Nano-HPLC-HRMS Analysis to Evaluate Leptin Level in Milk Samples: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. nanoHPLC Set Up and Parameters
2.2. HRMS Set Up and Parameters
2.3. Sample Preparation and Purification
2.4. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, C. Leptin: A multifunctional hormone. Cell Res. 2000, 10, 81–92. [Google Scholar]
- Miralles, O.; Sánchez, J.; Palou, A.; Pico, C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity 2006, 14, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Szostaczuk, N.; van Schothorst, E.M.; Sánchez, J.; Priego, T.; Palou, M.; Bekkenkamp-Grovenstein, M.; Faustmann, G.; Obermayer-Pietsch, B.; Tiran, B.; Roob, J.M.; et al. Identification of blood cell transcriptome-based biomarkers in adulthood predictive of increased risk to develop metabolic disorders using early life intervention rat models. FASEB J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Frithioff-Bøjsøwe, C.; Lund, M.A.V.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.; Hansen, T.; Holm, J. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr. Diabetes 2019, 21, 194–202. [Google Scholar]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in human breast milk. Best Pract. Res. Clin. Endoc. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Stroescu, R.F.; Mărginean, O.; Bizerea, T.; Gafencu, M.; Voicu, A.; Doroș, G. Adiponectin, leptin and high sensitivity C-reactive protein values in obese children—Important markers for metabolic syndrome? J. Pediatr. Endocrinol. Metab. 2019, 32, 27–31. [Google Scholar] [CrossRef]
- Reinehr, T.; Roth, C.L. Inflammation markers in type 2 diabetes and the metabolic syndrome in the pediatric population. Curr. Diabetes Rep. 2018, 18, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Kohlsdorf, K.; Nunziata, A.; Funcke, J.; Brandt, S.; von Schnurbein, J.; Vollbach, H.; Lennerz, B.; Fritsch, M.; Greber-Platzer, S.; Fröhlich-Reiterer, E.; et al. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency. Int. J. Obes. 2018, 42, 1602–1609. [Google Scholar] [CrossRef]
- Eriksen, K.G.; Christensen, S.H.; Lind, M.V.; Michaelsen, K.F. Human milk composition and infant growth. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 200–206. [Google Scholar]
- Guo, M. Human Milk Biochemistry and Infant Formula Manufacturing Technology, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2014. [Google Scholar]
- Mazzocchi, A.; Giannì, M.L.; Morniroli, D.; Leone, L.; Roggero, P.; Agostoni, C.; De Cosmi, V.; Mosca, F. Hormones in breast milk and effect on infants’ growth: A systematic review. Nutrients 2019, 11, 1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picó, C.; Oliver, P.; Sánchez, J.; Miralles, O.; Caimari, A.; Priego, T.; Palou, A. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int. J. Obes. (Lond.) 2007, 31, 1199–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palou, M.; Picó, C.; Palou, A. Leptin as a breast milk component for the prevention of obesity. Nutr. Rev. 2018, 76, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and infant body mass index, breast milk leptin and their serum leptin values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Bielicki, J.; Huch, R.; von Mandach, U. Time-course of leptin levels in term and preterm human milk. Eur. J. Endocrinol. 2004, 15, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Lonnerdal, B.; Havel, P.J. Serum leptin concentrations in infants: Effects of diet, sex, and adiposity. Am. J. Clin. Nutr. 2000, 72, 484–489. [Google Scholar] [CrossRef]
- Savino, F.; Benetti, S.; Liguori, S.A.; Sorrenti, M.; Cordero Di Montezemolo, L. Advances on human milk hormones and protection against obesity. Cell Mol. Biol. 2013, 59, 89–98. [Google Scholar]
- Savino, F.; Fissore, M.F.; Liguori, S.A.; Oggero, R. Can hormones contained in mothers’ milk account for the beneficial effect of breast-feeding on obesity in children? Clin. Endocrinol. (Oxf.) 2009, 71, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Commission Directive 2006/141/EC of 22 December 2006 Laying Down Foodstuffs Intended for Particular Nutritional Uses. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006L0141 (accessed on 31 January 2020).
