In Silico Analysis of the Antigenic Properties of Iron-Regulated Proteins against Neisseria meningitidis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Selection of Iron-Regulated Proteins of N. meningitidis
2.2. Antigenicity and Solubility Prediction
2.3. Prediction of Linear and Conformational B-Cell Epitopes
2.4. Template Identification and Comparative Model Building
2.5. Evaluation of Comparative Model
3. Results
3.1. Antigenicity and Solubility Prediction
3.2. Linear and Conformational B-Cell Epitopes Prediction
3.3. Templates Analyses, Comparative Protein Model Building, and Visualization
3.4. Evaluation of Predicted Protein Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephens, D.S.; Greenwood, B.; Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007, 369, 2196–2210. [Google Scholar] [CrossRef]
- Yazdankhah, S.P.; Caugant, D.A. Neisseria meningitidis: An overview of the carriage state. J. Med. Microbiol. 2004, 53, 8218–8232. [Google Scholar] [CrossRef] [Green Version]
- Walayat, S.; Hussain, N.; Malik, A.H.; Vazquez-Melendez, E.; Aulakh, B.S.; Lynch, T. Invasive meningococcal disease without meningitis: A forgotten diagnosis. Int. Med. Case Rep. J. 2018, 11, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.; Tang, C.M.; Exley, R.M. Mechanisms of avoidance of host immunity by Neisseria meningitidis and its effect on vaccine development. Lancet Infect. Dis. 2009, 9, 418–427. [Google Scholar] [CrossRef]
- Tzeng, Y.-L.; Stephens, D.S. Antimicrobial peptide resistance in Neisseria meningitidis. Biochim. Biophys. Acta (BBA) Biomembr. 2015, 1848, 3026–3031. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, Y.-L.; Ambrose, K.D.; Zughaier, S.; Zhou, X.; Miller, Y.K.; Shafer, W.M.; Stephens, D.S. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J. Bacteriol. 2005, 187, 5387–5396. [Google Scholar] [CrossRef] [Green Version]
- Yi, K.; Rasmussen, A.W.; Gudlavalleti, S.K.; Stephens, D.S.; Stojiljkovic, I. Biofilm formation by Neisseria meningitidis. Infect. Immun. 2004, 72, 6132–6138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.S.; Kwon, S.-O.; Moon, D.C.; Gurung, M.; Lee, J.H.; Kim, S.I.; Lee, J.C. Acinetobacter baumannii Secretes Cytotoxic Outer Membrane Protein A via Outer Membrane Vesicles. PLoS ONE 2011, 6, e17027. [Google Scholar] [CrossRef]
- Frasch, C.E.; Bash, M.C.; Ellis, R.W.; Brodeur, B.R. Neisseria meningitidis Vaccines. In New Bacterial Vaccines; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2003; pp. 229–243. [Google Scholar]
- Tong, Y.; Guo, M. Bacterial heme-transport proteins and their heme-coordination modes. Arch. Biochem. Biophys. 2009, 481, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, C.D.; Telford, J.L.; Rappuoli, R.; Seib, K.L. Vaccinology in the genome era. J. Clin. Investig. 2009, 119, 2515–2525. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, A.; Rasooli, I.; Gargari, S.L.M.; Owlia, P.; Rahbar, M.R.; Amani, J.; Khalili, S. An in silico DNA vaccine against Listeria monocytogenes. Vaccine 2011, 29, 6948–6958. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Rahbar, M.R.; Dezfulian, M.H.; Jahangiri, A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J. Theor. Biol. 2015, 379, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, H.; Pourfathollah, A.A.; Zarif, M.N.; Khalili, S. Key role of Dkk3 protein in inhibition of cancer cell proliferation: An in silico identification. J. Theor. Boil. 2016, 393, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, P.; Kim, Y.; Haste-Andersen, P.; Beaver, J.; Bourne, P.E.; Bui, H.-H.; Buus, S.; Frankild, S.; Greenbaum, J.; et al. Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res. 2008, 36, W513–W518. [Google Scholar] [CrossRef] [Green Version]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25, 2200–2207. [Google Scholar] [CrossRef]
