BIM-Based Spatial Augmented Reality (SAR) for Architectural Design Collaboration: A Proof of Concept
Abstract
:1. Introduction
2. Literature Review
2.1. AR for BIM-Based Architectural Design Collaboration
2.2. SAR for Design Collaboration
3. Framework
3.1. Creating 3D Models with UV Map and Texture Image
3.2. Implement Projection Mapping
4. Case Study
4.1. Case Procedures of BIM-Based SAR
4.2. Control Group Design and Results
4.2.1. Mass Model Size
4.2.2. Illumination Condition
4.2.3. Projection Angles
4.2.4. Planar/Curve Projection Surface
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gross, M.D.; Do, E.Y.-L.; McCall, R.J.; Citrin, W.V.; Hamill, P.; Warmack, A.; Kuczun, K.S. Collaboration and coordination in architectural design: Approaches to computer mediated team work. Autom. Constr. 1998, 7, 465–473. [Google Scholar] [CrossRef]
- Kalay, Y.E. Architecture’s New Media: Principles, Theories, and Methods of Computer-Aided Design; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- El-Diraby, T.; Krijnen, T.; Papagelis, M. BIM-based collaborative design and socio-technical analytics of green buildings. Autom. Constr. 2017, 82, 59–74. [Google Scholar] [CrossRef]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Johansson, M.; Roupé, M.; Bosch-Sijtsema, P. Real-time visualization of building information models (BIM). Autom. Constr. 2015, 54, 69–82. [Google Scholar] [CrossRef]
- Oh, M.; Lee, J.; Hong, S.W.; Jeong, Y. Integrated system for BIM-based collaborative design. Autom. Constr. 2015, 58, 196–206. [Google Scholar] [CrossRef]
- Meža, S.; Turk, Ž.; Dolenc, M. Component based engineering of a mobile BIM-based augmented reality system. Autom. Constr. 2014, 42, 1–12. [Google Scholar] [CrossRef]
- Berryman, D.R. Augmented reality: A review. Med. Ref. Serv. Q. 2012, 31, 212–218. [Google Scholar] [CrossRef]
- Ahlers, K.H.; Kramer, A.; Breen, D.E.; Chevalier, P.Y.; Crampton, C.; Rose, E.; Tuceryan, M.; Whitaker, R.T.; Greer, D. Distributed augmented reality for collaborative design applications. In Proceedings of the Computer Graphics Forum, Orlando, FL, USA, 24–28 March 2002; pp. 3–14. [Google Scholar]
- Basadur, M.; Pringle, P.; Speranzini, G.; Bacot, M. Collaborative problem solving through creativity in problem definition: Expanding the pie. Creat. Innov. Manag. 2000, 9, 54–76. [Google Scholar] [CrossRef]
- Hong, S.W.; Jeong, Y.; Kalay, Y.E.; Jung, S.; Lee, J. Enablers and barriers of the multi-user virtual environment for exploratory creativity in architectural design collaboration. CoDesign 2016, 12, 151–170. [Google Scholar] [CrossRef]
- Ko, C.-H.; Chang, T.-C. Evaluation and student perception of augmented reality based design collaboration. Management 2011, 6, 6. [Google Scholar]
- Calderon-Hernandez, C.; Brioso, X. Lean, BIM and Augmented Reality Applied in the Design and Construction Phase: A Literature Review. Int. J. Innov. Manag. Technol. 2018, 9, 60–63. [Google Scholar] [CrossRef]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lee, A.S.; Swift, M.; Tang, J.C. 3D collaboration method over HoloLens™ and Skype™ end points. In Proceedings of the 3rd International Workshop on Immersive Media Experiences, New York, NY, USA, 26 October 2015; pp. 27–30. [Google Scholar]
- Nee, A.Y.; Ong, S.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. Cirp Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Kruijff, E.; Swan, J.E.; Feiner, S. Perceptual issues in augmented reality revisited. In Proceedings of the 2010 IEEE International Symposium on Mixed and Augmented Reality, Seoul, Korea, 13–16 October 2010; pp. 3–12. [Google Scholar]
- Mekni, M.; Lemieux, A. Augmented reality: Applications, challenges and future trends. Appl. Comput. Sci. 2014, 23, 205–214. [Google Scholar]