- Montagne, D.H.; Van Dael, P.; Skanderby, M.; Hugelshofer, W. Infant formulae-powders and liquids. In Dairy Powders and Concentrated Products, 1st ed.; Tamine, A.Y., Ed.; Blackwell Publishing Ltd.: Chichester, West Sussex, UK, 2009; pp. 294–331. [Google Scholar]
- Zhang, F.; Chen, Y.; Heiman, M.; Dimarchi, R. Leptin: Structure, function and biology. Vitam. Horm. 2005, 71, 345–372. [Google Scholar]
- Fuerer, C.; Jenni, R.; Cardinaux, L.; Andetsion, F.; Wagnière, S.; Moulin, J.; Affolter, M. Protein fingerprinting and quantification of β-casein variants by ultra-performance liquid chromatography–high-resolution mass spectrometry. J. Dairy Sci. 2020, 2013, 1193–1207. [Google Scholar] [CrossRef] [Green Version]
- Gan, J.; Robinson, R.C.; Wang, J.; Krishnakumar, N.; Manning, C.J.; Lor, Y.; Breck, M.; Barile, D.; German, J.B. Peptidomic profiling of human milk with LC–MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem. 2019, 274, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Mol, P.; Kannegundla, U.; Dey, G.; Gopalakrishnan, L.; Dammalli, M.; Kumar, M.; Patil, A.H.; Basavaraju, M.; Rao, A.; Ramesha, K.P.; et al. Bovine milk comparative proteome analysis from early, mid, and late lactation in the cattle breed, Malnad gidda (Bos indicus). OMICS 2018, 22, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, T.M.; de Oliveira, D.N.; Melo, C.F.O.; de Oliveira Lima, E.; da Silva Ribeiro, M.; Catharino, R.R. Evaluating the effects of the adulterants in milk using direct-infusion high resolution mass spectrometry. Food Res. Int. 2018, 108, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Soggiu, A.; Roncada, P.; Piras, C. Proteomics in milk and dairy products. In Proteomics in Domestic Animals: From Farm to Systems Biology, 1st ed.; de Almeida, A.M., Eckersall, D., Miller, I., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 169–194. [Google Scholar]
- Gasilova, N.; Gassner, A.; Girault, H.H. Analysis of major milk whey proteins by immunoaffinity capillary electrophoresis coupled with MALDI-MS. Electrophoresis 2012, 33, 2390–2398. [Google Scholar] [CrossRef] [Green Version]
- Gasilova, N.; Girault, H.H. Component-resolved diagnostic of cow’s milk allergy by immunoaffinity capillary electrophoresis−matrix assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2014, 86, 6337–6345. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, X.; Zhang, Y.; Gao, F.; Li, Y.; Chen, H.; Wang, L. An ultrasensitive chemiluminescent immunosensor for the detection of human leptin using hemin/G-quadruplex DNAzymes-assembled signal amplifier. Talanta 2013, 116, 816–821. [Google Scholar] [CrossRef]
- Sekiguchi, S.; Kohno, H.; Yasukawa, H.; Inouye, K. Chemiluminescent enzyme immunoassay for measuring leptin. Biosci. Biotechnol. Biochem. 2011, 75, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Savino, F.; Liguori, S.A.; Petrucci, E.; Lupica, M.M.; Fissore, M.F.; Oggero, R.; Silvestro, L. Evaluation of leptin in breast milk, lactating mothers and their infants. Eur. J. Clin. Nutr. 2010, 64, 972–977. [Google Scholar] [CrossRef]