- Reimer, U. Prediction of linear B-cell epitopes. In Epitope Mapping Protocols; Springer: Berlin/Heidelberg, Germany, 2009; pp. 335–344. [Google Scholar]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V.G. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 21, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, J.; Bui, H.-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Comput. Boil. 2012, 8, e1002829. [Google Scholar] [CrossRef]
- DeLano, W.L. PyMol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Barman, U.D.; Saha, S.K.; Kader, A.; Jamal, M.A.H.M.; Sharma, S.P.; Samad, A.; Rahman, S. Clinicopathological and prognostic significance of GPC3 in human breast cancer and its 3D structure prediction. Netw. Model. Anal. Heal. Inf. Bioinform. 2020, 9, 1–18. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [Green Version]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [Green Version]
- Pizza, M.; Rappuoli, R. Neisseria menin gitidis: Pathogenesis and immunity. Curr. Opin. Microbiol. 2015, 23, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, B.; Pierre, C.; Christine, B. Iron Metabolism: A Promising Target for Antibacterial Strategies. Recent Pat. Anti Infect. Drug Discov. 2009, 4, 190–205. [Google Scholar]
- Grifantini, R.; Sebastian, S.; Frigimelica, E.; Draghi, M.; Bartolini, E.; Muzzi, A.; Rappuoli, R.; Grandi, G.; Genco, C.A. Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. USA 2003, 100, 9542–9547. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Ye, C.; Zhou, L.; Zhang, Y.; Ge, Y.; Chen, W.; Pan, J. Evaluation of the β-barrel outer membrane protein VP1243 as a candidate antigen for a cross-protective vaccine against Vibrio infections. Microb. Pathog. 2020, 147, 104419. [Google Scholar] [CrossRef]
- Bunikis, J.; Barbour, A.G. Access of Antibody or Trypsin to an Integral Outer Membrane Protein (P66) of Borrelia burgdorferi Is Hindered by Osp Lipoproteins. Infect. Immun. 1999, 67, 2874–2883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintor, M.; Ferrón, L.; Gomez, J.A.; Gorringe, A.; Criado, M.T.; Ferreirós, C.M. Blocking of iron uptake by monoclonal antibodies specific for the Neisseria meningitidis transferrin-binding protein 2. J. Med. Microbiol. 1996, 45, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, C.N. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog. Dis. 2017, 76, 112. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Prince, S.M.; Patel, H.; Chan, H.; Feavers, I.M.; Derrick, J.P. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis. Acta Crystallogr. Sect. F Struct. Boil. Cryst. Commun. 2012, 68, 231–235. [Google Scholar] [CrossRef]
- Kortekaas, J.; Müller, S.A.; Ringler, P.; Gregorini, M.; Weynants, V.E.; Rutten, L.; Bos, M.P.; Tommassen, J. Immunogenicity and structural characterisation of an in vitro folded meningococcal siderophore receptor (FrpB, FetA). Microbes Infect. 2006, 8, 2145–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaaldeen, D.; Davies, H.; Borriello, S. Vaccine potential of meningococcal FrpB: Studies on surface exposure and functional attributes of common epitopes. Vaccine 1994, 12, 535–541. [Google Scholar] [CrossRef]
- Beucher, M.; Sparling, P.F. Cloning, sequencing, and characterization of the gene encoding FrpB, a major iron-regulated, outer membrane protein of Neisseria gonorrhoeae. J. Bacteriol. 1995, 177, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- Sood, S.; Rishi, P.; Dhawan, V.; Sharma, S.; Ganguly, N.K. Protection mediated by antibodies to iron-regulated outer-membrane proteins of S. typhi in a mouse peritonitis model. Mol. Cell. Biochem. 2005, 273, 69–78. [Google Scholar] [CrossRef]
