Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments
Abstract
:1. Introduction
2. Material and Methods
2.1. Geomorphological and Geological Setting
2.2. Typhoon Morakot
2.3. DEM Acquisition
2.3.1. Data Sources
2.3.2. DEM Construction
3. Results
3.1. Accuracy of DEMs
3.2. Landslide Volume and Change in River Channel Volume
4. Discussion
4.1. Waste-Filled Valleys in a Mountainous River
4.2. Change in the Laishe River Midstream
4.3. Integration of UAVs and Airborne LiDAR to Quantifying Landslide Volume
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hovius, N.; Stark, C.; Allen, P. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Ouimet, W.; Whipple, K.; Royden, L.; Sun, Z.M.; Chen, Z.L. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Bull. Geol. Soc. Am. 2007, 119, 1462–1476. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.R.; Zarin, D.J.; Fetcher, N.; Myster, R.W.; Johnson, A.H. Ecosystem Development and Plant Succession on Landslides in the Caribbean. Biotropica 1996, 28, 566–576. [Google Scholar] [CrossRef]
- Lin, W.-T.; Lin, C.-Y.; Chou, W.-C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: A case study in Central Taiwan. Ecol. Eng. 2006, 28, 79–89. [Google Scholar] [CrossRef]
- Hilton, R.G.; Galy, A.; Hovius, N.; Chen, M.-C.; Horng, M.-J.; Chen, H. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 2008, 1, 759–762. [Google Scholar] [CrossRef] [Green Version]
- West, A.J.; Lin, C.-W.; Lin, T.-C.; Hilton, R.G.; Liu, S.-H.; Chang, C.-T.; Lin, K.-C.; Galy, A.; Sparkes, R.B.; Hovius, N. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol. Oceanogr. 2011, 56, 77–85. [Google Scholar] [CrossRef]
- Galy, V.; Peucker-Ehrenbrink, B.; Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 2015, 521, 204–207. [Google Scholar] [CrossRef]
- Gemmer, M.; Yin, Y.; Luo, Y.; Fischer, T. Tropical cyclones in China: County-based analysis of landfalls and economic losses in Fujian Province. Quat. Int. 2011, 244, 169–177. [Google Scholar] [CrossRef]
- Cottrell, R.S.; Nash, K.L.; Halpern, B.S.; Remenyi, T.A.; Corney, S.P.; Fleming, A.; Fulton, E.A.; Hornborg, S.; Johne, A.; Watson, R.A.; et al. Food production shocks across land and sea. Nat. Sustain. 2019, 2, 130–137. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Liu, J.G.; Mason, P.J.; Clerici, N.; Chen, S.; Davis, A.; Miao, F.; Deng, H.; Liang, L. Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 2004, 61, 171–187. [Google Scholar] [CrossRef]
- Nichol, J.E.; Shaker, A.; Wong, M.-S. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology 2006, 76, 68–75. [Google Scholar] [CrossRef]
- Hölbling, D.; Abad, L.; Dabiri, Z.; Prasicek, G.; Tsai, T.-T.; Argentin, A.-L. Mapping and Analyzing the Evolution of the Butangbunasi Landslide Using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Appl. Sci. 2020, 10, 630. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, Q.; Hu, J. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient Algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, L.; Wang, Z.; Yu, Z. Mapping of River Terraces with Low-Cost UAS Based Structure-from-Motion Photogrammetry in a Complex Terrain Setting. Remote Sens. 2019, 11, 464. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-J.; Yeh, L.-W.; Cheng, Y.-C.; Jen, C.-H.; Lin, J.-C. Badland Erosion and Its Morphometric Features in the Tropical Monsoon Area. Remote Sens. 2019, 11, 3051. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.; Friedland, C. A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery Collection in Disaster Research and Management. In Proceedings of the 9th International Workshop on Remote Sensing for Disaster Response, Stanford, CA, USA, 15–16 September 2011. [Google Scholar]
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Purdie, H. UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring–A Review. Geoenviron. Disasters 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Angster, S.; Wesnousky, S.; Huang, W.l.; Kent, G.; Nakata, T.; Goto, H. Application of UAV Photography to Refining the Slip Rate on the Pyramid Lake Fault Zone, Nevada. Bull. Seismol. Soc. Am. 2016, 106, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Zheng, W.-J.; Ren, Z.; Zeng, J.; Yu, J. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. Int. J. Remote Sens. 2016, 38, 1–16. [Google Scholar] [CrossRef]
