [56].
Note that OEO 3R regenerators are dependent on the signal waveform (modulation formats). If the waveform is changed, the 3R regenerator must be adapted to it. A second significant limitation of 3R regeneration is the bit rate. The maximal bit rate for OEO 3R regenerators is approximately 40 Gb/s. Both problems are solved in all-optical 3R regenerators.
The standard for a GPON optical reach extension was ratified by ITU-T G.984.6 in 2008. This standard includes the architecture and interface parameters for GPON systems with extended reach using a physical layer mid-span extension between the OLT and the ONU that uses an active device in the remote node. The GPON reach extender enables operation over a maximum of 60 km of fiber with a maximum split ratio of 1:128 [48]. Two ways to amplify a signal are presented in ITU-T G.984.6. The first method is based on optical amplification of the optical signal: Bidirectionally. This principle is based on 1R regeneration. This kind of amplifier can be based on an EDFA, Raman amplifier or semiconductor optical amplifier (SOA).
The second approach is to use an OEO regenerator, as shown in Figure 2. The regenerator consists of a couple of branches for each way using diplexers. In both branches, the receiver and the transmitter are dimensioned for the wavelength band, which explains why the optical signal must be converted to an electrical signal. The electrical signal is recovered and converted to the optical domain. The important function of this part is to recover the clock signal. This step is resumed by the receiver downstream–continual mode–but upstream, the burst mode is used. ITU-T G.984.6 also considers the combination of both systems, e.g., the OEO regenerator downstream and the SOA amplifier upstream. All-optical 2R is also possible; however, it is not transparent to modulation of the input signal [57]. Full optical 3R regeneration is not considered in standardized PONs but is suggested for future networks [58].
Full optical 3R regeneration with a real function of retiming requires clock recovery, which can be achieved either electronically or all-optically. The main difference between both types of retiming is that electronic functions are narrowband compared with broadband optical clock recovery [59]. Full optical 3R regeneration can be realized in two different ways:
  • Data-driven 3R regenerator—nonlinear optical gate. This scheme mainly consists of an optical amplifier, that is, a clock recovery block providing an unjittered short pulse clock stream, which is then modulated by a data-driven nonlinear optical gate block [50].
  • Synchronous modulation 3R regenerator—this technique is particularly efficient with pure soliton pulses. It consists of combining the effects of a localized “clock-driven” synchronous modulation of data, filtering, and line fiber nonlinearity, which results in both timing jitter reduction and amplitude stabilization (see Figure 4). The high-dispersion fiber first converts the amplified pulse into a pure soliton. The filter blocks the unwanted ASE but also has an important role in stabilizing the amplitude in the regeneration span. Data are then synchronously and sinusoidally modulated through an intensity or phase modulator, driven by the recovered clock [50].

3. Optical Amplifiers in Telecommunications Networks

Optical amplifiers are an essential part of any optical transmission system and are not limited to long-haul systems, such as submarine systems. There are excellent books that address optical amplifiers, for example, [60,61,62], which is used as the basic reference for the following paragraphs. For 1 Gb/s and 10 Gb/s transceivers, the maximum fiber distance is usually 80 km; some transceivers can reach 120 km. While 80 km distances can be overcome without any correction control, for longer distances, forward error correction (FEC) mechanisms must be implemented. This situation changed with the emergence of coherent systems in 2008 [63]. In 2019, coherent systems with maximum transmission rates of 200 Gb/s are very common, and those with rates of 400 Gb/s are also available; however, these systems are expensive, with the optical reach limited to a few hundred kilometers. A new generation of silicon electronics—digital signal processing (DSP)—will be able to increase this rate to 600 Gb/s, with the potential to extend the optical reach to 400 km compared with the current situation.
The first concepts of optical amplifiers were introduced in the early 1960s, and the first optical amplifier was invented in 1964 by Professor E. Snitzer, who used neodymium and worked in a 1060 nm spectral window. Professor Snitzer also demonstrated the first erbium glass laser. Other experiments with neodymium followed in 1970, but it was too early for real deployment. These principles were also applied for the first single-mode fibers in early 1980 at Bell Laboratories. Erbium was used for amplification at the University of Southampton and AT&T Bell Laboratories in 1985. The key advantage was the capability of erbium to work at 1550 nm—the most important part of the spectrum in silica fibers [60].
Optical amplifiers are referred to as all-optical (OOO) compared with OEO regenerators. We note that optical amplifiers are referred to as “regenerators” in the submarine world, which may be confusing for readers from the terrestrial telco world.
The main advantage of optical amplifiers is that one device is able to amplify many optical signals at once. This feature is in sharp contrast with OEO regenerators, where one regenerator can be used for only one signal and expensive multiplexing and demultiplexing techniques are necessary.
Optical amplifiers amplify optical signals by stimulated emission; this mechanism is the same mechanism used for lasers. Optical amplifiers are sometimes described as lasers without feedback. An optical amplifier is pumped (fed with energy) optically or electrically to achieve population inversion of the dopant elements. Population inversion indicates that some parts of the system—photons in the case of optical amplifiers—are in higher energy or excited states than would be possible without pumping. These excited states are unstable and revert to normal states with population relaxation times that are approximately in the range 1 ns to 1 ms (other limits are possible and are discussed in more focused resources on optical amplifiers) [60].
Figure 5 shows different configurations of optical amplifiers used in practical applications. A configuration with a booster only is typically used for shorter distances of 150 km (see Figure 5a). A configuration with a preamplifier only is used when we want to avoid high optical powers produced by boosters; in this configuration, it is often necessary to use an optical filter to suppress noise (see Figure 5b). When distances are longer, for example, 250 km, it is necessary to use a configuration with both a booster and preamplifier (see Figure 5c). For longer cascaded optical spans, it is necessary to deploy inline amplifiers (see Figure 5d). Optical filters may be necessary for all configurations with preamplifiers to reduce noise; usually, this is not needed for booster and/or inline amplifiers. The last configuration utilizes Raman pumping, and in this configuration, it is possible to achieve a distance of ≈350 km, but Raman pumping must use high optical powers (up to 1 W) due to the weak Raman effect in silica glass, which may necessitate serious eye safety measures. It must be noted that the provided distances are proximate only and are very dependent on real transmission equipment (the most important parameter is the receiver sensitivity).
General parameters of optical amplifiers [64]:
  • gain—ratio of output and input power,
  • gain waveform—should be flat in an ideal case,
  • saturation power—capability to absorb high input power,
  • saturation gain—energetic efficiency of the optical amplifier,
  • insertion loss and insertion loss of the switch-off amplifier,
  • bandwidth,
  • noise figure—signal-to-noise ratio,
  • temperature stability.