- Misra, N.; Pu, X.; Holt, D.N.; McGuire, M.A.; Tinker, J.K. Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J. Dairy Sci. 2018, 101, 6296–6309. [Google Scholar] [CrossRef] [Green Version]
- Goel, V.K.; Kapil, A. Monoclonal antibodies against the iron regulated outer membrane proteins of Acinetobacter baumannii are bactericidal. BMC Microbiol. 2001, 1, 16. [Google Scholar] [CrossRef]
- Hoffman, D.W.; Cameron, C.S.; Davies, C.; White, S.W.; Ramakrishnan, V. Ribosomal Protein L9: A Structure Determination by the Combined Use of X-ray Crystallography and NMR Spectroscopy. J. Mol. Boil. 1996, 264, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Grisshammer, R. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Protein Sci. 2017, 26, 1493–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromiha, M.M.; Nagarajan, R.; Selvaraj, S. Protein Structural Bioinformatics: An Overview. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 445–459. [Google Scholar]
- Skariyachan, S.; Garka, S. Chapter 1—Exploring the binding potential of carbon nanotubes and fullerene towards major drug targets of multidrug resistant bacterial pathogens and their utility as novel therapeutic agents. In Fullerens, Graphenes and Nanotubes; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 1–29. [Google Scholar]
- Kim, M.; Song, L.; Moon, J.J.; Sun, Z.-Y.J.; Bershteyn, A.; Hanson, M.C.; Cain, D.; Goka, S.; Kelsoe, G.; Wagner, G.; et al. Immunogenicity of Membrane-bound HIV-1 gp41 Membrane-proximal External Region (MPER) Segments Is Dominated by Residue Accessibility and Modulated by Stereochemistry. J. Boil. Chem. 2013, 288, 31888–31901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, P.H.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006, 15, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Palatnik-de-Sousa, C.B.; Soares, I.d.S.; Rosa, D.S. Editorial: Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2018, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Yasser, E.-M.; Honavar, V. Recent advances in B-cell epitope prediction methods. Immun. Res. 2010, 6, 1–9. [Google Scholar]
- Liu, W.; Chen, Y.-H. High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: A novel strategy for modern vaccine development and a preliminary investigation about B?cell discrimination of monomeric proteins. Eur. J. Immunol. 2005, 35, 505–514. [Google Scholar] [CrossRef]
- Kapadia, C.H.; Tian, S.; Perry, J.L.; Luft, J.C.; DeSimone, J.M. Role of Linker Length and Antigen Density in Nanoparticle Peptide Vaccine. ACS Omega 2019, 4, 5547–5555. [Google Scholar] [CrossRef]
- Liu, W.; Peng, Z.; Liu, Z.; Lu, Y.; Ding, J.; Chen, Y.-H. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine 2004, 23, 366–371. [Google Scholar] [CrossRef]
- Bazmara, H.; Rasooli, I.; Jahangiri, A.; Sefid, F.; Astaneh, S.D.A.; Payandeh, Z. Antigenic Properties of Iron Regulated Proteins in Acinetobacter baumannii: An in Silico Approach. Int. J. Pept. Res. Ther. 2019, 25, 205–213. [Google Scholar] [CrossRef]
- Adhikari, U.K.; Rahman, M.M. Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp. Comput. Boil. Chem. 2017, 67, 102–113. [Google Scholar] [CrossRef]