- Shi, X.; Weldon, R.; Liu-Zeng, J.; Wang, Y.; Weldon, E.; Sieh, K.; Li, Z.; Zhang, J.; Yao, W.; Li, Z. Limit on slip rate and timing of recent seismic ground-ruptures on the Jinghong fault, SE of the eastern Himalayan syntaxis. Tectonophysics 2018, 734–735, 148–166. [Google Scholar] [CrossRef]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Langhammer, J.; Vacková, T. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry. Pure Appl. Geophys. 2018, 175, 3223–3245. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.d.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Uchiyama, S.; Hayakawa, Y.S.; Obanawa, H. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog. Earth Planet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Han, Z.; Li, Y.; Chen, G. Exploring the Impact of Multitemporal DEM Data on the Susceptibility Mapping of Landslides. Appl. Sci. 2020, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-L. Report on Typhoon Morakot (0908) of 2009; C.W.B., Ed.; Weather Forecast Center: Taipei, Taiwan, 2009; p. 27.
- Tsai, F.; Hwang, J.H.; Chen, L.C.; Lin, T.H. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179–2190. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-W.; Chang, W.-S.; Liu, S.-H.; Tsai, T.-T.; Lee, S.-P.; Tsang, Y.-C.; Shieh, C.-L.; Tseng, C.-M. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Eng. Geol. 2011, 123, 3–12. [Google Scholar] [CrossRef]
- Tsou, C.-Y.; Feng, Z.-y.; Chigira, M. Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology 2011, 127, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y. Landslide and debris flow initiated characteristics after typhoon Morakot in Taiwan. Landslides 2015, 13, 153–164. [Google Scholar] [CrossRef]
- Lin, C.-Y. Report on the Preparation of Treatment Measures and Management Plan for the Collapse of the National Forest Caused by Typhoon Morakot—Treatment Countermeasures and Management Plan of the Collapsed Land in the Pingtung Forest District Office; Forestry Bureau, COA, Executive Yuan: Taipei, Taiwan, 2010; p. 225.
- Soil and Water Conservation Bureau. The Quickest Report NO.2 of Major Earth and Rock Disasters of Typhoon Morakot of Laiyi Township Office, Pingtung County; Soil and Water Conservation Bureau COA, Executive Yuan, Taiwan: Taipei, Taiwan, 2009. (In Chinese)
- Hsieh, Y.-C.; Fei, L.-Y. Airborne LiDAR technology applied to environmental geology and interpretation of landslide. Mag. Chin. Inst. Civ. Hydraul. Eng. 2020, 47, 54–61. [Google Scholar]
- Wu, C.-H.; Chen, S.-C.; Feng, Z.-Y. Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides 2014, 11, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Entwistle, J.A.; McCaffrey, K.J.W.; Abrahams, P.W. Three- dimensional (3D) visualisation the application of terrestrial laser scanning in the investigation of historical Scottish farming townships. J. Archaeol. Sci. 2009, 36, 860–866. [Google Scholar] [CrossRef]
- Maas, H.G.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579–1593. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Tang, C.-L.; Chiu, C.-L.; Chen, H.-J.; Fei, L.-Y.; Chen, M.-M.; Hou, C.-S.; Lin, C.-W.; Hu, J.-C. Potential Catastrophic Landslides Mapping and Surface Displacement Monitoring in The Disaster Areas Caused by Typhoon Morakot. J. Eng. Environ. 2017, 37, 18–44. [Google Scholar]
- Seitz, S.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 2006, New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528. [Google Scholar]
- Furukawa, Y.; Ponce, J. Accurate, Dense, and Robust Multiview Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Strecha, C.; Küng, O.; Fua, P. Automatic Mapping from Ultra-Light Uav Imagery. In Proceedings of the EuroCOW 2012, Barcelona, Spain, 8–10 February 2012. [Google Scholar]
- Hsieh, Y.-C.; Hou, C.-S.; Hu, J.-C.; Fei, L.-Y.; Chen, H.-J.; Chiu, C.-L.; Chan, Y.-C. Potential Catastrophic Landslides Mapping by Using Geomorphometric analysis. J. Photogramm. Remote Sens. 2016, 20, 263–277. [Google Scholar]
- Jackson, J.A.; Bates, R.L. Glossary of Geology; American Geological Institute: Alexandria, VA, USA, 1997.