- O’Hare, J.; Dekoninck, E.; Mombeshora, M.; Martens, P.; Becattini, N.; Boujut, J.-F. Defining requirements for an Augmented Reality system to overcome the challenges of creating and using design representations in co-design sessions. CoDesign 2020, 16, 111–134. [Google Scholar] [CrossRef]
- Park, H.; Moon, H.-C. Design evaluation of information appliances using augmented reality-based tangible interaction. Comput. Ind. 2013, 64, 854–868. [Google Scholar] [CrossRef]
- Bimber, O.; Raskar, R. Spatial Augmented Reality: Merging Real and Virtual Worlds; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Van Krevelen, D.; Poelman, R. A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real. 2010, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Mori, K.; Imaizumi, J. Integration of CFD, VR, AR and BIM for Design Feedback in a Design Process. Educ. Res. Comput. Aided Archit. Des. Eur. 2015, 1, 665–672. [Google Scholar]
- Oppermann, L. Auto AR–In Situ Visualization for Building Information Modelling. Augment. Reality 2015, 103, 18. [Google Scholar]
- Billinghurst, M.; Kato, H.; Myojin, S. Advanced Interaction Techniques for Augmented Reality Applications. In Proceedings of the International Conference on Virtual and Mixed Reality, Berlin/Heidelberg, Germany, 19 July 2009; pp. 13–22. [Google Scholar]
- Kato, H.; Billinghurst, M.; Morinaga, K.; Tachibana, K. The Effect of Spatial Cues in Augmented Reality Video Conferencing; Research Paper; Hiroshima City University: Hiroshima, Japan, 2001. [Google Scholar]
- Wang, X. Augmented reality in architecture and design: Potentials and challenges for application. Int. J. Archit. Comput. 2009, 7, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Benko, H.; Wilson, A.D.; Zannier, F. Dyadic projected spatial augmented reality. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 5 October 2014; pp. 645–655. [Google Scholar]
- Thomas, B.H.; Marner, M.; Smith, R.T.; Elsayed, N.A.M.; Von Itzstein, S.; Klein, K.; Adcock, M.; Eades, P.; Irlitti, A.; Zucco, J. Spatial Augmented Reality—A tool for 3D data visualization. In Proceedings of the 2014 IEEE VIS International Workshop on 3DVis (3DVis), Paris, France, 9 November 2014; pp. 45–50. [Google Scholar]
- Park, M.K.; Lim, K.J.; Seo, M.K.; Jung, S.J.; Lee, K.H. Spatial augmented reality for product appearance design evaluation. J. Comput. Des. Eng. 2015, 2, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Raskar, R.; Welch, G.; Fuchs, H. Spatially Augmented Reality. In Proceedings of the International Workshop on Augmented Reality: Placing Artificial Objects in Real Scenes, Natick, MA, USA, 10 November 1999; pp. 63–72. [Google Scholar]
- Siegl, C. Dynamic Multi-Projection Mapping; Verlag Dr.Hut: Munich, Germany, 2018. [Google Scholar]
- Koizumi, R.; Kobayashi, D.; Hashimoto, N. Acceleration of Dynamic Spatial Augmented Reality System with a Depth Camera. In Proceedings of the 2015 International Conference on Cyberworlds (CW), Visby, Sweden, 7–9 October 2015; pp. 50–53. [Google Scholar]
- Menk, C.; Jundt, E.; Koch, R. Visualisation techniques for using spatial augmented reality in the design process of a car. Comp. Gr. Forum 2011, 30, 2354–2366. [Google Scholar] [CrossRef]
- Verlinden, J.C.; De Smit, A.; Peeters, A.W.; van Gelderen, M.H. Development of a flexible augmented prototyping system. J. WSCG 2003, 11, 1–3. [Google Scholar]
- Porter, S.R.; Smith, R.; Thomas, B. Supporting the Industrial Design Process with Spatial Augmented Reality. In Proceedings of the 20th International Conference on Artificial Reality and Telexistence, Adelaide, Australia, 1–3 December 2010. [Google Scholar]
- Von Itzstein, S.; Thomas, B.H.; Smith, R.T.; Walker, S. Using Spatial Augmented Reality for Appliance Design. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 316–318. [Google Scholar]
- The UV Map as the Content Template. Available online: https://help.disguise.one/Content/3D-Workflow/UV-Mapping/The-UV-map-as-content-template.html (accessed on 13 May 2020).