3.1. Erbium-Doped Fiber Amplifiers

The real revolution with optical amplification started in late 1980 when amplifiers based on rare earth elements became commercially available. The most significant research was performed by D. Payne and E. Desurvire. A detailed description of EDFAs is available in [65], and a detailed theory of EDFAs is provided in [66]. These fiber-doped amplifiers were investigated in the 1960s; however, techniques such as fabrication were not sufficiently mature. Many rare earth elements can be used as dopants in fibers, for example, neodymium, holmium, thulium or ytterbium; these amplifiers can operate in the wavelength range from 500 nm to 3500 nm. However, some combinations of rare earth elements and fibers (fiber is host medium only) can be produced at reasonable prices, and some nonsilica fibers are not easily produced and maintained.
Statements about explosive and exponential growth in data traffic and worldwide fiber networks are almost cliché. Twenty years ago, these networks carried telephone traffic and cable television signals; however, the real explosion started with the World Wide Web (WWW). At that time, deployment of optical amplifiers in local networks was expensive; this situation has changed in the last few years.
The first EDFA was demonstrated in 1989, and the initial users of these new devices were submarine (or undersea) systems because all-optical amplifiers could replace expensive and unreliable electronic regenerators. Trans-Atlantic transmission (TAT) systems are usually cited as the first long-haul systems to fully utilize the strength of EDFAs in 1996. Other systems followed (US and Japan); note that the amplifier spacing range is 30 km to 80 km.
Terrestrial communication systems followed their aquatic counterparts for the same reason—to replace electronic regenerators. It is interesting to note that the first transmission systems supported only a single-channel configuration, and even in early 1990, top commercial transport systems could transport a maximum of 16 channels on a single fiber (with speeds of 2.5 Gb/s, with the latest step to 10 Gb/s), with predictions to support a maximum of 100 channels in the future [60].
The most important of all rare earth elements for telecommunication fiber networks is erbium because it can amplify signals in the most important frequency spectrum in silica fiber: The third window or the conventional C-band near 1550 nm. EDFAs started a new era of optical communication. For example, the usual spacing of EDFAs is 80 km but may be longer; in some links where the total distance is shorter, the spacing can exceed 200 km. This fact is in sharp contrast to the spacing of OEO regenerators, where the spacing was typically 10 km, and as previously mentioned, regenerators can be used for one signal only. EDFAs can amplify a maximum of 100 signals in the C-band, which covers 1530–1565 nm. Almost all optical dense wavelength division multiplexing (DWDM) transmission systems operate in the C-band. However, if the capacity is not sufficient, EDFAs can be customized to amplify signals in the long L-band, which covers 1565–1625 nm [60].
EDFAs must be pumped to achieve gain by population inversion (refer to Figure 6). Figure 6a shows energy levels for erbium atoms. Electrons are pumped from the low energy level to the high energy level, with a relatively short lifetime of 1 microsecond. On the metastable level, with a lifetime of 10 milliseconds, electrons “wait” for incoming photons and amplify them via a radiative transition process. The levels are described by the well-known Russell-Saunders notation, and a detailed description is beyond the scope of this text. Figure 6b shows a more detailed description of the energy levels with splitting due to both spin-orbit coupling and fine splitting owing to the structure of the host silica glass. From this figure, we can deduce the mechanism of amplification in different spectral areas; in this case, for the erbium amplifier, the spectral area is from 1530 nm to 1565 nm. Different pumping schemes are possible, and the most efficient pumping wavelengths are 980 nm and 1480 nm. Two different configurations can be realized. The first configuration has a pump and signal propagating in the opposite direction; this configuration is referred to as backward pumping. The forward pumping configuration is the second configuration, in which the pump and signals propagate in the same direction. Both schemes are frequently used; a combination of backward and forward pumping is employed when more uniform gain is required.
As with any real device, optical amplifiers have some limiting factors in practical deployment. The most important factor is amplifier noise, which is usually expressed as a noise figure (NF). The cause of this behavior is ASE. ASE is the random return from an excited state to a normal energy state. ASE can be used to produce a broadband light source, which is undesired in optical amplifiers. The ideal theoretical NF for EDFAs is 3 dB; typical NFs vary from 4 dB to 8 dB. A total of 980 nm pumps can provide a better NF than 1480 nm pumps.
Amplifier noise is a very limiting factor in long-haul transmission because not only data signals are amplified [52].
The described EDFAs are referred to as lumped amplifiers, in contrast to the distributed Raman amplification techniques that are described in this section. However, even EDFAs can be used as distributed-gain amplifiers when the fiber is doped with erbium. These distributed EDFAs were investigated but were never massively deployed in reality.
Another rare earth element used for amplification is praseodymium. Praseodymium-doped fluoride fiber amplifiers (PDFFAs), which have sometimes been referred to as PDFAs to make the name more visually similar to EDFAs, can be used to amplify signals in the original O-band, which covers 1260–1360 nm. Compared with EDFAs, these amplifiers for the O-band are different in one important aspect. Pr (and Nd) operate on the four-level principle, which implies slightly worse parameters, such as output powers or noise figures. In contrast to a three-level system, the population inversion in four-level systems is permanently positive. However, this issue is beyond the scope of this paper. When pumping does not occur, for example, after pump failure, transmitted signals do not suffer gain or achieve attenuation. This effect is in contrast to the three-level Er system, which becomes a strong absorber, and in reality, no signal is transmitted [52].
People may ask why signals should be amplified in the original lossy area of 1310 nm when all long-haul systems use C- and L-bands. The answer is chromatic dispersion (CD) and higher speeds. Even for 10 gigabit Ethernet (GE), 1310 nm transceivers were available and substantially less expensive than their 1550 nm counterparts. Czech Education and Scientific Network (CESNET) performed few experiments with PDFFAs in the 2000s [67], especially when extending the all-optical reach of 10 GE server adapters or network interface controllers (NICs). Note that NICs with 1550 nm transceivers were not available on the market partly due to the high prices of 1550 nm transceivers. From the original distances of approximately 10 km, we were able to reach more than 100 km with PDFFAs and almost 200 km with PDFFAs augmented with Raman amplification. The only drawback of PDFFA is fluoride fibers, which are difficult to manufacture (fluorine is very hazardous, the fluoride composite glasses are hygroscopic and the mechanical properties are not as relaxed as those of the silica glasses used for EDFAs); therefore, few vendors can manufacture them. PDFFAs are noisier than EDFAs as well. However, problems with chromatic dispersion and higher speeds occur with pluggable transceivers for 100 Gb/s and 200 Gb/s. The price difference between the shorter reach of 1310 nm and the longer reach of 1550 nm transceivers is significant, and PDFFAs can offer economically profitable solutions. Thulium fiber amplifiers are used for PONs for signals in the 1490 nm spectral window. Ytterbium is frequently used as a codopant in EDFAs to achieve higher optical output powers [52].
Fiber optic amplifiers operate based on the principle of stimulated emission. The principle is similar to that of lasers. An EDFA amplifier consists of a laser pump diode (laser source of optical radiation) and special erbium (Er)-doped fiber. Due to the radiation added from the pump to the Er fiber, the gain is achieved in the range of C-band wavelengths. A simple schematic is shown in Figure 7. The principle of working is referred to as “3-layer” [64].
  • Optical radiation from the laser pump is coupled to an Er + fiber with a length of a few meters (10–100 m).
  • Due to this process, the atoms of erbium (Er 3 + ions) are excited.
  • Absorbed energy allows migration to higher energetic layer E3.
  • Ions in this so-called metastable state remain only for a short time (a few milliseconds).
  • Then, the atoms migrate to the conductivity layer—E2 (nonradiative transition).
  • After the state of “population inversion” is achieved, the highest proportion of Er ions is in an excited state, and the energy is released via the transmitted signal.
  • The excited ions return to the basic energy layer E1 in the valence band. This is accompanied by the stimulated emission of radiation with the same wavelength and phase as the transmitted signal.
  • This is how to temporally store the energy achieved by the laser pump.
The transmitted signal is amplified in the C-band in the area of 1550 nm. Note that a useful signal and noise are amplified in the amplified band. While the use of 980 nm and 1480 nm is possible, only 980 nm pumps are currently used due to a higher degree of population inversion.
With the exception of the C-band (1530–1565 nm), we can use EDFAs for amplification in the L-band (1570–1625 nm). A difference is primarily observed in the Er fiber length—for the C-band, the Er fiber must be longer.
The gain of EDFA amplifiers is approximately 30–50 dB depending on the Er fiber length and the power of the pump laser. The higher the quantity of ions is, the higher the energy level and the more frequent the stimulated emission. These phenomena increase the gain of the optical amplifier. Amplification is the result of the population inversion state of doped ions due to the pump laser. If the power of the optical signal increases or the power of the pump decreases, the inversion state is reduced and the power is decreased. This phenomenon is known as “saturation”. EDFA amplifiers are used below the saturation threshold. Spontaneous emission and ASE are reduced, which is referred to as “gain compression” [64].
EDFAs are the most usable, and their advantages are described as follows:
  • full optical system,
  • high gain, 30–50 dB,
  • low noise Figure (4–6 dB),
  • polarization independent,
  • the same phase and frequency as an input signal,
  • high power transfer efficiency from pump to signal power (50%),
  • can act as a shutter—when the EDFA is unpumped (e.g., if the electricity fails), it acts as shutter,
  • large dynamic range,
  • directly and simultaneously amplify a wide wavelength band (80 nm) in the 1550 nm region, with a relatively flat gain,
  • flatness can be improved by gain-flattening optical filters,
  • suitable for long-haul applications.
EDFAs also have the following disadvantages [64]:
  • Amplified spontaneous emission, there is always some output even with no signal input due to some de-excitation of ions in the fiber—spontaneous noise.
  • necessary to use flat-top filters for WDM systems,
  • not possible to use for the O-band,
  • problematic miniaturization,
  • inability to be integrated with other semiconductor devices,
  • gain saturation effects.

3.2. Semiconductor Optical Amplifiers—SOAs

SOAs are another possible solution for data transfer in optical communications. An excellent review is provided in [68]. Note that SOAs were explored in the 1960s, when semiconductor lasers were invented. While the principle of the laser dates to 1958, a solid-state ruby laser was demonstrated in 1960, and the semiconductor laser was subsequently considered. Early SOAs used GaAs/AlGaAs, but more complex InGaAsP/InP materials, which operate in the 1300 nm to 1600 nm wavelength window, were subsequently introduced for use in optical transmission systems.
SOAs are important devices in many optoelectronic systems, such as optical recording or high-speed printing. In the reality of telecommunication networks, SOAs were deployed in the 1980s, but they exhibited some drawbacks, such as a rather high noise figure and polarization sensitivity, as well as serious problems when amplifying more than one signal due to effects such as cross-phase modulation.
On the other hand, SOAs can be manufactured in specific ways and are able to function in nearly every optical band, covering an almost empty spectral window 1460–1530 nm, the so-called the S-band (no silica host glass rare element-based amplifiers can operate in this band); additionally, these amplifiers can be integrated on chips. For this reason, SOAs are reused for high-speed 100 GE transceivers, where four SOAs are integrated within transceivers and each SOA amplifies only one 25 Gb/s optical signal. SOAs can be used as all-optical wavelength converters and even all-optical switches [59].
SOAs have a structure similar to that of Fabry-Pérot lasers (see Figure 8). However, this Fabry-Pérot configuration is practically improper for data transmission applications because the available bandwidth is very small (less than 10 GHz). To make SOAs suitable for the data world, conversion to traveling wave (TW) devices must be accomplished, which can be performed by the suppression of reflections from the end facets of an SOA with antireflection coatings. The reflectivity must be very small (less than 0.1%) to achieve the desirable behavior. For this reason, other techniques for suppressing reflections were invented, for example, angled-facet or tilted-stripe structures [59].
SOAs are small and electrically pumped (in contrast to EDFAs/PDFFAs or Raman amplifiers) and can be easily integrated with other semiconductor elements and devices, such as lasers and modulators. Undesirable properties, such as a high noise figure, low output power and polarization sensitivity, restrain SOAs from massive deployment as amplifiers, even when many techniques, such as series, parallel or double-pass configurations, have been introduced and studied.
Other novel areas exist where SOAs can find potential use; examples include wavelength conversion, optical demultiplexing of very-high-speed (100 Gb/s) signals to low-speed (10 Gb/s) tributary signals or optical clock recovery units. However, commercial equipment based on these principles is not available.
The gain of semiconductor amplifiers is not generated in the fiber optic material but is generated in the structure of a semiconductor amplifier. Pumping is not optically performed but must support electrical energy (electrical field). Typical materials used for SOA amplifiers are GaAs, AlGaAs, InGaAs, InGaAsP, InAlGa As and InP. These materials have excellent quantum efficiency, which provides a maximum number of generated photons. The principle of SOA operation is similar to that of photon emission in lasers [60]:
  • Stimulated absorption.
  • Media excitation. Excitation of a semiconductor medium in the P-N transition is the result of energy pumping and depends on stimulated absorption. Absorbed energy is transferred to an electron in the valence band, which is excited to a higher energetic layer in the valence band. The energy of an incident photon must be sufficient to overcome the forbidden band of the semiconductor.
  • Population inversion. In a pro-polarized P-N transition, it is possible to achieve population inversion by molecular excitation to a higher energetic layer. The state of population inversion means that the quantity of electrons in the valence band is higher than the quantity of electrons in lower-energy bands.
  • Gain generation. New photons are released. The resonator is reduced in comparison with semiconductor lasers. The newly generated photon stimulates recombination of electrons and holes. The result of this recombination is the generation of coherent photons with the same wavelength, polarization and phase as the incident photon.
  • Leaving the edge of the chip. Stimulated emission is dependent on the intensity of the incident radiation.
SOAs are manufactured as a chip situated in a standard housing with the capability of temperature control, which allows wavelength stability and the possibility of achieving maximal gain. A high concentration of carriers in an active area causes an increase in the refractive index, which is higher than that in the coating. This region serves as a lightweight circuit for newly generated photons [60].
Advantages of SOAs:
  • large range of wavelengths 1280–1600 nm,
  • large bandwidth,
  • maximal gain up to 30 dB,
  • small size, possibility for integration on chips with lasers and semiconductor components,
  • appropriate for all-optical systems,
  • no optical pump is needed (electrically pumped),
  • very good gain dynamics in comparison with fiber amplifiers,
  • low cost,
  • suitable for PONs.
Disadvantages of SOAs:
  • high insertion loss of the SOA amplifier (approximately 5 dB), which increases if the amplifier is switched off,
  • low gain in commercial amplifiers (15–25 dB),
  • residual polarization sensitivity,
  • higher noise figure and cross-talk levels due to nonlinear phenomena such as 4-wave mixing (7–12 dB),
  • requires temperature stabilization,
  • cross-gain modulation of multiple signals via carrier depletion.
Saturation of an SOA is achieved by a strong input signal, which depletes free carriers in an active area. The gain decreases with increasing input power. Saturated power is achieved by a 3 dB increase in the maximal value (see Figure 9). The influence of carrier depletion can be partially limited by so-called holding beam injection (optical copumping) [69].