- Schuster, S.; Hechler, C.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in maternal serum and breast milk: Association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Shin, A.C.; MohanKumar, S.M.J.; Sirivelu, M.P.; Claycombe, K.J.; Haywood, J.R.; Fink, G.D.; MohanKumar, P.S. Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int. J. Obes. 2010, 34, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Burraco, P.; Arribas, R.; Kulkarni, S.S.; Buchholz, D.R.; Gomez-Mestre, I. Comparing techniques for measuring corticosterone in tadpoles. Curr. Zool. 2015, 61, 835–845. [Google Scholar] [CrossRef]
- Schmidt, E.M.C.; Escribano, D.; Martinez-Subiela, S.; Martinez-Miró, S.; Hernández, F.; Tvarijonaviciute, A.; Cerón, J.J.; Tecles, F. Development and validation of an assay for measurement of leptin in pig saliva. BMC Vet. Res. 2016, 12, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yimam, M.; Jiao, P.; Hong, M.; Brownell, L.; Lee, Y.; Hyun, E.; Kim, H.; Kim, T.; Nam, J.; Kim, M.; et al. Appetite suppression and antiobesity effect of a botanical composition composed of Morus alba, Yerba mate, and Magnolia officinalis. J. Obes. 2016, 2016, 4670818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelegrino Pinho Ramos, A.; Azevedo de Abreu, M.R.; Vendramini, R.C.; Brunetti, I.L.; Pepato, M.T. Decrease in circulating glucose, insulin and leptin levels and improvement in insulin resistance at 1 and 3 months after gastric bypass. Obes. Surg. 2006, 16, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, N.; Hunter, L.; Duncan, J.S.; Rayner, D.V. Regulation of adipose tissue leptin secretion by α-melanocyte-stimulating hormone and agouti-related protein: Further evidence of an interaction between leptin and the melanocortin signalling system. J. Mol. Endocrinol. 2004, 32, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Tighe, P.J.; Ryder, R.R.; Todd, I.; Fairclough, L.C. ELISA in the multiplex era: Potentials and pitfalls. Proteom. Clin. Appl. 2015, 9, 406–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Heilig, J.S. Differentiation and quantification of endogenous and recombinant-methionyl human leptin in clinical plasma samples by immunocapture/mass spectrometry. J. Pharm. Biomed. Anal. 2012, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Cammisotto, P.G.; Bendayan, M. Leptin secretion by white adipose tissue and gastric mucosa. Histol. Histopathol. 2007, 22, 199–210. [Google Scholar]
- Cammisotto, P.G.; Bukowiecki, L.J.; Deshaies, Y.; Bendayan, M. Leptin biosynthetic pathway in white adipocytes. Biochem. Cell Biol. 2006, 84, 207–214. [Google Scholar] [CrossRef]
- Pinotti, L.; Rosi, F. Leptin in bovine colostrum and milk. Horm. Metab. Res. 2006, 38, 89–93. [Google Scholar] [CrossRef]
- Wathes, D.C.; Cheng, Z.; Bourne, N.; Taylor, V.J.; Coffey, M.P.; Brotherstone, S. Differences between primiparous and multiparous dairy cows in the interrelationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007, 33, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Wylie, A.R.G. Leptin in farm animals: Where are we and where can we go? Animal 2011, 5, 246–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resto, M.; O’Connor, D.; Leef, K.; Funanage, V.; Spear, M.; Locke, R. Leptin levels in preterm human breast milk and infant formula. Pediatrics 2001, 108, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uçar, B.; Kirel, B.; Bör, O.; Sultan Kiliç, F.; Doğruel, N.; Durmus Aydoğdu, S.; Tekin, N. Breast milk leptin concentrations in initial and terminal milk samples: Relationships to maternal and infant plasma leptin concentrations, adiposity, serum glucose, insulin, lipid and lipoprotein levels. J. Pediatr. Endocrinol. Metab. 