- Goudie, A.S. Encyclopedia of Geomorphology; Routledge: London, UK; New York, NY, USA, 2004; Volume 1. [Google Scholar]
- Wohl, E. Mountain Rivers and Humans. In Mountain Rivers; American Geophysical Union: Washington, DC, USA, 2000; pp. 195–230. [Google Scholar]
- Stark, C.P.; Barbour, J.R.; Hayakawa, Y.S.; Hattanji, T.; Hovius, N.; Chen, H.; Lin, C.-W.; Horng, M.-J.; Xu, K.-Q.; Fukahata, Y. The Climatic Signature of Incised River Meanders. Science 2010, 327, 1497. [Google Scholar] [CrossRef] [PubMed]
- Hovius, N.; Stark, C.P.; Hao, X.; Tsu, C.; Jiun, X.; Chuan, L. Supply and Removal of Sediment in a Landslide-Dominated Mountain Belt: Central Range, Taiwan. J. Geol. 2000, 108, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Hovius, N.; Meunier, P.; Lin, C.-W.; Chen, H.; Chen, Y.-G.; Dadson, S.; Horng, M.-J.; Lines, M. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 2011, 304, 347–355. [Google Scholar] [CrossRef]
- Hewitt, K. Quaternary Moraines vs Catastrophic Rock Avalanches in the Karakoram Himalaya, Northern Pakistan. Quat. Res. 1999, 51, 220–237. [Google Scholar] [CrossRef]
- Iverson, R.M.; Reid, M.E.; LaHusen, R.G. DEBRIS-FLOW MOBILIZATION FROM LANDSLIDES. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138. [Google Scholar] [CrossRef]
- Feng, Z.-y. The seismic signatures of the surge wave from the 2009 Xiaolin landslide-dam breach in Taiwan. Hydrol. Process. 2012, 26, 1342–1351. [Google Scholar] [CrossRef]
- Deng, Y.; Tsai, F.; Hwang, J. Landslide characteristics in the area of Xiaolin Village during Morakot typhoon. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Huang, Y.-T. River Channel Accumulation and Change at Laonong River during the Typhoon Morakot. Master’s Thesis, Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan, 2013. (In Chinnese). [Google Scholar]
- Kaye, J.P.; Binkley, D.; Rhoades, C. Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession. Biogeochemistry 2003, 63, 1–22. [Google Scholar] [CrossRef]
- Adair, C.; Binkley, D.; Andersen, D. Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa Rivers. Oecologia 2004, 139, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Post, W.M.; Izaurralde, R.C.; Jastrow, J.D.; McCarl, B.A.; Amonette, J.E.; Bailey, V.L.; Jardine, P.M.; West, T.O.; Zhou, J. Enhancement of Carbon Sequestration in US Soils. Bioscience 2004, 54, 895. [Google Scholar] [CrossRef] [Green Version]
Date | Camera | Coverage Area (km2) | GSD 1 (cm) | DEM Grid Spacing (m) | Platform | AGL 2 (m) | Average Rainfall Intensity (mm/rainy days) |
---|---|---|---|---|---|---|---|