3.3. Raman Amplifiers

Another principle used for optical amplification is based on stimulated Raman inelastic scattering (SRS). This process differs from stimulated emission, as exhibited by EDFAs and SOAs, where incident photons stimulate emission of another photon with the same energy (i.e., frequency). In SRS, incident photons create another photon with lower energy (i.e., with lower frequency), and the remaining energy is absorbed in the fiberglass as molecular vibrations (optical phonons). Materials absorb energy, which is subsequently emitted. If the energy of emitted photons is lower than the energy of absorbed photons, the effect is referred to as Stokes Raman scattering. If the energy of emitted photons is higher than the energy of absorbed photons, materials lose energy, and the effect is referred to as anti-Stokes Raman scattering. This scattering process is spontaneous, i.e., in random time intervals, and occurs when signal photons (sometimes referred to as Stokes photons) are injected into materials with pump photons, as known to occur in EDFAs.
While Raman amplification in optical communications was demonstrated in the early 1970s, the Raman effect was predicted in the 1920s and published in 1928 [70]. The first demonstration of Raman amplification in optical fibers was performed in the early 1970s, and many research papers indicated the potential of the Raman effect and amplifiers in fiber optic networks. However, as with coherent systems, Raman amplifiers were overtaken by EDFAs. In the 2000s, Raman amplification started to emerge in real transmission systems, especially with long-haul and ultralong-haul systems, but with improved devices. The Raman effect in silica fiber is weak, and much higher pump powers are required than those with EDFAs. Polarization dependency is also a problem, but it can be solved with the use of two orthogonally polarized pump sources, and the gain profile is not spectrally constant (refer to Figure 10). The problem with gain is true for every amplifier, and solutions to mitigate this effect are known [71].
The principle of the Raman amplifier is based on the interaction between photons that spread in the optical environment and this environment (material). The result of the interaction is a frequency shift. Raman amplifiers produce stimulated Raman scattering (SRS) in the material of the optical fiber.
Due to optical pumping at specific wavelengths, interaction between photons and phonons of the material is possible, where the energy of molecules is added to the energy of photons (refer to Figure 11). Due to this change, a new mode with a 100 nm wavelength shift is created. The wavelength is shifted to longer wavelengths. Therefore, if we need to amplify optical signals in the 1550 nm band, 1450 nm pumping sources must be used. Raman scattering is an elastic scattering mechanism that does not require a population inversion. The maximal gain is approximately 30 dB [64]. As previously mentioned, the amplified band is given by the wavelength of the pumping diode. Due to this capability, Raman amplifiers can function in an extensive range of wavelengths.
The power of the Raman amplifier depends on the power and wavelength of the pumping diode, spectral efficiency, fiber length and mode field diameter (MFD).
SRS can occur in forward and backward directions. Therefore, Raman amplifiers can operate in two modes:
  • Distributed Raman amplifier (DRA),
  • Lumped Raman amplifier (LRA).
Amplification in Raman amplifiers is very different from that in EDFAs, PDFFAs and SOAs: The transmission fiber is used as the media for amplification, and therefore, Raman amplifiers are distributed. Other optical amplifiers may be considered to be “lumped”. DRA uses backward pumping. When the pump is situated at the end of an optical link, the gain contributes to all-optical links, and the power loss is continually compensated. DRA amplifiers have a low noise figure, high gain and low nonlinear distortion [71].
It should be noted that lumped Raman amplifiers were also introduced in telecommunication transmission systems but in a slightly different manner. Raman pumping was combined with a dispersion compensating fiber (DCF). The diameters of DCFs are smaller than those of standard single-mode fibers, so the interaction in DCFs is stronger, and Raman amplification is more efficient. DCFs are “lumped” because they are periodically inserted into the transmission line. Thus, adding Raman pumps to previously lumped DCFs can create lumped Raman amplifiers. With the deployment of coherent transmission systems, DCFs are removed because compensation of chromatic dispersion is not necessary [59].
The Raman effect is broadband, but the drawbacks are the polarization dependency (where a common solution is to use pump depolarization) and the low gain coefficient in silica glass (see Figure 12). For this reason, high optical powers must be applied. In CESNET, experiments were performed in which the launched powers often exceeded 500 mW. These powerful lasers introduce serious safety eye hazards, even when automatic laser shutdown (ALS) is implemented (in some cases of fiber cuts or angled physical contact (APC) connectors, ALS may encounter difficulties in detecting fiber failure). For this reason, Raman amplifiers are rarely deployed in common optical systems. They are used in specific cases when very long fiber spans must be lightweight—for example, submarine links between the mainland and islands or similar specific conditions. The present DWDM system transporting coherent signals over long distances needs to deploy Raman amplifiers together with EDFAs to cope with lossy segments with high attenuation. This hybrid solution helps to keep the overall optical signal-to-noise ratio (OSNR) acceptable.
It is interesting to note that in some of the literature [60], because of the rather weak interaction in silica glass, the maximum required pump power to achieve a gain of 30 dB is calculated to be 5 W. Experiments performed in CESNET showed that even pump powers less than 1 W caused very strong distributed Rayleigh scattering (DRS) and could not be used. Some vendors of transmission equipment do use pump powers below 500 mW for Raman amplification, which is another peculiarity on the other end of the power scales; both SRS and stimulated Brillouin scattering (SBS) are nonlinear effects, so some threshold optical powers are required to “kick-start” the mechanism.
We tested and verified the Raman amplification for pump powers of 10, 50, 100, 150, 200, 250 and 300 mW of optical power. The central wavelength of the pump was ≈1455 nm, and the signal wavelength was 1552.064 nm, which is adequate for a 97 nm wavelength shift (refer to Table 1). The continuous wave signal from the laser diode was coupled to a fiber spool with a length of 50 km. If we consider a fiber attenuation of approximately 4% per kilometer (corresponding to 0.18 dB/km, which is the normal attenuation coefficient for 1550 nm in a standard single-mode optical fiber), then after 50 km, the signal is attenuated by approximately 9 dB (≈87% loss of power!). In the scheme depicted in Figure 13 we can see two important things. First, the amplification is more effective if the pump signal propagates in the opposite direction from that of the data signal. Second, the Raman gain coefficient is highly polarization dependent; therefore, two pump diodes (Pump 1 and Pump 2) are used to generate depolarized light. It is also very important that the fiber length must be long enough to generate Raman scattering [72]. As shown in Figure 14, the saturation power of the amplified signal is quasilinear. The difference between the saturation power for the 10 mW pump power and the saturation power for the 300 mW pump power is approximately 2.5 dB.
Advantages of Raman amplifiers:
  • high gain and saturation power,
  • compatible with installed SM fibers,
  • usable on any wavelength in telecommunication bands,
  • low noise figure in comparison with those of SOAs and EDFAs,
  • wavelength conversion,
  • large transmission capacitance,
  • able to be used to extend EDFAs.
Disadvantages of Raman amplifiers:
  • high pump power requirements,
  • lower efficiency for a specific wavelength then EDFAs (for the same pump power),
  • sophisticated gain control is needed.

3.4. Brillouin Amplification

The last amplification technique discussed is based on SBS. SBS is similar to SRS but with notable exceptions: SBS occurs only in the backward direction, the scattered light is shifted by approximately 9–11 GHz (compared with 13 THz or 100 nm for SRS) and the gain spectrum is 100 MHz (for SRS, it is 30 THz). For SBS, energy absorbed by the fiberglass has the form of acoustic phonons (in contrast to an optical phonon in the case of SRS).
Brillouin scattering is a “photon-phonon” interaction that occurs when annihilation of a pump photon simultaneously creates a Stokes photon and a phonon. The created phonon is the vibrational mode of atoms, which is also referred to as a propagation density wave or an acoustic phonon/wave. In a silica-based optical fiber, the Brillouin Stokes wave propagates dominantly backward, although very partially forward. The frequency (9–11 GHz) of a Stokes photon at a wavelength of 1550 nm differs considerably from that of Raman scattering (is smaller by three orders of magnitude and is dominantly downshifted due to the Doppler shift associated with the forward movement of created acoustic phonons [73].
Depending on the frequency offset, the interference of the counterpropagating pump light with the signal light causes a moving density grating. The density grating coherently scatters pump photons into the signal beam, which is amplified. The characteristics of the SBR amplifier are the narrowband spectrum of approximately tens of MHz (based on an optical gain medium). Brillouin amplifiers have a built-in narrowband optical filter, which enables amplification of specific signals. In contrast to broadband amplifiers (EDFAs, SOAs, and Raman amplifiers), Brillouin amplifiers enable a maximum signal stage of 50 dB or higher [74].
Brillouin amplifiers are not suitable for standard data communication due to their very narrow gain spectrum; however, new applications use different optical signals. We can provide examples of two new applications that have been extensively investigated: Accurate time transfer (that is, atomic clock comparison) and ultrastable frequency transfer. These signals are very slow (hundreds of MHz for accurate time, continuous wave (CW) for stable frequency), and therefore, their spectra are very narrow, which renders them suitable for Brillouin amplification, especially for ultrastable frequency transfer using very narrow laser sources. In this case, SBS can be used for very powerful amplification [75].
Advantages of Brillouin amplifiers:
  • high gain and saturation power for narrowband signals,
  • wavelength conversion,
  • can enable amplification of a very small input signal (a few nanowatts) by more than 50 dB in a single gain step.
Disadvantages of Brillouin amplifiers:
  • limited range of use,
  • nonlinear phenomena.