- Apply a Material to the Face of an Element. Available online: https://knowledge.autodesk.com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Revit-Model/files/GUID-8BAA7C07-D174-4F02-AA81-239FD33BE363-htm.html (accessed on 15 May 2020).
- What is UV Mapping? Available online: https://3dcoat.com/articles/what-is-uv-mapping/ (accessed on 13 May 2020).
- Hassan, M. Proposed Workflow for UV Mapping and Texture Painting. Bachelor’s Thesis, Blekinge Institute of Technology, Hassan, India, 2016. [Google Scholar]
- Mullen, T. Mastering Blender; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fujii, K.; Grossberg, M.D.; Nayar, S.K. A Projector-Camera System with Real-Time Photometric Adaptation for Dynamic Environments. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 814–821. [Google Scholar]
- Li, F.; Sekkati, H.; Deglint, J.; Scharfenberger, C.; Lamm, M.; Clausi, D.; Zelek, J.; Wong, A. Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping. IEEE Trans. Comput. Imaging 2017, 3, 74–83. [Google Scholar] [CrossRef]
- Audet, S.; Okutomi, M. A User-Friendly Method to Geometrically Calibrate Projector-Camera Systems. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, FL, USA, 20–25 June 2009; pp. 47–54. [Google Scholar]
- Sukthankar, R.; Mullin, M.D. Automatic Keystone Correction for Camera-Assisted Presentation Interfaces. In Proceedings of the International Conference on Multimodal Interfaces, Beijing, China, 14–16 October 2000; pp. 607–614. [Google Scholar]
- Chen, H.; Sukthankar, R.; Wallace, G.; Li, K. Scalable Alignment of Large-Format Multi-Projector Displays Using Camera Homography Trees. In Proceedings of the IEEE Visualization, 2002, VIS 2002, Boston, MA, USA, 27 October–1 November 2002; pp. 339–346. [Google Scholar]
- Sukthankar, R.; Stockton, R.G.; Mullin, M.D. Smarter Presentations: Exploiting Homography in Camera-Projector Systems. In Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; pp. 247–253. [Google Scholar]
- Kourkoulakou, S. Projection Mapping and Automatic Calibration: Beyond a Technique. Image Beyond Screen: Proj. Mapp. 2020, 28, 107–113. [Google Scholar]
- Ren, Z.; Meng, J.; Yuan, J. Depth Camera Based Hand Gesture Recognition and Its Applications in Human-Computer-Interaction. In Proceedings of the 2011 8th International Conference on Information, Communications & Signal Processing, Singapore, 13–16 December 2011; pp. 1–5. [Google Scholar]
- Lapointe, J.-F.; Godin, G. On-Screen Laser Spot Detection for Large Display Interaction. In Proceedings of the IEEE International Workshop on Haptic Audio Visual Environments and their Applications, Ottawa, ON, Canada, 1 October 2005; p. 5. [Google Scholar]
- Iannizzotto, G.; La Rosa, F. A Simple, Usable and Robust Solution for Pen-Based Interaction on Projection Displays. In Proceedings of the First International Workshop on Pen-Based Learning Technologies (PLT 2007), Catania, Italy, 4–5 May 2007; pp. 1–3. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Seo, J.; Lee, J.G.; Ahn, S.; Han, S. BIM-Based Spatial Augmented Reality (SAR) for Architectural Design Collaboration: A Proof of Concept. Appl. Sci. 2020, 10, 5915. https://doi.org/10.3390/app10175915
Jin Y, Seo J, Lee JG, Ahn S, Han S. BIM-Based Spatial Augmented Reality (SAR) for Architectural Design Collaboration: A Proof of Concept. Applied Sciences. 2020; 10(17):5915. https://doi.org/10.3390/app10175915
Chicago/Turabian StyleJin, Yixuan, JoonOh Seo, Jin Gang Lee, Seungjun Ahn, and SangUk Han. 2020. "BIM-Based Spatial Augmented Reality (SAR) for Architectural Design Collaboration: A Proof of Concept" Applied Sciences 10, no. 17: 5915. https://doi.org/10.3390/app10175915
APA StyleJin, Y., Seo, J., Lee, J. G., Ahn, S., & Han, S. (2020). BIM-Based Spatial Augmented Reality (SAR) for Architectural Design Collaboration: A Proof of Concept. Applied Sciences, 10(17), 5915. https://doi.org/10.3390/app10175915