10 April 2009 | DMC | 80 | 30 | 2 | Aircraft | 4004 | - |
28 August 2009 | ADS40 | 32 | 15 | 2 | Aircraft | 4000 | 120.04 |
2010 | LiDAR | >150 | -- | 1 | Aircraft | -- | -- |
23 January 2015 | Nikon D800E | 67.5 | 15 | 0.17 | UAV | 1500–3000 | 45.50 |
6 November 2015 | Nikon D800E | 69.8 | 15 | 0.20 | UAV | 1500–3000 | 41.97 |
Date | Control Point Density (pts/m2) | Vertical Bias (m) | |||
---|---|---|---|---|---|
Mean | SD | Maximum | Minimum | ||
10 April 2009 | 0.25 | 0.65 | 7.2 | 22.25 | −20.95 |
28 August 2008 | 0.05 | 0.65 | 4.8 | 15.05 | −13.75 |
23 January 2015 | 0.99 | 0.47 | 4.8 | 14.87 | −13.93 |
6 November 2015 | 1.00 | −0.13 | 4.2 | 12.47 | −12.73 |
UP3 | UP2 | UP1 | EV | WV | YL | Total | |
Area (M m2) | |||||||
1.2 | 1.45 | 1.19 | 0.8 | 0.17 | 0.17 | 4.97 | |
Date | Volume (M m3) | ||||||
10 April 2009– 6 November 2015 | 11.73 | 10.07 | 8.47 | 5.50 | 0.22 | 0.18 | 36.16 |
10 April 2009– 28 August 2009 | 9.12 | 9.01 | 7.25 | 5.99 | 0.02 | 0.24 | 31.63 |
Ratio (%) | 77.75 | 89.47 | 85.60 | 108.91 | 9.09 | 133.33 | 87.47 |
UP3 | UP2 | UP1 | EV | WV | YL | |
---|---|---|---|---|---|---|
Date | Change in Height Difference (m) * | |||||
10 April 2009– 6 November 2015 | −5.44 | 6.55 | 5.47 | 6.91 | 4.02 | 3.26 |
10 April 2009– 28 August 2009 | −2.33 | 13.79 | 11.10 | 8.14 | 2.84 | 2.54 |
Ratio (%) | 42.83 | 210.53 | 202.93 | 117.80 | 70.65 | 77.91 |
Date | UP3 | UP2 | UP1 | EV | WV | YL | Total |
---|---|---|---|---|---|---|---|
Change in Total Volume (M m3) * | |||||||
10 April 2009– 6 November 2015 | −0.51 | 0.73 | 1.33 | 1.69 | 0.74 | 0.44 | 4.44 |
10 April 2009– 28 August 2009 | −0.28 | 2.57 | 2.80 | 2.40 | 0.54 | 0.29 | 8.32 |
Ratio (%) | 54.90 | 352.05 | 210.53 | 142.01 | 72.97 | 65.91 | 187.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.-J.; Tseng, C.-W.; Tseng, C.-M.; Liao, T.-C.; Yang, C.-J. Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments. Appl. Sci. 2020, 10, 6102. https://doi.org/10.3390/app10176102
Chang K-J, Tseng C-W, Tseng C-M, Liao T-C, Yang C-J. Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments. Applied Sciences. 2020; 10(17):6102. https://doi.org/10.3390/app10176102
Chicago/Turabian StyleChang, Kuo-Jen, Chun-Wei Tseng, Chih-Ming Tseng, Ta-Chun Liao, and Ci-Jian Yang. 2020. "Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments" Applied Sciences 10, no. 17: 6102. https://doi.org/10.3390/app10176102
APA StyleChang, K. -J., Tseng, C. -W., Tseng, C. -M., Liao, T. -C., & Yang, C. -J. (2020). Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments. Applied Sciences, 10(17), 6102. https://doi.org/10.3390/app10176102