2000, 13, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kugananthan, S.; Lai, C.T.; Gridneva, Z.; Mark, P.J.; Geddes, D.T.; Kakulas, F. Leptin levels are higher in whole compared to skim human milk, supporting a cellular contribution. Nutrients 2016, 8, 711. [Google Scholar] [CrossRef]
Amino Acids Sequence | m/z (z = 2) | Retention Time (min) |
---|---|---|
INDISHTQSVSSK | 708.3599 | 15.24 |
NVIQISNDLENLR | 764.4099 | 35.30 |
Human Leptin (Homo Sapiens) |
MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGLDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLPWASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC |
Bovine leptin (Bos taurus) |
MRCGPLYRFLWLWPYLSYVEAVPIRKVQDDTKTLIKTIVTRINDISHTQSVSSKQRVTGLDFIPGLHPLLSLSKMDQTLAIYQQILTSLPSRNVVQISNDLENLRDLLHLLAASKSCPLPQVRALESLESLGVVLEASLYSTEVVALSRLQGSLQDMLRQLDLSPGC |
Milk Sample | Leptin Concentration (ng mL−1) |
---|---|
Human breast milk sample 1 | 7.1 ± 1.06 |
Human breast milk sample 2 | 6.4 ± 1.28 |
Human breast milk sample 3 | 7.5 ± 1.12 |
Human breast milk sample 4 | 5.8 ± 1.16 |
Cow milk sample 1 | Nd |
Cow milk sample 2 | Nd |
Cow milk sample 3 | Nd |
Cow milk sample 4 | Nd |
Liquid infant formula sample 1 | Nd |
Liquid infant formula sample 2 | Nd |
Liquid infant formula sample 3 | Nd |
Liquid infant formula sample 4 | Nd |
Precursor Ion m/z [MH]2+ | Product Ion m/z | ppm Error | Ions Type |
---|---|---|---|
708.3599 | 960.4745 | +0.425 | y9+ |
699.8466 | +0.385 | [MH-NH3]2+ | |
343.1612 | +0.265 | b3+ | |
736.3836 | +0.475 | y7+ | |
873.4452 | +0.397 | y8+ | |
651.8179 | +0.463 | y122+ | |
321.1769 | +0.245 | y3+ | |
1095.5429 | +0.423 | b10+ | |
507.2773 | +0.368 | y5+ | |
1073.5586 | +0.478 | y10+ | |
1188.5855 | +0.386 | y11+ | |
764.4099 | 960.4745 | +0.398 | y8+ |
568.3453 | +0.465 | b5+ | |
657.8542 | +0.381 | y112+ | |
1201.6171 | +0.451 | y10+ | |
1073.5586 | +0.421 | y9+ | |
873.4425 | +0.369 | y7+ | |
531.2885 | +0.436 | y4+ | |
327.2027 | +0.298 | b3+ | |
402.2459 | +0.236 | y3+ | |
455.2613 | +0.312 | b4+ | |
1353.7009 | +0.481 | b12+ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Bello, F.; Mecarelli, E.; Gastaldi, D.; Savino, F.; Medana, C. Nano-HPLC-HRMS Analysis to Evaluate Leptin Level in Milk Samples: A Pilot Study. Appl. Sci. 2020, 10, 6135. https://doi.org/10.3390/app10176135
Dal Bello F, Mecarelli E, Gastaldi D, Savino F, Medana C. Nano-HPLC-HRMS Analysis to Evaluate Leptin Level in Milk Samples: A Pilot Study. Applied Sciences. 2020; 10(17):6135. https://doi.org/10.3390/app10176135
Chicago/Turabian StyleDal Bello, Federica, Enrica Mecarelli, Daniela Gastaldi, Francesco Savino, and Claudio Medana. 2020. "Nano-HPLC-HRMS Analysis to Evaluate Leptin Level in Milk Samples: A Pilot Study" Applied Sciences 10, no. 17: 6135. https://doi.org/10.3390/app10176135
APA StyleDal Bello, F., Mecarelli, E., Gastaldi, D., Savino, F., & Medana, C. (2020). Nano-HPLC-HRMS Analysis to Evaluate Leptin Level in Milk Samples: A Pilot Study. Applied Sciences, 10(17), 6135. https://doi.org/10.3390/app10176135