3.5. Amplifiers for PONs

Long-reach optical access is a promising technology for future access networks. This technology can enable broadband access for a large number of customers in access/metro areas while decreasing capital and operational expenditures for the network operator.
Almost all the described optical amplifiers can also be used in passive optical networks (see Table 2), with the notable exception of Brillouin amplifiers (which are not suitable due to a very small gain spectrum, as previously described). Prospects for PONs with reaches of 100 km and 10 Gb/s speeds are being investigated, but these devices are not commercially available.
A typical PON can reach 20 km with a maximum split ratio of 64. For example, the GPON standard established optical budgets of 28 dB with 2.488 Gb/s for downstream transmission and 1.244 Gb/s for upstream transmission. This standard is the current standard of PONs. In long-haul systems, optical amplifiers are extensively employed to extend the reach of systems to hundreds or thousands of kilometers. The cost of optical amplifiers is sufficiently low; thus, we can consider their use in PONs. The cost of amplifiers can be shared among numerous customers. The GPON protocol can support a logical reach of 60 km and a split ratio of 1:128. Optical amplifiers may be used to extend the reach. The transparency of optical amplifiers indicates their use for GPONs and gigabit Ethernet PONs (GEPONs). Optical amplifiers are a main technology for next-generation access (NGA) PONs.
Several benefits of extended-reach PONs exist. First, customers are located as far from the CO as they can be connected. Second, where customers are sparsely distributed over a large area, optical amplifiers can be used to ensure good utilization of the shared PON. Third, depending on an end-to-end network design, extending the reach of a PON can enable node consolidation, which entails reducing the number of PON head-end locations that must be managed by the operator [76].
Four options of optical amplifiers for PONs are available:
  • erbium-doped fiber amplifiers,
  • thulium (1490 nm downstream) and praseodymium (1310 nm upstream) fiber-doped amplifiers,
  • semiconductor optical amplifiers,
  • Raman amplifiers.
In metro and long-haul networks, EDFAs are extensively employed because they provide a high gain, output power and noise figure from 1530–1565 nm. Existing PON standards apply EDFAs for analog video broadcast (overlay PON). An alternative to fiber amplifiers is the SOA. While SOAs do not provide gain and noise figures that are comparable to those of EDFAs, their advantage is that they can operate at any wavelength. The gain dynamics of SOAs are also substantially faster than those of EDFAs, so SOAs can be used for bursts upstream [76].
While the Raman amplifier can be theoretically used downstream, we have to consider the high price and necessity of high-power, dangerous pumps.
FEC is another important technology for extending the capability of PONs. While FEC is specified in GPONs and GEPONs, an enhanced version of FEC could be used in future PONs.
Early proof-of-concept experiments have been performed using an optical amplifier at an intermediate powered location in combination with the FEC, which can envisage a 10 Gb/s PON with a split ratio of 1024 [77].
Other PON systems use the C-band, for example, coarse WDM (CWDM) wavelengths of 1530 nm and 1550 nm between the OLT and ONUs). If EDFAs are used as power boosters and preamplifiers, the maximum budget increase is reported to be 34 dB [31]. EDFAs are used for the area of 1550 nm, where video overlay signals are transmitted.
In [78], SOAs with Raman amplification are demonstrated for maximum speeds of 2.5 Gb/s. Raman pumping at 1270 nm is used, with a maximum pumping power of 1 W. The results for extending the reach for rural areas are promising, but 1 W is Class IV, and serious eye safety hazards must be carefully considered.
British Telecom has demonstrated its long-reach PON. The system used EDFAs and SOAs. With the appropriate optical technologies, 10 Gb/s transmission was achieved in the downstream and upstream channels across 100 km to 1024 customers using a low-cost optical transceiver in the ONU situated in the customer premises [79].
The ACTS-PLANET realized the SuperPON in 2000. The implemented system supports a total of 2048 ONUs and achieves a span of 100 km. The 100 km fiber span consists of a maximum feeder length of 90 km and an add and drop section of 10 km.
EDFAs and SOAs were also used [79].
The Photonic System Group of University College Cork in Ireland has demonstrated the wavelength and time-division multiplexing long-reach PON (WDM-TDM LR-PON). The network supports multiple wavelengths, and each wavelength pair can support a PON segment with a long distance (100 km) and a large split ratio (1:256). The LR-PON contains 17 PON segments, each of which supports symmetric 10 Gb/s upstream and downstream channels over a 100 km distance. The system can serve a large number of end-users: 17 × 256 = 4352 users [80].
The authors in [81] cooperated with British Telecom, Alcatel and Siemens, who introduced the second-stage prototype of a photonic integrated extended metro and access network (PIEMAN) sponsored by Information Society Technologies (IST). PIEMAN consists of a 100 km transmission range with 32 DWDM channels, each of which operates at symmetric 10 Gb/s and 32 PON segments. The split ratio for each PON segment is 1:512; thus, the maximum number of supported users is 32 × 512 = 16,384 end-users.
Other long-reach topologies considered by researchers include ring-spur topologies for the long-reach PON. Each PON segment and OLT are connected by a fiber ring, and each PON segment can exploit a traditional fiber to the x (FTTx) network with a topology that consists of several “spurs” served from the “ring”. The ring can cover a maximum metro area of 100 km. The natural advantage of the ring topology is two-way transmission and failure protection [79]. An example of this topology was demonstrated by ETRI, a Korean government-funded research institute, which has developed a hybrid LR-PON named WE-PON (WDM-E-PON). In the WE-PON, 16 wavelengths are transmitted on the ring and can be added and dropped to local PON segments via the remote node (RN) on the ring. The RN can include an optical add-drop multiplexer (OADM) and an optical amplifier. The split ratio of the PON segments is 1:32, and the system can support 512 end-users [82].
Another demonstration of ring-based technology, which is called scalable advanced ring dense access network architecture (SARDANA), also implements “ring-and-spur” technology. In this system, 32 wavelengths are transmitted on the ring, with a split ratio of 1:32 for each wavelength. More than 1000 end-users are supported. The ONU units are based on a reconfigurable semiconductor optical amplifier (RSOA) [83]. The comparison of LR-PON projects is depicted in Table 3.
Many tests of different optical amplifiers in the PONs were conducted. In general, we suggest that use of the Brillouin amplifier is not feasible in this area of optoelectronics due to specific properties [93,94,95,96,97,98,99,100,101]. EDFAs can be employed for analog radio frequency (RF) overlay video services or WDM-PONs, where the C-band or L-band is used [102,103,104,105,106,107]. Other types of fiber amplifiers can be used for PONs: A thulium-based amplifier downstream and a praseodymium-based amplifier upstream [108,109,110,111,112,113,114]. Raman amplifiers can be used for PONs; however, if we take into account the cost and hazardous optical power, it is not the best solution for downstream transmission [115,116,117,118,119]. SOAs can be used as one of the most suitable candidates for future next-generation long-reach PONs. The low cost, sufficient gain and small size positions SOAs for future development [21,120,121,122,123].

4. Conclusions

In this paper we focus on reach extension in passive optical networks whereas applications in access and passive optical networks are being considered. Achieving longer distances without amplifiers or repeaters is not possible so the article explains both the basic principles of repetition and amplification, as well as the optical fiber amplifiers themselves. History, the general principles of operation and the basic configurations are explained for all types of amplifiers.
While many standards for high-speed PONs exist and additional standards are being prepared, there are also new trends that have been barely documented. However, the lack of standards should not hinder the creation of new approaches, for example, deployment of optical amplifiers in PONs, mainly EDFAs, Ramans and SOAs. An evaluation measurement to verify the dependence of the power level of the Raman amplifier on the saturation power was performed. Measurements have shown that even a relatively small powers of the pump diodes of the Raman amplifier (≈300 mW) can amplify the transmitted signal.
In addition to explaining the basics of amplification and measuring the amplification itself with a Raman amplifier, the article provides a comprehensive overview of the current state of research in the use of optical fiber amplifiers in PON networks. Both simple solutions that would be easily implementable in practice and complex solutions with signal regeneration are presented.
New trends of open networking promoted by hyperdata center companies should be considered for new trends in PON deployment to avoid any undesirable vendor dependencies and lock-ins. Open networking can ensure that technologies are replaced or migrated to new equipment as needed, especially when deploying out-of-box optical equipment, whether 2R or 3R, in PON ecosystems. These new open trends are yet not standardized in many cases but should not be disregarded because they are emerging in many parts of the world, especially in North America and Asia.
Additionally, we believe that, with optical amplification, the support of new applications, such as accurate time transfer or distributed fiber sensing, could be important for PON end-users. This new class of applications may not appear to be appropriate for a PON environment at first, but future user requirements and new open approaches are to be utilized here.

Author Contributions

Conceptualization, T.H., J.R., P.M., and N.-H.B.; methodology, T.H. and J.R.; formal analysis, P.M. and N.-H.B.; resources, T.H. and P.M.; writing—original draft preparation, T.H., J.R., P.M., and N.-H.B.; visualization, T.H., J.R., P.M., and N.-H.B.; supervision, T.H. and J.R.; project administration, T.H.; funding acquisition, T.H. and P.M. All authors have read and agreed to the published version of the manuscript.

Funding

The research described in this paper was financed by grants from the Ministry of the Interior of the Czech Republic, Program of Security Research, VI20172020110, PID VI2VS/422 “Reduction of security threats at optical networks” and the National Natural Science Foundation of China (NSFC 61671092).

