FAU-Net: Fixup Initialization Channel Attention Neural Network for Complex Blood Vessel Segmentation
Abstract
:1. Introduction
- (1)
- We propose a de-normalized channel attention network, which consists of a new channel attention module SCA and an improved de-normalized block.
- (2)
- We construct two brain vascular data sets, which uses multiple angles of CTA and MRA images from various patients, called the ELE and CORO data sets, respectively. The labeling process consults brain vascular experts.
- (3)
- We perform experiments on the public retinal vascular data set DRIVE [4] and brain vascular data sets ELE and CORO, compare the results with the state-of-the-art methods, and obtain high accuracy. The effects of de-normalized structure on vascular segmentation were tested on DRIVE, ELE, and CORO data sets, respectively.
2. Related Work
3. Methods
3.1. Fixup Initialization Channel Attention Neural Network
3.2. Improved De-Normalized Residuals Block
3.3. Channel Attention Module
4. Quantitative Assessment Method
5. Experiments
5.1. Training Parameters
5.2. Database Preparation
5.3. Segmentation Results and Discussion
5.4. Comparative Experiments
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv 2018, arXiv:1805.09501. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Staal, J.; Abramoff, M.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Al-Amri, S.S.; Kalyankar, N.V. Image segmentation by using threshold techniques. arXiv 2010, arXiv:1005.4020. [Google Scholar]
- Gould, S.; Gao, T.; Koller, D. Region-based segmentation and object detection. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 655–663. [Google Scholar]
- Sumengen, B.; Manjunath, B. Multi-scale edge detection and image segmentation. In Proceedings of the 2005 13th IEEE European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4. [Google Scholar]
- Zhang, G.M.; Chen, S.P.; Liao, J.N. Otsu image segmentation algorithm based on morphology and wavelet transformation. In Proceedings of the 2011 3rd IEEE International Conference on Computer Research and Development, Shanghai, China, 11–13 March 2011; Volume 1, pp. 279–283. [Google Scholar]
- Maulik, U. Medical image segmentation using genetic algorithms. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Jiang, T.; Evans, D.J. Volumetric segmentation of brain images using parallel genetic algorithms. IEEE Trans. Med. Imaging 2002, 21, 904–909. [Google Scholar] [PubMed]
- Wang, L.; Li, C.; Sun, Q.; Xia, D.; Kao, C.Y. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 2009, 33, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Korez, R.; Likar, B.; Pernuš, F.; Vrtovec, T. Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 433–441. [Google Scholar]
- Zhou, X.; Ito, T.; Takayama, R.; Wang, S.; Hara, T.; Fujita, H. Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. In Deep Learning and Data Labeling for Medical Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 111–120. [Google Scholar]
- Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent residual convolutional neural network based on u-net (R2U-net) for medical image segmentation. arXiv 2018, arXiv:1802.06955. [Google Scholar]
- Zhuang, J. LadderNet: Multi-path networks based on U-Net for medical image segmentation. arXiv 2018, arXiv:1810.07810. [Google Scholar]
- Khanal, A.; Estrada, R. Dynamic Deep Networks for Retinal Vessel Segmentation. arXiv 2019, arXiv:1903.07803. [Google Scholar] [CrossRef]
- Li, L.; Verma, M.; Nakashima, Y.; Nagahara, H.; Kawasaki, R. IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context encoding for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7151–7160. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Sinha, A.; Dolz, J. Multi-scale guided attention for medical image segmentation. arXiv 2019, arXiv:1906.02849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastidas, A.A.; Tang, H. Channel Attention Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–20 June 2019; pp. 881–888. [Google Scholar]