- Ke, Y.-Y.; Singh, V.K.; Coumar, M.S.; Hsu, Y.C.; Wang, W.-C.; Song, J.-S.; Chen, C.-H.; Lin, W.-H.; Wu, S.-H.; Hsu, J.T.A.; et al. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci. Rep. 2015, 5, srep11702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, B.-G.; Yersin, C.-T.; José, C.-B.; Paola, Z.-S. Predicted 3D Model of the Rabies Virus Glycoprotein Trimer. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zobayer, N.; Hossain, A.A. In silico Characterization and Homology Modeling of Histamine Receptors. J. Boil. Sci. 2018, 18, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Khor, B.Y.; Tye, G.; Lim, T.S.; Noordin, R.; Choong, Y.S. The Structure and Dynamics of BmR1 Protein from Brugia malayi: In Silico Approaches. Int. J. Mol. Sci. 2014, 15, 11082–11099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession No. | IEDB | VaxiJen | ANTIGENPro | ||
---|---|---|---|---|---|
Hydrophilicity | Flexibility | Beta Turn | |||
CBA09441 | 2.176 | 1.007 | 1.025 | 0.7022 | 0.909208 |
CBA07476 | 2.167 | 1.006 | 1.025 | 0.7186 | 0.90866 |
CAM07737 | 2.18 | 1.007 | 1.025 | 0.7092 | 0.910421 |
CBA03648 | 2.177 | 1.007 | 1.029 | 0.6939 | 0.9154 |
Accession No. | SOLpro |
---|---|
CBA09441 | SOLUBLE with probability 0.823523 |
CBA07476 | SOLUBLE with probability 0.756444 |
CAM07737 | SOLUBLE with probability 0.713970 |
CBA03648 | SOLUBLE with probability 0.805877 |
Accession No. | Length | ABCpred | BepiPred | BCpred | Ellipro | ||||
---|---|---|---|---|---|---|---|---|---|
EN | ED | EN | ED | EN | ED | EN | ED | ||
CBA09441 | 713 | 352 | 0.49 | 149 | 0.20 | 140 | 0.19 | 216 | 0.30 |
CBA07476 | 721 | 368 | 0.51 | 143 | 0.19 | 160 | 0.22 | 226 | 0.31 |
CAM07737 | 714 | 368 | 0.52 | 157 | 0.21 | 160 | 0.22 | 206 | 0.28 |
CBA03648 | 723 | 400 | 0.55 | 148 | 0.20 | 140 | 0.19 | 219 | 0.30 |
Accession No. | DiscoTope | Ellipro | Length | ||
---|---|---|---|---|---|
EN | ED | EN | ED | ||
CBA09441 | 351 | 0.49 | 343 | 0.48 | 713 |
CBA07476 | 354 | 0.49 | 342 | 0.47 | 721 |
CAM07737 | 313 | 0.43 | 357 | 0.50 | 714 |
CBA03648 | 360 | 0.50 | 349 | 0.48 | 723 |
Accession No. | ProSA (Z-Score) | Verify_3D Score (%) | ERRAT Value | Energy of the Model before Energy Minimization (Kcal/mol) | Energy of the Model after Energy Minimization (Kcal/mol) |
---|---|---|---|---|---|
CBA09441 | −4.92 | 80.42 | 91.6667 | −33,787.887 | −43,611.754 |
CBA07476 | −4.89 | 81.7 | 86.5067 | −34,049.195 | −43,311.914 |
CAM07737 | −4.55 | 80.3 | 91.0334 | −30,584.434 | −41,019.699 |
CBA03648 | −5.19 | 80.41 | 92.0777 | −31,806.014 | −41,996.238 |
Accession No. | Ramachandran Plot Statistics | Overall G-Factor | ||
---|---|---|---|---|
Most Favored Regions | Additional Allowed Regions | Generously Allowed Regions | ||
CBA09441 | 502 | 63 | 1 | −0.35 |
CBA07476 | 531 | 55 | 4 | −0.21 |
CAM07737 | 502 | 63 | 1 | −0.35 |
CBA03648 | 502 | 63 | 1 | −0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Biswas, C.; Biswas, P.K.; Kader, M.A.; Alam, S.M.N.; Sonne, C.; Kim, K.-H. In Silico Analysis of the Antigenic Properties of Iron-Regulated Proteins against Neisseria meningitidis. Appl. Sci. 2020, 10, 6113. https://doi.org/10.3390/app10176113
Rahman MS, Biswas C, Biswas PK, Kader MA, Alam SMN, Sonne C, Kim K-H. In Silico Analysis of the Antigenic Properties of Iron-Regulated Proteins against Neisseria meningitidis. Applied Sciences. 2020; 10(17):6113. https://doi.org/10.3390/app10176113
Chicago/Turabian StyleRahman, Md. Shahedur, Chayon Biswas, Polash Kumar Biswas, Md. Ashraful Kader, S. M. Nur Alam, Christian Sonne, and Ki-Hyun Kim. 2020. "In Silico Analysis of the Antigenic Properties of Iron-Regulated Proteins against Neisseria meningitidis" Applied Sciences 10, no. 17: 6113. https://doi.org/10.3390/app10176113
APA StyleRahman, M. S., Biswas, C., Biswas, P. K., Kader, M. A., Alam, S. M. N., Sonne, C., & Kim, K. -H. (2020). In Silico Analysis of the Antigenic Properties of Iron-Regulated Proteins against Neisseria meningitidis. Applied Sciences, 10(17), 6113. https://doi.org/10.3390/app10176113