Acknowledgments

Tomas would like to give thanks to Ales Buksa for his support at the University in memorial. Ales taught and inspired him regarding many things in his personal life. Acknowledgment is also given to CESNET for technical support and the equipment used for the measurement.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
ALSAutomatic laser shutdown
APCAngled physical contact
ASEAmplified spontaneous emission
ATMAsynchronous transfer mode
CESNETCzech Education and Scientific Network
CDChromatic dispersion
COCentral office
CWContinuous wave
CWDMCoarse wavelength division multiplexing
DCFDispersion compensating fiber
DRADistributed Raman amplifier
DRSDistributed Rayleigh scattering
DSPDigital signal processing
DWDMDense wavelength division multiplexing
EDFAErbium-doped fiber amplifier
FDDIFiber distributed data interface
FECForward error correction
FTTxFiber to the x
GEGigabit Ethernet
GEPONGigabit Ethernet passive optical network
GPONGigabit passive optical network
GVPGroup velocity dispersion
IEEEInstitute of Electrical and Electronics Engineers
ISTInformation Society Technologies
ITUInternational Telecommunication Union
LANLocal area network
LRALumped Raman amplifier
MFDMode field diameter
NFNoise figure
NGANext-generation access
NICsNetwork interface controllers
OADMOptical add-drop multiplexer
ODNOptical distribution network
OEOOptical electrical optical
OLTOptical line terminal
ONUOptical network unit
OOOAll-optical
OSNROptical signal-to-noise ratio
P2MPPoint-to-multipoint
PDFFAsPraseodymium-doped fluoride fiber amplifiers
PIEMANPhotonic integrated extended metro and access network
PMDPolarization mode dispersion
RE-PONReach extended passive optical network
RFRadio frequency
RNRemote node
RSOAReconfigurable semiconductor optical amplifier
SARDANAScalable advanced ring dense access network architecture
SNRSignal-to-noise ratio
SBSStimulated Brillouin scattering
SOASemiconductor optical amplifier
SRSStimulated Raman inelastic scattering
TATTrans-Atlantic transmission
TWTraveling wave
WDMWavelength division multiplexing
WDM-TDM LR-PONWavelength and time-division multiplexing long-reach passive optical network
WWWWorld Wide Web