- Ghani, A.; See, C.; Sudhakaran, V.; Ahmad, J.; Abd-Alhameed, R. Accelerating retinal fundus image classification using artificial neural networks (ANNs) and reconfigurable hardware (FPGA). Electronics 2019, 8, 1522. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, H.; Dauphin, Y.N.; Ma, T. Fixup initialization: Residual learning without normalization. arXiv 2019, arXiv:1901.09321. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458. [Google Scholar]
Methods | Accuracy | Precision | -Score | AUC |
---|---|---|---|---|
U-net | 0.9531 | 0.8852 | 0.8142 | 0.9755 |
U-net with fixup | 0.9561 | 0.8612 | 0.8196 | 0.9783 |
LadderNet | 0.9561 | 0.8593 | 0.8202 | 0.9793 |
LadderNet with fixup | 0.9572 | 0.8616 | 0.8305 | 0.9779 |
Methods | Accuracy | Precision | -Score | AUC |
---|---|---|---|---|
U-net | 0.9801 | 0.9631 | 0.9486 | 0.9875 |
U-net with fixup | 0.9891 | 0.9735 | 0.9685 | 0.9982 |
LadderNet | 0.9890 | 0.9709 | 0.9688 | 0.9983 |
LadderNet with fixup | 0.9896 | 0.9717 | 0.9692 | 0.9982 |
Methods | Accuracy | Precision | -Score | AUC |
---|---|---|---|---|
U-net | 0.9801 | 0.9784 | 0.9633 | 0.9808 |
U-net with fixup | 0.9847 | 0.9914 | 0.9721 | 0.9960 |
LadderNet | 0.9842 | 0.9906 | 0.9723 | 0.9962 |
LadderNet with fixup | 0.9843 | 0.9918 | 0.9695 | 0.9957 |
Dataset | Year | Methods | Accuracy | Precision | -Score | AUC |
---|---|---|---|---|---|---|
DRIVE | 2015 | U-net [3] | 0.9531 | 0.8852 | 0.8142 | 0.9755 |
2018 | Recurrent U-Net [15] | 0.9556 | 0.8603 | 0.8155 | 0.9782 | |
2018 | Residual U-Net [15] | 0.9553 | 0.8614 | 0.8149 | 0.9779 | |
2018 | R2U-Net [15] | 0.9556 | 0.8589 | 0.8171 | 0.9784 | |
2018 | LadderNet [16] | 0.9561 | 0.8593 | 0.8202 | 0.9793 | |
2019 | Dynamic Deep Networks [17] | 0.9693 | 0.8284 | 0.8259 | 0.9775 | |
2020 | IterNet(Patched) [18] | 0.9573 | 0.8534 | 0.8205 | 0.9816 | |
2020 | FAU-net | 0.9698 | 0.8651 | 0.8320 | 0.9853 | |
ELE | 2015 | U-net | 0.9801 | 0.9631 | 0.9486 | 0.9875 |
2018 | Recurrent U-Net | 0.9776 | 0.9736 | 0.9465 | 0.9930 | |
2018 | Residual U-Net | 0.9837 | 0.9670 | 0.9582 | 0.9902 | |
2018 | R2U-Net | 0.9806 | 0.9501 | 0.9684 | 0.9955 | |
2018 | LadderNet | 0.9889 | 0.9709 | 0.9685 | 0.9980 | |
2019 | Dynamic Deep Networks | 0.9816 | 0.9435 | 0.9684 | 0.9942 | |
2020 | IterNet(Patched) | 0.9821 | 0.9664 | 0.9568 | 0.9961 | |
2020 | FAU-net | 0.9891 | 0.9695 | 0.9688 | 0.9982 | |
CORO | 2015 | U-net | 0.9801 | 0.9784 | 0.9633 | 0.9808 |
2018 | Recurrent U-Net | 0.9739 | 0.9806 | 0.9541 | 0.9912 | |
2018 | Residual U-Net | 0.9716 | 0.9792 | 0.9498 | 0.9755 | |
2018 | R2U-Net | 0.9786 | 0.9892 | 0.9642 | 0.9893 | |
2018 | LadderNet | 0.9843 | 0.9906 | 0.9723 | 0.9962 | |
2019 | Dynamic Deep Networks | 0.9798 | 0.9758 | 0.9649 | 0.9897 | |
2020 | IterNet(Patched) | 0.9739 | 0.9825 | 0.9654 | 0.9953 | |
2020 | FAU-net | 0.9834 | 0.9932 | 0.9730 | 0.9928 |
Dataset | DRIVE | ELE | CORO |
---|---|---|---|
U-Net | 2.16 s | 2.35 s | 2.05 s |
Recurrent U-Net | 5.23 s | 4.56 s | 4.23 s |
Residual U-Net | 3.57 s | 4.16 s | 3.13 s |
R2U-Net | 5.75 s | 2.54 s | 5.34 s |
IterNet (Patched) | 16.53 s | 14.45 s | 15.86 s |
LadderNet | 1.78 s | 2.01 s | 1.41 s |
Dynamic Deep Networks | 4.72 s | 4.23 s | 3.88 s |
FAU-Net | 1.43 s | 1.27 s | 1.21 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Yin, L.; Guo, H.; Tang, W.; Wan, T.R. FAU-Net: Fixup Initialization Channel Attention Neural Network for Complex Blood Vessel Segmentation. Appl. Sci. 2020, 10, 6280. https://doi.org/10.3390/app10186280
Huang D, Yin L, Guo H, Tang W, Wan TR. FAU-Net: Fixup Initialization Channel Attention Neural Network for Complex Blood Vessel Segmentation. Applied Sciences. 2020; 10(18):6280. https://doi.org/10.3390/app10186280
Chicago/Turabian StyleHuang, Dongjin, Liwen Yin, Hao Guo, Wen Tang, and Tao Ruan Wan. 2020. "FAU-Net: Fixup Initialization Channel Attention Neural Network for Complex Blood Vessel Segmentation" Applied Sciences 10, no. 18: 6280. https://doi.org/10.3390/app10186280