References

  1. Ford, G.S. Is faster better? Quantifying the relationship between broadband speed and economic growth. Telecommun. Policy 2018, 42, 766–777. [Google Scholar] [CrossRef]
  2. Hernandez, J.A.; Sanchez, R.; Martin, I.; Larrabeiti, D. Meeting the Traffic Requirements of Residential Users in the Next Decade with Current FTTH Standards. IEEE Commun. Mag. 2019, 57, 120–125. [Google Scholar] [CrossRef]
  3. Harstead, E.; Bonk, R.; Walklin, S.; van Veen, D.; Houtsma, V.; Kaneda, N.; Mahadevan, A.; Borkowski, R. From 25 Gb/s to 50 Gb/s TDM PON. J. Opt. Commun. Netw. 2020, 12, D17–D26. [Google Scholar] [CrossRef]
  4. Kani, J.-i.; Terada, J.; Hatano, T.; Kim, S.Y.; Asaka, K.; Yamada, T. Future optical access network enabled by modularization and softwarization of access and transmission functions [Invited]. J. Opt. Commun. Netw. 2020, 12, D48–D56. [Google Scholar] [CrossRef]
  5. DeSanti, C.; Du, L.; Guarin, J.; Bone, J.; Lam, C.F. Super-PON. J. Opt. Commun. Netw. 2020, 12, D66–D77. [Google Scholar] [CrossRef]
  6. Zhang, D.; Liu, D.; Wu, X.; Nesset, D. Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 2020, 12, D99–D108. [Google Scholar] [CrossRef]
  7. Arpanaei, F.; Ardalani, N.; Beyranvand, H.; Shariati, B. QoT-aware performance evaluation of spectrally–spatially flexible optical networks over FM-MCFs. J. Opt. Commun. Netw. 2020, 12, 288–300. [Google Scholar] [CrossRef]
  8. Chen, J.; Wosinska, L.; Machuca, C.M.; Jaeger, M. Cost vs. reliability performance study of fiber access network architectures. IEEE Commun. Mag. 2010, 48, 56–65. [Google Scholar] [CrossRef]
  9. Zheng, X.Y.; He, M.J. Research and Implementation of Key Technologies in FTTH Networks Combining. Procedia Comput. Sci. 2019, 154, 439–445. [Google Scholar] [CrossRef]
  10. Jay, S.; Neumann, K.H.; Plückebaum, T. Comparing FTTH access networks based on P2P and PMP fibre topologies. Telecommun. Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
  11. Schneir, J.R.; Xiong, Y. Economic implications of a co-investment scheme for FTTH/PON architectures. Telecommun. Policy 2013, 37, 849–860. [Google Scholar] [CrossRef]
  12. Khalili, H.; Rincón, D.; Sallent, S.; Piney, J.R. An Energy-Efficient Distributed Dynamic Bandwidth Allocation Algorithm for Passive Optical Access Networks. Sustainability 2020, 12, 2264. [Google Scholar] [CrossRef] [Green Version]
  13. Memon, K.; Mohammadani, K.; Ain, N.; Shaikh, A.; Ullah, S.; Zhang, Q.; Das, B.; Ullah, R.; Tian, F.; Xin, X. Demand Forecasting DBA Algorithm for Reducing Packet Delay with Efficient Bandwidth Allocation in XG-PON. Electronics 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
  14. G.984.6: Gigabit-Capable Passive Optical Networks (GPON): Reach Extension; International Telecommunication Union (ITU): Geneva, Switzerland, 2008.
  15. G.987.4: 10-Gigabit-Capable Passive Optical Networks (XG-PON): Reach Extension; International Telecommunication Union (ITU): Geneva, Switzerland, 2012.
  16. G.9807.2: 10 Gigabit-Capable Passive Optical Networks (XG(S)-PON): Reach Extension; International Telecommunication Union (ITU): Geneva, Switzerland, 2017.
  17. IEEE P802.3ah Ethernet in the First Mile Task Force; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004.
  18. 802.3bk-2013—IEEE Standard for Ethernet—Amendment 1: Physical Layer Specifications and Management Parameters for Extended Ethernet Passive Optical Networks; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2013.
  19. P802.3cs—Standard for Ethernet Amendment: Physical Layers and Management Parameters for Increased-Reach Point-to-Multipoint Ethernet Optical Subscriber Access (Super-PON); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018.
  20. Du, L.B.; Zhao, X.; Yin, S.; Zhang, T.; Barratt, A.E.T.; Jiang, J.; Wang, D.; Geng, J.; DeSanti, C.; Lam, C.F. Long-Reach Wavelength-Routed TWDM PON. J. Light. Technol. 2019, 37, 688–697. [Google Scholar] [CrossRef]
  21. Fujiwara, M.; Koma, R. Long-Reach and High-Splitting-Ratio WDM/TDM-PON Systems Using Burst-Mode Automatic Gain Controlled SOAs. J. Light. Technol. 2016, 34, 901–909. [Google Scholar] [CrossRef]
  22. Zhang, Z.; Chen, X.; Wang, L.; Zhang, M. 40-Gb/s QPSK downstream and 10-Gb/s RSOA-based upstream transmission in long-reach WDM PON employing remotely pumped EDFA and FBG optical equalizer. In Proceedings of the 2013 8th International Conference on Communications and Networking in China (CHINACOM), Guilin, China, 14–16 August 2013; pp. 788–791. [Google Scholar] [CrossRef]
  23. Alves, T.M.F.; Morant, M.; Cartaxo, A.V.T.; Llorente, R. Design of Directly Modulated Long-Reach PONs Reaching 125 km for Provisioning of Hybrid Wired–Wireless Quintuple-Play Service. J. Opt. Commun. Netw. 2013, 5, 848–857. [Google Scholar] [CrossRef]
  24. Contestabile, G.; Bontempi, F. All-Optical Distribution Node for Long Reach PON Downlink. IEEE Photonics Technol. Lett. 2014, 26, 1403–1406. [Google Scholar] [CrossRef]
  25. Taguchi, K.; Asaka, K.; Fujiwara, M.; Kaneko, S.; Yoshida, T.; Fujita, Y.; Iwamura, H.; Kashima, M.; Furusawa, S.; Sarashina, M.; et al. Field Trial of Long-Reach and High-Splitting λ-Tunable TWDM-PON. J. Light. Technol. 2016, 34, 213–221. [Google Scholar] [CrossRef]
  26. Chen, H.Y.; Wei, C.C.; Lu, I.C.; Chu, H.H.; Chen, Y.C.; Chen, J. High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier [Invited]. J. Opt. Commun. Netw. 2015, 7, A59–A65. [Google Scholar] [CrossRef]
  27. Saliou, F.; Chanclou, P.; Laurent, F.; Genay, N.; Lazaro, J.A.; Bonada, F.; Prat, J. Reach Extension Strategies for Passive Optical Networks [Invited]. J. Opt. Commun. Netw. 2009, 1, C51–C60. [Google Scholar] [CrossRef]
  28. Nesset, D.; Appathurai, S.; Davey, R.; Kelly, T. Extended Reach GPON Using High Gain Semiconductor Optical Amplifiers. In Proceedings of the OFC/NFOEC 2008—2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; pp. 1–3. [Google Scholar] [CrossRef]
  29. Nesset, D.; Wright, P. Raman Extended GPON using 1240 nm Semiconductor Quantum-Dot Lasers. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010; OSA: San Diego, CA, USA, 2010; pp. 1–3. [Google Scholar] [CrossRef]
  30. Nesset, D.; Farrow, K.; Wright, P. Bidirectional, Raman extended GPON with 50 km reach and 1:64 split using wavelength stabilised pumps. In Proceedings of the 2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 18–22 September 2011; pp. 1–3. [Google Scholar]
  31. Genay, N.; Soret, T.; Chanclou, P.; Landousies, B.; Guillo, L.; Saliou, F. Evaluation of the Budget Extension of a GPON by EDFA Amplification. In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2007; pp. 76–79. [Google Scholar] [CrossRef]
  32. Antony, C.; Talli, G.; Santa, M.D.; Murray, B.; Hegarty, S.; Kehayas, E.; Krestnikov, I.; Townsend, P.D. XG-PON Raman reach extender based on quantum dot lasers. In Proceedings of the 2014 the European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; pp. 1–3. [Google Scholar] [CrossRef]
  33. Payne, D. Kilowatt Fibre Lasers and Beyond. In Proceedings of the 2006 IET Seminar on High Power Diode Pumped Lasers and Systems, London, UK, 5 December 2006; pp. 65–83. [Google Scholar]
  34. Desurvire, E.B. Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades. J. Light. Technol. 2006, 24, 4697–4710. [Google Scholar] [CrossRef]
  35. Wagner, S. Correction to “Optical Amplifier Applications in Fiber Optic Local Networks”. IEEE Trans. Commun. 1987, 35, 854. [Google Scholar] [CrossRef]
  36. Henry, C. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. J. Light. Technol. 1986, 4, 288–297. [Google Scholar] [CrossRef]
  37. Loudon, R. Theory of noise accumulation in linear optical-amplifier chains. IEEE J. Quantum Electron. 1985, 21, 766–773. [Google Scholar] [CrossRef]
  38. Henning, I.; Adams, M.; Collins, J. Performance predictions from a new optical amplifier model. IEEE J. Quantum Electron. 1985, 21, 609–613. [Google Scholar] [CrossRef]
  39. Fye, D. Practical limitations on optical amplifier performance. J. Light. Technol. 1984, 2, 403–406. [Google Scholar] [CrossRef]
  40. Faulkner, D. A wide-band limiting amplifier for optical fiber repeaters. IEEE J. Solid-State Circuits 1983, 18, 333–340. [Google Scholar] [CrossRef]
  41. Massey, G.; Johnson, J. Gain limitations in optical parametric amplifiers. IEEE J. Quantum Electron. 1979, 15, 201–203. [Google Scholar] [CrossRef]
  42. Hullett, J.; Muoi, T. A Feedback Receive Amplifier for Optical Transmission Systems. IEEE Trans. Commun. 1976, 24, 1180–1185. [Google Scholar] [CrossRef]
  43. Qiu, X.Z.; Yin, X.; Verbrugghe, J.; Moeneclaey, B.; Vyncke, A.; Praet, C.V.; Torfs, G.; Bauwelinck, J.; Vandewege, J. Fast Synchronization 3R Burst-Mode Receivers for Passive Optical Networks. J. Light. Technol. 2014, 32, 644–659. [Google Scholar] [CrossRef] [Green Version]
  44. Nakagawa, J.; Nogami, M.; Suzuki, N.; Noda, M.; Yoshima, S.; Tagami, H. 10.3-Gb/s Burst-Mode 3R Receiver Incorporating Full AGC Optical Receiver and 82.5-GS/s Over-Sampling CDR for 10G-EPON Systems. IEEE Photonics Technol. Lett. 2010, 22, 471–473. [Google Scholar] [CrossRef]
  45. Tran, N.C.; Bauwelinck, J.; Yin, X.; Tangdiongga, E.; Koonen, T. Demonstration of Long-Reach PON Using 10 Gb/s 3R Burst-Mode Wavelength Converter. IEEE Photonics Technol. Lett. 2013, 25, 1492–1495. [Google Scholar] [CrossRef] [Green Version]
  46. Nakagawa, J.; Noda, M.; Suzuki, N.; Yoshima, S.; Nakura, K.; Nogami, M. Demonstration of 10G-EPON and GE-PON Coexisting System Employing Dual-Rate Burst-Mode 3R Transceiver. IEEE Photonics Technol. Lett. 2010, 22, 1841–1843. [Google Scholar] [CrossRef]
  47. Nishihara, S.; Kimura, S.; Yoshida, T.; Nakamura, M.; Terada, J.; Nishimura, K.; Kishine, K.; Kato, K.; Ohtomo, Y.; Yoshimoto, N.; et al. A Burst-Mode 3R Receiver for 10-Gbit/s PON Systems With High Sensitivity, Wide Dynamic Range, and Fast Response. J. Light. Technol. 2008, 26, 99–107. [Google Scholar] [CrossRef]
  48. Kim, K.O.; Doo, K.H.; Lee, S.S. Design of a Hybrid PON System for GPON Reach Extension on the Basis of Colorless DWDM-PON and 3R Regenerator. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–4. [Google Scholar] [CrossRef]
  49. Umeda, D.; Ikagawa, T.; Yamazaki, K.; Hirakata, N.; Yamagishi, K. Bidirectional 3R Repeater for GE-PON Systems. In Proceedings of the 2006 European Conference on Optical Communications, Cannes, France, 24–28 September 2006; pp. 1–2. [Google Scholar] [CrossRef]
  50. Simon, J.C.; Bramerie, L.; Ginovart, F.; Roncin, V.; Gay, M.; Feve, S.; le Cren, E.; Chares, M.L. All-optical regeneration techniques. Ann. Telecommun. 2003, 11, 1708–1724. [Google Scholar] [CrossRef]
  51. Izawa, T.; Sudo, S. Optical Fibers; Kluwer Academic Publishers: Norwell, MA, USA, 1987. [Google Scholar]
  52. Crisp, J.; Elliott, B.J. Introduction to Fiber Optics, 3rd ed.; Newnes: Boston, MA, USA, 2005. [Google Scholar]
  53. Singh, M. Electronic Dispersion Compensation in Optical Fiber Communication, 1st ed.; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2016. [Google Scholar]
  54. Ramaswami, R.; Sivarajan, K.N.; Sasaki, G.H. Optical Networks, 3rd ed.; Elsevier/Morgan Kaufmann: Boston, MA, USA, 2010. [Google Scholar]
  55. Menyuk, C.R.; Galtarossa, A. Polarization Mode Dispersion, 1st ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
  56. Meghanathan, N.; Boumerdassi, S.; Chaki, N.; Nagamalai, D. Recent Trends in Networks and Communications: International Conferences, NeCoM 2010, WiMoN 2010, WeST 2010, Chennai, India, 23–25 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–721. [Google Scholar] [CrossRef]
  57. Slavik, R.; Bogris, A.; Kakande, J.; Parmigiani, F.; Gruner-Nielsen, L.; Phelan, R.; Vojtech, J.; Petropoulos, P. Field-Trial of an All-Optical PSK Regenerator/Multicaster in a 40 Gbit/s, 38 Channel DWDM Transmission Experiment. J. Light. Technol. 2012, 30, 512–520. [Google Scholar] [CrossRef] [Green Version]
  58. Simatupang, J.W.; Lee, S.-L. Theoretical and simulation analysis on potential impairments in bidirectional WDM-PONs. In Proceedings of the IEEE 3rd International Conference on Photonics, Penang, Malaysia, 1–3 October 2012; pp. 61–65. [Google Scholar] [CrossRef]
  59. Kaminow, I.; Li, T. Optical Fiber Telecommunications IV-B, 4th ed.; Academic Press: New York, NY, USA, 2002; Volume B. [Google Scholar]
  60. Agrawal, G.P. Fiber-Optic Communication Systems, 4th ed.; Wiley: New York, NY, USA, 2010. [Google Scholar]
  61. Senior, J.M.; Jamro, M.Y. Optical Fiber Communications, 3rd ed.; Financial Times/Prentice Hall: New York, NY, USA, 2009. [Google Scholar]
  62. Digonnet, M.J.F. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded 2nd ed.; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
  63. Gowan, B. Coherent Optical Turns 10: Here-s How It Was Made. Available online: https://www.ciena.com/insights/articles/Coherent-optical-turns-10-Heres-how-it-was-made-prx.html (accessed on 25 August 2020).
  64. Marhic, M.E. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
  65. Becker, P.C.; Olsson, N.A.; Simpson, J.R. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Optics and Photonics), 1st ed.; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  66. Desurvire, E. Erbium-Doped Fiber Amplifiers; Wiley: New York, NY, USA, 1994. [Google Scholar]
  67. Vojtech, J.; Karasek, M.; Radil, J. Extending the reach of 10GE at 1310 nm. In Proceedings of the 2005 7th International Conference Transparent Optical Networks, Barcelona, Catalonia, Spain, 7 July 2005; pp. 39–42. [Google Scholar] [CrossRef]
  68. Dutta, N.K.; Wang, Q. Semiconductor Optical Amplifiers, 2nd ed.; World Scientific Publishing: Hackensack, NJ, USA, 2006. [Google Scholar]
  69. Vojtech, J.; Radil, J.; Smotlacha, V. Semiconductor Optical Amplifier with Holding Beam Injection for Single Path Accurate Time Transmission. In Proceedings of the CLEO: 2015, San Jose, CA, USA, 10–15 May 2015; OSA: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
  70. Raman, C. A new radiation. Indian J. Phys. 1928, 2, 387–398. [Google Scholar] [CrossRef]
  71. Ghatak, A.; Thyagarajan, K. An Introduction to Fiber Optics, 1st ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
  72. Munster, P.; Vojtech, J.; Sysel, P.; Sifta, R.; Novotny, V.; Horvath, T.; Sima, S.; Filka, M. Φ-OTDR signal amplification. In Proceedings of the Optical Sensors 2015. International Society for Optics and Photonics, SPIE 2015, Prague, Czech Republic, 13–16 April 2015; Volume 9506, pp. 28–36. [Google Scholar] [CrossRef]
  73. Yasin, M. Advances in Optical Fiber Technology, 1st ed.; InTech Open: London, UK, 2015. [Google Scholar]
  74. Terra, O.; Grosche, G.; Schnatz, H. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Opt. Express 2010, 18, 16102–16111. [Google Scholar] [CrossRef] [Green Version]
  75. Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hansch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef]
  76. Davey, R.; Kani, J.; Bourgart, F.; McCammon, K. Options for future optical access networks. IEEE Commun. Mag. 2006, 44, 50–56. [Google Scholar] [CrossRef]
  77. Nesset, D. 10 Gbit/s bidirectional transmission in 1024-way split, 110 km reach, PON system using commercial transceiver modules, super FEC and EDC. In Proceedings of the 31st European Conference on Optical Communications (ECOC 2005), Glasgow, UK, 25–29 September 2005; pp. 135–138. [Google Scholar] [CrossRef] [Green Version]
  78. Lee, K.L.; Riding, J.L.; Tran, A.V.; Tucker, R.S. Extended reach gigabit passive optical networks for rural areas using Raman and semiconductor optical amplifiers. In Proceedings of the 2009 14th OptoElectronics and Communications Conference, Vienna, Austria, 13–17 July 2009; pp. 1–2. [Google Scholar] [CrossRef]
  79. Shea, D.; Mitchell, J. Long-Reach Optical Access Technologies. IEEE Netw. 2007, 21, 5–11. [Google Scholar] [CrossRef]
  80. Talli, G.; Townsend, P. Hybrid DWDM-TDM long-reach PON for next-generation optical access. J. Light. Technol. 2006, 24, 2827–2834. [Google Scholar] [CrossRef]
  81. Talli, G.; Chow, C.W.; Townsend, P.; Davey, R.; Ridder, T.D.; Qiu, X.Z.; Ossieur, P.; Krimmel, H.G.; Smith, D.; Lealman, I.; et al. Integrated Metro and Access Networks: PIEMAN. In Proceedings of the 12th European Conference on Networks and Optical Communications—NOC 2007, Stockholm, Sweden, 18–21 June 2007; pp. 493–500. [Google Scholar]
  82. Yoo, J.J.; Yun, H.H.; Kim, T.Y.; Lee, K.B.; Park, M.Y.; Kim, B.W.; Kim, B.T. A WDM-Ethernet hybrid passive optical network architecture. In Proceedings of the 2006 8th International Conference Advanced Communication Technology, Phoenix Park, Korea, 20–22 February 2006; pp. 1754–1757. [Google Scholar] [CrossRef]
  83. Lazaro, J.A.; Prat, J.; Chanclou, P.; Beleffi, G.M.T.; Teixeira, A.; Tomkos, I.; Soila, R.; Koratzinos, V. Scalable Extended Reach PON. In Proceedings of the OFC/NFOEC 2008—2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; pp. 1–3. [Google Scholar] [CrossRef]
  84. Lazaro, J.A.; Polo, V.; Bock, C.; Omella, M.; Prat, J. Remotely Amplified SARDANA. In Proceedings of the 2006 European Conference on Optical Communications, Cannes, France, 24–28 September 2006; pp. 1–2. [Google Scholar] [CrossRef]
  85. Prat, J.; Lazaro, J.; Chanclou, P.; Soila, R.; Gallardo, A.M.; Teixeira, A.; TosiBeleffi, G.M.; Tomkos, I. Results from EU Project SARDANA on 10G extended reach WDM PONs. In Proceedings of the 2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference, San Diego, CA, USA, 21–25 March 2010; pp. 1258–1260. [Google Scholar] [CrossRef]
  86. Smolorz, S.; Rohde, H.; Ossieur, P.; Antony, C.; Townsend, P.D.; Ridder, T.D.; Baekelandt, B.; Qiu, X.Z.; Appathurai, S.; Krimmel, H.G.; et al. Next generation access networks. In Proceedings of the 2009 International Conference on Photonics in Switching, Pisa, Italy, 15–19 September 2009; pp. 1–4. [Google Scholar] [CrossRef]
  87. Lee, J.H.; Cho, S.H.; Lee, H.H.; Jung, E.S.; Yu, J.H.; Kim, B.W.; Lee, S.H.; Koh, J.S.; Sung, B.H.; Kang, S.J.; et al. First Commercial Deployment of a Colorless Gigabit WDM/TDM Hybrid PON System Using Remote Protocol Terminator. J. Light. Technol. 2010, 28, 344–351. [Google Scholar] [CrossRef]
  88. An, F.T.; Kim, K.; Gutierrez, D.; Yam, S.; Hu, E.; Shrikhande, K.; Kazovsky, L. SUCCESS. J. Light. Technol. 2004, 22, 2557–2569. [Google Scholar] [CrossRef]
  89. Cao, Y.; Gan, C.; Zhou, Y.; Shi, L.; Zhu, L. A novel architecture of reconfigurable WDM/TDM-PON. In Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC 2010), Shanghai, China, 14–15 May 2010; pp. 1–4. [Google Scholar] [CrossRef]
  90. Oakley, K.; Jensen, J.; Walkoe, W. British Telecom TPON application in the US network. In Proceedings of the 1989 IEEE Global Telecommunications Conference and Exhibition ‘Communications Technology for the 1990s and Beyond’, Dallas, TX, USA, 27–30 November 1989; pp. 1340–1345. [Google Scholar] [CrossRef]
  91. Hawker, I.; Whitt, S.; Bennett, G. The future British Telecom core transmission network. In Proceedings of the Second IEE National Conference on Telecommunications 1989, York, UK, 2–5 April 1989; pp. 364–368. [Google Scholar]
  92. Van Deventer, M.O.; van Dam, Y.; Peters, P.; Vermaerke, F.; Phillips, A. Evolution phases to an ultra broadband access network. IEEE Commun. Mag. 1997, 35, 72–77. [Google Scholar] [CrossRef]
  93. Tkach, R.; Chraplyvy, A.; Derosier, R. Performance of a WDM network based on stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 1989, 1, 111–113. [Google Scholar] [CrossRef]
  94. Leng, L.; Le, T. All-optical carrier regeneration at optical network unit using a Brillouin/Erbium fiber laser. In Proceedings of the 2008 International Conference on Photonics in Switching, Sapporo, Japan, 4–7 August 2008; pp. 1–2. [Google Scholar] [CrossRef]
  95. Kim, D.; Kim, B.G.; Bo, T.; Kim, H. Performance Improvement of RSOA-based Coherent WDM PON Using SBS Suppression and Erasing Frequency-Dithering Tone. In Proceedings of the 2018 23rd Opto-Electronics and Communications Conference (OECC), Jeju Island, Korea, 2–6 July 2018; pp. 1–2. [Google Scholar] [CrossRef]
  96. Lalam, N.; Ng, W.P.; Dai, X.; Wu, Q.; Fu, Y. Sensing range improvement of brillouin optical time domain reflectometry (BOTDR) using inline erbium-doped fibre amplifier. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
  97. Xing, L.; Zhan, L.; Luo, S.; Xia, Y. High-Power Low-Noise Fiber Brillouin Amplifier for Tunable Slow-Light Delay Buffer. IEEE J. Quantum Electron. 2008, 44, 1133–1138. [Google Scholar] [CrossRef]
  98. Noordegraaf, D.; Lorenzen, M.; Nielsen, C.V.; Rottwitt, K. Brillouin Scattering in Fiber Optical Parametric Amplifiers. In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2007; pp. 197–200. [Google Scholar] [CrossRef]
  99. Yi, L.; Zhan, L.; Hu, W.; Hu, P.; Su, Y.; Leng, L.; Xia, Y. A highly stable low-RIN hybrid Brillouin/erbium amplified laser source. IEEE Photonics Technol. Lett. 2006, 18, 1028–1030. [Google Scholar] [CrossRef]
  100. Strutz, S.; Williams, K.; Esman, R. Polarization-maintaining hybrid erbium-Brillouin amplifier for high-power low-noise sources. IEEE Photonics Technol. Lett. 2001, 13, 936–938. [Google Scholar] [CrossRef]
  101. Vedadi, A.; Alasia, D.; Lantz, E.; Maillotte, H.; Thevenaz, L.; Gonzalez-Herraez, M.; Sylvestre, T. Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers. IEEE Photonics Technol. Lett. 2007, 19, 179–181. [Google Scholar] [CrossRef]
  102. Chen, L.; Yu, J.; Wen, S.; Lu, J.; Dong, Z.; Huang, M.; Chang, G. A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System. J. Light. Technol. 2009, 27, 2786–2791. [Google Scholar] [CrossRef]
  103. Cao, Z.; Yu, J.; Zhou, H.; Wang, W.; Xia, M.; Wang, J.; Tang, Q.; Chen, L. WDM-RoF-PON Architecture for Flexible Wireless and Wire-Line Layout. J. Opt. Commun. Netw. 2010, 2, 117–121. [Google Scholar] [CrossRef]
  104. Miyamoto, K.; Tashiro, T.; Fukada, Y.; Kani, J.-i.; Terada, J.; Yoshimoto, N.; Iwakuni, T.; Higashino, T.; Tsukamoto, K.; Komaki, S.; et al. Transmission Performance Investigation of RF Signal in RoF-DAS Over WDM-PON With Bandpass-Sampling and Optical TDM. J. Light. Technol. 2013, 31, 3477–3488. [Google Scholar] [CrossRef]
  105. Liu, A.; Wang, X.; Shao, Q.; Song, T.; Yin, H.; Zhao, N. A low cost structure of radio-over-fiber system compatible with WDM-PON. In Proceedings of the 2016 25th Wireless and Optical Communication Conference (WOCC), Chengdu, China, 21–23 May 2016; pp. 1–3. [Google Scholar] [CrossRef]
  106. Ji, W.; Kang, Z. Design of WDM RoF PON Based on OFDM and Optical Heterodyne. J. Opt. Commun. Netw. 2013, 5, 652–657. [Google Scholar] [CrossRef]
  107. Ji, W.; Li, X.; Kang, Z.; Xue, X. Design of WDM-RoF-PON Based on Improved OFDM Mechanism and Optical Coherent Technology. J. Opt. Commun. Netw. 2015, 7, 74–82. [Google Scholar] [CrossRef]
  108. Fujiwara, M.; Suzuki, K.I.; Imai, T.; Taguchi, K.; Ishii, H.; Yoshimoto, N. ALC Burst-Mode Optical Fiber Amplifiers for 10 Gb/s-Class Long-Reach PONs. J. Opt. Commun. Netw. 2012, 4, 614–621. [Google Scholar] [CrossRef]
  109. Fukada, Y.; Suzuki, K.I.; Nakamura, H.; Yoshimoto, N.; Tsubokawa, M. First demonstration of fast automatic-gain-control (AGC) PDFA for amplifying burst-mode PON upstream signal. In Proceedings of the 2008 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 September 2008; pp. 1–2. [Google Scholar] [CrossRef]
  110. Muro, R.D. Praseodymium-doped fibre amplifiers for WDM applications. In Proceedings of the IEEE Colloquium on WDM Technology and Applications, London, UK, 6 February 1997; p. 20. [Google Scholar] [CrossRef]
  111. Fake, M.; Stalley, K.; Cooke, R.; Whitley, T.; Kikushima, K.; Lawrence, E. Multichannel FM-TV transmission using an engineered 1.3 μm praseodymium-doped fluoride fibre amplifier. Electron. Lett. 1994, 30, 1431–1432. [Google Scholar] [CrossRef]
  112. Nishida, Y.; Yamada, M.; Kanamori, T.; Kobayashi, K.; Temmyo, J.; Sudo, S.; Ohishi, Y. Development of an efficient praseodymium-doped fiber amplifier. IEEE J. Quantum Electron. 1998, 34, 1332–1339. [Google Scholar] [CrossRef]
  113. Shi, J.; Tang, M.; Fu, S.; Shum, P. Modeling and analysis of visible praseodymium doped fiber lasers. In Proceedings of the 2012 17th Opto-Electronics and Communications Conference, Busan, Korea, 2–6 July 2012; pp. 375–376. [Google Scholar] [CrossRef]
  114. Sanders, S.; Dzurko, K.; Parke, R.; O’Brien, S.; Welch, D.; Grubb, S.; Nykolak, G.; Becker, P. Praseodymium doped fibre amplifiers (PDFAs) pumped by monolithic master oscillator power amplifier (M-MOPA) laser diodes. Electron. Lett. 1996, 32, 343–345. [Google Scholar] [CrossRef]
  115. Kjaer, R.; Monroy, I.T.; Oxenlowe, L.K.; Jeppesen, P.; Palsdottir, B. Impairments Due to Burst-Mode Transmission in a Raman-Based Long-Reach PON Link. IEEE Photonics Technol. Lett. 2007, 19, 1490–1492. [Google Scholar] [CrossRef] [Green Version]
  116. Amaral, G.C.; Herrera, L.E.Y.; Vitoreti, D.; Temporao, G.P.; Urban, P.J.; von der Weid, J.P. WDM-PON Monitoring With Tunable Photon Counting OTDR. IEEE Photonics Technol. Lett. 2014, 26, 1279–1282. [Google Scholar] [CrossRef]
  117. Peiris, S.; Madamopoulos, N.; Antoniades, N.; Richards, D.; Ummy, M.A.; Dorsinville, R. Engineering an Extended Gain Bandwidth Hybrid Raman—Optical Parametric Amplifier for Next Generation CWDM PON. J. Light. Technol. 2014, 32, 939–946. [Google Scholar] [CrossRef]
  118. Muciaccia, T.; Gargano, F.; Passaro, V. A TWDM-PON with Advanced Modulation Techniques and a Multi-Pump Raman Amplifier for Cost-Effective Migration to Future UDWDM-PONs. J. Light. Technol. 2015, 33, 2986–2996. [Google Scholar] [CrossRef]
  119. Acharya, K.K.; Raja, M.Y.A. Raman Amplified PON (RA-PON). In Proceedings of the 2008 International Symposium on High Capacity Optical Networks and Enabling Technologies, Penang, Malaysia, 18–20 November 2008; pp. 240–244. [Google Scholar] [CrossRef]
  120. Taguchi, K.; Asaka, K.; Kimura, S.; Suzuki, K.I.; Otaka, A. Reverse Bias Voltage Controlled Burst-Mode Booster SOA in λ-Tunable ONU Transmitter for High-Split-Number TWDM-PON. J. Opt. Commun. Netw. 2018, 10, 431–439. [Google Scholar] [CrossRef]
  121. Naughton, A.; Talli, G.; Porto, S.; Antony, C.; Ossieur, P.; Townsend, P.D. Design Optimization of R-EAM-SOA for Long-Reach Carrier-Distributed Passive Optical Networks. J. Light. Technol. 2014, 32, 4386–4392. [Google Scholar] [CrossRef]
  122. Saliou, F.; Chanclou, P.; Genay, N.; Lazaro, J.A.; Bonada, F.; Othmani, A.; Zhou, Y. Single SOA to extend simultaneously the optical budget of coexisting G-PON and 10G-PON. In Proceedings of the 36th European Conference and Exhibition on Optical Communication, Torino, Italy, 19–23 September 2010; pp. 1–3. [Google Scholar] [CrossRef]
  123. Guo, Q.; Tran, A.V. Demonstration of 40-Gb/s WDM-PON System Using SOA-REAM and Equalization. IEEE Photonics Technol. Lett. 2012, 24, 951–953. [Google Scholar] [CrossRef]
Figure 1. Principle of 1R, 2R and 3R.
Figure 1. Principle of 1R, 2R and 3R.
Applsci 10 05912 g001
Figure 2. Principle of 3R in a reach extended passive optical network (RE-PON).
Figure 2. Principle of 3R in a reach extended passive optical network (RE-PON).
Applsci 10 05912 g002
Figure 3. Block scheme of an RE-PON.
Figure 3. Block scheme of an RE-PON.
Applsci 10 05912 g003
Figure 4. Principle of synchronous modulation optical regeneration.
Figure 4. Principle of synchronous modulation optical regeneration.
Applsci 10 05912 g004
Figure 5. (a) Booster-only configuration, for shorter distances (100–150 km), (b) preamplifier-only configuration, when it is necessary to avoid high-power boosters, (c) booster and preamplifier configuration for distances of approximately 200 km, (d) booster, inline and preamplifier configuration for longer distances (cascaded fibers).
Figure 5. (a) Booster-only configuration, for shorter distances (100–150 km), (b) preamplifier-only configuration, when it is necessary to avoid high-power boosters, (c) booster and preamplifier configuration for distances of approximately 200 km, (d) booster, inline and preamplifier configuration for longer distances (cascaded fibers).
Applsci 10 05912 g005
Figure 6. (a) Schematic diagram of erbium energy levels and (b) detailed energy levels for erbium.
Figure 6. (a) Schematic diagram of erbium energy levels and (b) detailed energy levels for erbium.
Applsci 10 05912 g006
Figure 7. Schematic diagram of an erbium-doped fiber amplifier (EDFA) with backward and forward pumping.
Figure 7. Schematic diagram of an erbium-doped fiber amplifier (EDFA) with backward and forward pumping.
Applsci 10 05912 g007
Figure 8. Schematic diagram of a semiconductor optical amplifier (SOA).
Figure 8. Schematic diagram of a semiconductor optical amplifier (SOA).
Applsci 10 05912 g008
Figure 9. Gain dependence on the output power.
Figure 9. Gain dependence on the output power.
Applsci 10 05912 g009
Figure 10. Raman gain for copolarized and orthogonally polarized pump and signal.
Figure 10. Raman gain for copolarized and orthogonally polarized pump and signal.
Applsci 10 05912 g010
Figure 11. Schematic diagram of energy levels for the stimulated Raman inelastic scattering (SRS) process (silica fiber with very short high-energy-level lifetimes).
Figure 11. Schematic diagram of energy levels for the stimulated Raman inelastic scattering (SRS) process (silica fiber with very short high-energy-level lifetimes).
Applsci 10 05912 g011
Figure 12. Schematic diagram of backward Raman amplification (counterdirectional pumping).
Figure 12. Schematic diagram of backward Raman amplification (counterdirectional pumping).
Applsci 10 05912 g012
Figure 13. Measurement scheme with a Raman amplifier.
Figure 13. Measurement scheme with a Raman amplifier.
Applsci 10 05912 g013
Figure 14. Dependence of the saturation power on the pump power.
Figure 14. Dependence of the saturation power on the pump power.
Applsci 10 05912 g014
Table 1. Pump power vs. saturation power of a Raman amplifier.
Table 1. Pump power vs. saturation power of a Raman amplifier.
Pump Power [mW]Pump Wavelength [nm]Amplified Wavelength [nm]Amplified Saturation Power [dBm]
101455.1421552.062−10.803
501455.1621552.060−10.540
1001455.1821552.066−10.148
1501455.1881552.066−9.712
2001455.1841552.064−9.276
2501455.2021552.064−8.706
3001455.1981552.064−8.280
Table 2. Comparison of amplifiers.
Table 2. Comparison of amplifiers.
PROPERTYEDFARAMANSOA
Gain [dB]>40>30>30
Wavelength [nm]1530–16251280–16501280–1650
Bandwidth (3 dB) [nm]30–60up to 10060
Max. Saturation [dBm]300.75 × pump power18
Polarization SensitivityNoNoYes
Noise Figure [dB]>3.558
Pump power25 dBm>30 dBm<400 mA
Time constant [s]1.00 ×   10 1 1.00 ×   10 14 2.00 ×   10 9
SizeRack-mountedBulk moduleCompact
SwitchableNoNoYes
Cost factorMediumHighLow
Table 3. Realized long-reach passive optical network (LR-PON) projects [84,85,86,87,88,89,90,91,92].
Table 3. Realized long-reach passive optical network (LR-PON) projects [84,85,86,87,88,89,90,91,92].
PROJECTSTANDARDReach [km]WavelengthsDown/Upstream [Gb/s]End-Users
ACTS-PLANETAPON10012.5/0.3112048
British TelecomGPON135402.5/1.252560
WDM-TDM 1001710/104352
PIEMAN 1003210/1016,384
WE-PONGPON/EPON100162.5/2.5512
SARDANAGPON/EPON1003210/2.51024

Share and Cite

MDPI and ACS Style

Horvath, T.; Radil, J.; Munster, P.; Bao, N.-H. Optical Amplifiers for Access and Passive Optical Networks: A Tutorial. Appl. Sci. 2020, 10, 5912. https://doi.org/10.3390/app10175912

AMA Style

Horvath T, Radil J, Munster P, Bao N-H. Optical Amplifiers for Access and Passive Optical Networks: A Tutorial. Applied Sciences. 2020; 10(17):5912. https://doi.org/10.3390/app10175912

Chicago/Turabian Style

Horvath, Tomas, Jan Radil, Petr Munster, and Ning-Hai Bao. 2020. "Optical Amplifiers for Access and Passive Optical Networks: A Tutorial" Applied Sciences 10, no. 17: 5912. https://doi.org/10.3390/app10175912

APA Style

Horvath, T., Radil, J., Munster, P., & Bao, N. -H. (2020). Optical Amplifiers for Access and Passive Optical Networks: A Tutorial. Applied Sciences, 10(17), 5912. https://doi.org/10.3390/app10175912

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop