Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chicken Breast Sample Preparation
2.3. Microbial Inoculum Preparation
2.4. ADCP Treatment
2.5. Microbial Analysis
2.6. Nitrate and Nitrite Contents
2.7. Experimental Animals
2.8. Acute and Subacute Toxicity
2.9. Blood Biochemical and Hematological Tests
2.10. Storage Study
2.11. pH and Color
2.12. TVBN
2.13. TBARS
2.14. Tenderness
2.15. Sensory Test
2.16. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Determination of ADCP Treatment Conditions
3.2. Effects on TV Inactivation
3.3. Effects on Nitrite and Nitrate Contents
3.4. Effects on Toxicity
3.5. Effect on Post-Treatment Storage
3.5.1. Changes in Microbial Growth
3.5.2. pH and Color
3.5.3. TVBN
3.5.4. TBARS
3.5.5. Tenderness
3.5.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moutiq, R.; Misra, N.N.; Mendonca, A.; Keener, K. In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Sci. 2020, 159, 107942. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, J.; Wum, Q.; Zhang, J.; Liu, S.; Guo, W.; Cai, S.; Yu, S. Prevalence, antimicrobial resistance and genetic diversity of Salmonella isolated from retail ready-to-eat foods in China. Food Control 2016, 60, 50–56. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Foodborne Outbreak Online Database (FOOD Tool). Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 30 October 2019).
- Kim, S.Y.; Bang, I.H.; Min, S.C. Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J. Food Eng. 2019, 242, 55–67. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X.; Niemira, B.A. Inactivation of Escherichia coli O157:H7 and aerobic microorganisms in romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. J. Food Prot. 2017, 80, 35–43. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol. 2017, 65, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Yepez, X.; Xub, L.; Keener, K. In-package cold plasma technologies. J. Food Eng. 2019, 244, 21–31. [Google Scholar] [CrossRef]
- Roh, S.H.; Oh, Y.J.; Lee, S.Y.; Kang, J.H.; Min, S.C. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT Food Sci. Technol. 2020, 127, 109429. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Sites, J.E.; Boyd, G.; Lacombe, A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Pignata, C.; D’angelo, D.; Fea, E.; Gilli, G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 2017, 122, 1438–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjunan, K.; Sharma, V.; Ptasinska, S. Effects of atmospheric pressure plasmas on isolated and cellular DNA–A review. Int. J. Mol. Sci. 2015, 16, 2971–3016. [Google Scholar] [CrossRef] [Green Version]
- Sarangapani, C.; Patange, A.; Bourke, P.; Keener, K.; Cullen, P.J. Recent advances in the application of cold plasma technology in foods. Annu. Rev. Food Sci. Technol. 2018, 9, 609–629. [Google Scholar] [CrossRef]
- Han, S.H.; Suh, H.J.; Hong, K.B.; Kim, S.Y.; Min, S.C. Oral toxicity of cold plasma-treated edible films for food coating. J. Food Sci. 2016, 81, 3052–3057. [Google Scholar] [CrossRef] [PubMed]
- Wende, K.; Bekeschus, S.; Schmidt, A.; Jatsch, L.; Hasse, S.; Weltmann, K.D.; Masur, K.; Woedtke, T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 798–799, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Zhuang, H.; Lawrence, K.; Zhang, J.H. Disinfection of chicken fillets in packages with atmospheric cold plasma: Effects of treatment voltage and time. J. Appl. Microbiol. 2018, 124, 1212–1219. [Google Scholar] [CrossRef]
- Roh, S.H.; Lee, S.Y.; Park, H.H.; Lee, E.S.; Min, S.C. Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. Int. J. Food Microbiol. 2019, 293, 24–33. [Google Scholar] [CrossRef]
- McHugh, T.H.; Krochta, J.M. Sorbitol-vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 1994, 42, 841–845. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017, 63, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Fan, X.; Sokorai, K.; Jin, T.Z. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res. Int. 2018, 108, 378–386. [Google Scholar] [CrossRef]
- Chou, S.S.; Chung, J.C.; Hwang, D.F. A high performance liquid chromatography method for determining nitrate and nitrite levels in vegetables. J. Food Drug Anal. 2003, 11, 233–238. [Google Scholar] [CrossRef]
- Hsu, J.; Arcot, J.; Lee, N.A. Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food Chem. 2009, 115, 334–339. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.S.; Lee, W.H.; Cho, B.K. Determination of the total volatile basic nitrogen (TVB-N) content in pork meat using hyperspectral fluorescence imaging. Sens. Actuator B Chem. 2018, 259, 532–539. [Google Scholar] [CrossRef]
- Lund, M.N.; Hviid, M.S.; Skibsted, L.H. The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Sci. 2007, 76, 226–233. [Google Scholar] [CrossRef]
- Barbanti, D.; Pasquini, M. Influence of cooking conditions on cooking loss and tenderness of raw and marinated chicken breast meat. LWT Food Sci. Technol. 2005, 38, 895–901. [Google Scholar] [CrossRef]
- Albertos, I.; Martín-Diana, A.B.; Cullen, P.J.; Tiwari, B.K.; Ojha, S.K.; Bourke, P.; Alvarez, C.; Rico, D. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov. Food Sci. Emerg. Technol. 2017, 44, 117–122. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; Milosavljevic, V.; O’Donnel, C.P.; Bourke, P.; Keener, K.M.; Cullen, P.J. Application of cold plasma technology in food packaging. Trends Food Sci. Technol. 2014, 35, 5–17. [Google Scholar] [CrossRef]
- Bae, S.C.; Park, S.Y.; Choe, W.; Ha, S.D. Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Res. Int. 2015, 76, 342–347. [Google Scholar] [CrossRef]
- Ahlfeld, B.; Li, Y.; Boulaaba, A.; Binder, A.; Schotte, U.; Zimmermann, J.L.; Morfill, G.; Klein, G. Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. mBio 2015, 6, e020300–e020314. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, G.; Embury, J.D.; Edwards, G.; Ashby, M.F. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981, 29, 1509–1522. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, Y.; Wei, K.; Li, W.; Yao, M.; Zhang, J.; Grinshpun, S.A. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Appl. Environ. Microbiol. 2015, 81, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Lee, J.; Lim, Y.; Choe, W.; Yong, H.I.; Jo, C. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 113–118. [Google Scholar] [CrossRef]
- Yong, H.I.; Lee, S.H.; Kim, S.Y.; Park, S.; Park, J.; Choe, W.; Jo, C. Color development physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 2019, 53, 78–84. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Shen, J.; Li, X.; Ding, L.; Ma, J.; Lan, Y.; Xia, W.; Cheng, C.; Sun, Q.; et al. Effects and mechanism of atmospheric pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci. Rep. 2015, 5, 10031. [Google Scholar] [CrossRef] [Green Version]
- Patange, A.; Boehm, D.; Giltrap, M.; Lu, P.; Cullen, P.J.; Bourke, P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci. Total Environ. 2018, 631–632, 298–307. [Google Scholar] [CrossRef]
- Oehmigen, K.; Hahnel, M.; Brandenburg, R.; Wilke, C.; Weltmann, K.D.; Woedtke, T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 2010, 7, 3–4. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Wang, L.; Li, Y.; Shi, Y.; Cui, Y.; Xue, M. Acute and subacute toxicity of ethanol extracts from Salvia przewalskii Maxim in rodents. J. Ethnopharmacol. 2010, 131, 110–115. [Google Scholar] [CrossRef]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Acute renal failure. Lancet 2005, 365, 417–430. [Google Scholar] [CrossRef]
- Piao, Y.; Liu, Y.; Xie, X. Change trends of organ weight background data in Sprague—Dawley rats at different ages. J. Toxicol. Pathol. 2013, 26, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014, 42, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of cold plasma on food quality: A review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Yun, H.; Jung, S.; Jung, Y.; Jung, H.; Choe, W.; Jo, C. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 2011, 28, 9–13. [Google Scholar] [CrossRef]
- Ulbin-Figlewicz, N.; Brychcy, E.; Jarmoluk, A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J. Food Sci. Technol. 2015, 52, 1228–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- Xiong, Z.; Du, T.; Lu, X.; Cao, Y.; Pan, Y. How deep can plasma penetrate into a biofilm? Appl. Phys. Lett. 2011, 98, 221503. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.A.; Brenes, A.; Goñi, I. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT Food Sci. Technol. 2009, 42, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Moiseev, T.; Patil, S.; Pankaj, S.K.; Bourke, P.; Mosnier, J.P.; Keener, K.M.; Cullen, P.J. Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol. 2014, 7, 3045–3054. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, H.; Hinton, A., Jr.; Zhang, J. Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiol. 2016, 60, 142–146. [Google Scholar] [CrossRef]
- Rød, S.K.; Hansen, F.; Leipold, F.; Knøchel, S. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiol. 2012, 30, 233–238. [Google Scholar] [CrossRef]
- Kruk, Z.A.; Yun, H.; Rutley, D.L.; Lee, E.J.; Kim, Y.J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 2011, 22, 6–12. [Google Scholar] [CrossRef]
- Li, Y.; Kojtari, A.; Friedman, G.; Brooks, A.D.; Fridman, A.; Ji, H.F. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. J. Phys. Chem. B 2014, 118, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Segat, A.; Misra, N.N.; Cullen, P.J.; Innocente, N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod. Process. 2016, 98, 181–188. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Q.; Wan, X.; Zhaom, J. Determination of total volatile basic nitrogen (TVB-N) content and Warner–Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chem. 2011, 126, 1354–1360. [Google Scholar] [CrossRef]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Park, S.Y.; Ha, S.D. Ultraviolet-C radiation on the fresh chicken breast: Inactivation of major foodborne viruses and changes in physicochemical and sensory qualities of product. Food Bioprocess Technol. 2015, 8, 895–906. [Google Scholar] [CrossRef]
- Lee, H.; Yong, H.I.; Kim, H.J.; Choe, W.; Yoo, S.J.; Jang, E.J. Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 2016, 25, 1189–1195. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estevez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef]
- Clausen, I.; Jakobsen, M.; Ertbjerg, P.; Madsen, N.T. Modified atmosphere packaging affects lipid oxidation, myofibrillar fragmentation index and eating quality of beef. Packag. Technol. Sci. 2009, 22, 85–96. [Google Scholar] [CrossRef]
- Ahn, D.U.; Lee, E.J.; Feng, X.; Zhang, W.; Lee, J.H.; Jo, C.; Nam, K.C. Mechanisms of volatile production from sulfur-containing amino acids by irradiation. Radiat. Phys. Chem. 2016, 119, 80–84. [Google Scholar] [CrossRef]
Conditions | Salmonella (log CFU/cube) | Microbial Reduction (log CFU/cube) | |
---|---|---|---|
Treatment Voltage | Treatment Time | ||
22 kV | 3 min | 4.42 ± 0.05 | 0.62 ± 0.02 c |
23 kV | 3.96 ± 0.07 | 1.08 ± 0.03 b | |
24 kV | 2 min | 4.14 ± 0.09 | 0.90 ± 0.07 b |
2.5 min | 4.04 ± 0.13 | 1.00 ± 0.01 b | |
3 min | 3.59 ± 0.06 | 1.45 ± 0.05 a |
Microorganisms and Nitrite/Nitrate Concentrations | Untreated | ADCP-Treated |
---|---|---|
Salmonella (CFU/cube) | 5.04 ± 0.13 a | 3.59 ± 0.06 b |
Indigenous mesophilic bacteria (CFU/cube) | 5.78 ± 0.19 a | 5.08 ± 0.16 b |
Tulane virus (PFU/cube) | 3.68 ± 0.29 a | 2.60 ± 0.34 b |
Nitrite (µg/mL) | 6.31 ± 0.21 b | 9.31 ± 0.20 a |
Nitrate (µg/mL) | 1.51 ± 0.13 a | 1.40 ± 0.07 a |
Parameters | Group for Acute Toxicity | Group for Subacute Toxicity | ||||
---|---|---|---|---|---|---|
Control | ADCP-Treated | Control | ADCP-Treated | |||
Bodyweight gain and daily intake | Female | Bodyweight gain (g) | 57.20 ± 5.70 | 59.50 ± 3.53 | 64.20 ± 5.98 a | 46.00 ± 2.13 b |
Food intake (g/day) | 22.20 ± 0.82 | 22.02 ± 1.87 | 24.09 ± 1.06 | 21.73 ± 0.21 | ||
Water intake (mL/day) | 23.48 ± 0.33 | 25.12 ± 0.04 | 24.04 ± 1.09 | 27.36 ± 2.30 | ||
Male | Bodyweight gain (g) | 133.70 ± 4.06 | 111.50 ± 1.55 | 122.50 ± 4.84 a | 93.60 ± 5.63 b | |
Food intake (g/day) | 29.01 ± 1.98 | 28.38 ± 1.54 | 28.42 ± 1.03 | 24.56 ± 0.73 | ||
Water intake (mL/day) | 29.28 ± 1.23 | 28.46 ± 0.10 | 32.70 ± 0.75 | 26.79 ± 0.04 | ||
Hematological parameters | Female | RBC (×106/μL) | 7.47 ± 0.33 | 7.53 ± 0.29 | 7.47 ± 0.19 b | 7.76 ± 0.16 a,b |
WBC (×103/μL) | 7.29 ± 0.69 a,b | 10.19 ± 1.14 a,b | 7.29 ± 0.40 | 8.36 ± 0.85 | ||
Hct (%) | 58.98 ± 2.62 | 58.23 ± 1.28 | 58.98 ± 1.51 a,b | 59.16 ± 0.73 b | ||
Hgb (g/dL) | 15.73 ± 0.66 | 15.25 ± 0.38 | 15.73 ± 0.38 b | 16.04 ± 0.26 a,b | ||
MCV (fL) | 78.88 ± 0.28 | 77.53 ± 1.26 | 78.88 ± 0.16 a | 76.28 ± 0.91 b | ||
MCH (pg) | 21.05 ± 0.21 | 20.33 ± 0.36 | 21.05 ± 0.12 | 20.66 ± 0.25 | ||
MCHC (g/dL) | 26.68 ± 0.30 | 26.23 ± 0.18 | 26.68 ± 0.17 b,c | 27.12 ± 0.34 a | ||
Platelets (×103/μL) | 1476.75 ± 216.80 | 1349.75 ± 153.03 | 1476.75 ± 125.17 | 1390.80 ± 119.25 | ||
Male | RBC (×106/μL) | 7.47 ± 0.27 | 7.13 ± 0.25 | 7.28 ± 0.31 a,b | 7.30 ± 0.75 a,b | |
WBC (×103/μL) | 8.96 ± 0.98 | 8.94 ± 0.96 | 8.71 ± 0.78 | 7.40 ± 0.37 | ||
Hct (%) | 62.00 ± 1.85 | 60.00 ± 1.95 | 60.35 ± 1.33 a,b | 60.30 ± 4.40 a,b | ||
Hgb (g/dL) | 15.66 ± 0.47 | 15.05 ± 0.46 | 15.28 ± 0.33 | 13.95 ± 2.35 | ||
MCV (fL) | 83.08 ± 1.03 | 84.13 ± 0.65 | 83.13 ± 1.83 | 82.95 ± 2.45 | ||
MCH (pg) | 20.96 ± 0.25 | 21.10 ± 0.18 | 21.00 ± 0.45 a | 19.05 ± 1.25 b | ||
MCHC (g/dL) | 25.24 ± 0.08 | 25.08 ± 0.19 | 25.28 ± 0.06 | 23.00 ± 2.20 | ||
Platelets (×103/μL) | 1600.60 ± 170.63 | 1877.50 ± 339.03 | 1805.75 ± 120.68 | 1197.00 ± 286.00 |
Parameters | Group for Acute Toxicity | Group for Subacute Toxicity | ||||
---|---|---|---|---|---|---|
Control | ADCP-Treated | Control | ADCP-Treated | |||
Blood biochemical parameters | Female | Glucose (mg/dL) | 108.20 ± 16.60 | 77.40 ± 6.42 | 90.60 ± 10.73 | 90.00 ± 7.48 |
BUN (mg/dL) | 18.30 ± 0.41 a | 16.10 ± 0.92 a,b | 13.82 ± 0.59 | 13.56 ± 1.11 | ||
Creatinine (mg/dL) | 0.20 ± 0.00 | 0.18 ± 0.02 | 0.20 ± 0.00 | 0.20 ± 0.00 | ||
Total bilirubin (mg/dL) | 0.54 ± 0.02 | 0.58 ± 0.04 | 0.58 ± 0.02 a | 0.42 ± 0.04 b | ||
Total protein (g/dL) | 6.46 ± 0.14 | 6.62 ± 0.27 | 6.26 ± 0.18 | 6.26 ± 0.08 | ||
Albumin (g/dL) | 4.76 ± 0.28 | 5.14 ± 0.27 | 4.74 ± 0.21 | 4.56 ± 0.07 | ||
AST (U/L) | 72.20 ± 3.61 | 70.20 ± 2.80 | 70.00 ± 1.45 | 69.60 ± 0.87 | ||
ALT (U/L) | 80.80 ± 9.98 | 31.60 ± 2.79 | 25.40 ± 0.93 | 26.80 ± 1.24 | ||
Triglyceride (mg/dL) | 80.80 ± 9.98 a | 61.20 ± 12.13 a,b | 63.00 ± 6.29 | 77.20 ± 5.21 | ||
Total cholesterol (mg/dL) | 103.40 ± 5.68 | 87.60 ± 6.59 | 102.00 ± 10.90 | 97.40 ± 6.77 | ||
HDL (mg/dL) | 60.8 ± 4.75 | 53.60 ± 3.11 | 59.60 ± 7.61 | 63.20 ± 4.68 | ||
Male | Glucose (mg/dL) | 81.60 ± 9.26 | 141.20 ± 21.69 | 100.40 ± 20.86 | 87.20 ± 7.10 | |
BUN (mg/dL) | 12.14 ± 0.43 | 14.28 ± 1.40 | 11.86 ± 0.69 | 12.36 ± 0.66 | ||
Creatinine (mg/dL) | 0.24 ± 0.02 | 0.16 ± 0.04 | 0.20 ± 0.03 | 0.20 ± 0.00 | ||
Total bilirubin (mg/dL) | 0.52 ± 0.04 | 0.56 ± 0.02 | 4.48 ± 0.11 b | 5.74 ± 0.27 a | ||
Total protein (g/dL) | 6.10 ± 0.07 b | 6.66 ± 0.13 a | 5.92 ± 0.13 a | 4.46 ± 0.39 b | ||
Albumin (g/dL) | 4.54 ± 0.10 b | 5.06 ± 0.12 a | 0.38 ± 0.04 | 0.50 ± 0.10 | ||
AST (U/L) | 75.20 ± 2.06 | 82.00 ± 4.88 | 80.20 ± 4.12 | 78.60 ± 2.62 | ||
ALT (U/L) | 39.80 ± 3.89 | 41.20 ± 1.69 | 32.60 ± 2.46 | 33.80 ± 1.98 | ||
Triglyceride (mg/dL) | 123.20 ± 5.70 | 89.60 ± 9.94 | 104.20 ± 8.13 | 80.00 ± 2.68 | ||
Total cholesterol (mg/dL) | 114.80 ± 11.75 | 108.60 ± 7.58 | 100.00 ± 3.52 | 103.00 ± 7.31 | ||
HDL (mg/dL) | 68.00 ± 3.74 | 57.20 ± 4.29 | 55.60 ± 3.08 | 55.20 ± 4.00 | ||
Relative organ weight (g/100 g of bodyweight) | Female | Liver | 3.65 ± 0.14 | 3.61 ± 0.24 | 3.60 ± 0.08 | 3.68 ± 0.06 |
Kidney | 0.92 ± 0.02 | 0.96 ± 0.03 | 0.94 ± 0.02 | 1.02 ± 0.05 | ||
Lung | 0.87 ± 0.18 | 0.71 ± 0.08 | 0.71 ± 0.06 | 0.72 ± 0.04 | ||
Heart | 0.57 ± 0.11 | 0.48 ± 0.03 | 0.51 ± 0.03 | 0.50 ± 0.01 | ||
Spleen | 0.24 ± 0.02 | 0.25 ± 0.01 | 0.24 ± 0.02 | 0.25 ± 0.01 | ||
Male | Liver | 3.47 ± 0.10 | 3.24 ± 0.21 | 3.56 ± 0.11 | 3.44 ± 0.15 | |
Kidney | 0.86 ± 0.03 | 0.79 ± 0.02 | 1.00 ± 0.02 | 0.99 ± 0.03 | ||
Lung | 0.66 ± 0.06 | 0.56 ± 0.05 | 0.81 ± 0.19 | 0.62 ± 0.07 | ||
Heart | 0.48 ± 0.06 | 0.46 ± 0.03 | 0.49 ± 0.02 | 0.46 ± 0.03 | ||
Spleen | 0.25 ± 0.01 | 0.26 ± 0.01 | 0.23 ± 0.00 | 0.28 ± 0.02 |
Storage Temperature (°C) | Storage Time (d) | pH | Color | ||||||
---|---|---|---|---|---|---|---|---|---|
L * | a * | b * | |||||||
Untreated | ADCP-Treated | Untreated | ADCP-Treated | Untreated | ADCP-Treated | Untreated | ADCP-Treated | ||
4 | 0 | 6.6 ± 0.1 A,a | 6.5 ± 0.0 A,a | 81.1 ± 1.1 A,a | 81.0 ± 1.1 A,a | 2.2 ± 0.6 A,a | 2.1 ± 0.4 A,a | 15.5 ± 0.8 A,a | 15.3 ± 0.7 A,a |
3 | 6.5 ± 0.1 A,a | 6.6 ± 0.1 A,a | 80.8 ± 1.0 A,a | 80.8 ± 0.9 A,a | 1.5 ± 0.3 A,b | 1.4 ± 0.3 A,b | 15.3 ± 0.8 A,a | 15.5 ± 0.7 A,a | |
5 | 6.5 ± 0.1 A,a | 6.6 ± 0.1 A,a | 80.6 ± 1.1 A,a | 80.8 ± 0.9 A,a | 1.0 ± 0.4 A,c | 1.0 ± 0.4 A,c | 15.2 ± 1.0 A,a | 15.3 ± 0.8 A,a | |
7 | 6.5 ± 0.1 A,a | 6.5 ± 0.1 A,a | 80.9 ± 0.9 A,a | 81.1 ± 1.1 A,a | 0.6 ± 0.3 A,d | 0.7 ± 0.3 A,d | 15.4 ± 0.7 A,a | 15.4 ± 0.7 A,a | |
10 | 6.6 ± 0.1 A,a | 6.6 ± 0.1 A,a | 80.9 ± 1.1 A,a | 81.1 ± 1.2 A,a | 0.4 ± 0.3 A,de | 0.5 ± 0.2 A,de | 15.2 ± 1.1 A,a | 15.0 ± 0.7 A,a | |
14 | 6.5 ± 0.1 A,a | 6.6 ± 0.1 A,a | 81.1 ± 0.8 A,a | 81.3 ± 1.0 A,a | 0.2 ± 0.3 A,ef | 0.2 ± 0.2 A,ef | 15.4 ± 0.8 A,a | 15.3 ± 0.9 A,a | |
21 | 6.6 ± 0.1 A,a | 6.6 ± 0.1 A,a | 81.2 ± 0.7 A,a | 81.1 ± 1.0 A,a | 0.1 ± 0.2 A,g | 0.1 ± 0.2 A,g | 15.4 ± 0.9 A,a | 15.6 ± 0.8 A,a | |
24 | 0 | 6.6 ± 0.1 A,a | 6.5 ± 0.0 A,a | 81.1 ± 1.1 A,a | 81.0 ± 1.1 A,a | 2.2 ± 0.6 A,c | 2.1 ± 0.4 A,c | 15.5 ± 0.8 A,d | 15.3 ± 0.7 A,d |
1 | 6.6 ± 0.1 A,a | 6.5 ± 0.2 A,a | 80.0 ± 1.2 A,b | 80.2 ± 1.1 A,b | 2.3 ± 0.4 A,c | 2.3 ± 0.2 A,c | 16.4 ± 0.8 A,c | 16.7 ± 1.2 A,c | |
2 | 6.6 ± 0.1 A,a | 6.5 ± 0.1 A,a | 78.7 ± 1.1 A,c | 78.7 ± 1.3 A,c | 2.5 ± 0.4 A,bc | 2.5 ± 0.4 A,bc | 16.9 ± 0.9 A,c | 16.7 ± 0.8 A,c | |
3 | 6.6 ± 0.1 A,a | 6.5 ± 0.2 A,a | 77.8 ± 1.5 A,d | 77.8 ± 1.6 A,d | 2.7 ± 0.4 A,b | 2.7 ± 0.4 A,b | 18.2 ± 1.0 A,b | 18.6 ± 1.2 A,b | |
5 | 6.5 ± 0.2 A,a | 6.6 ± 0.2 A,a | 77.0 ± 1.3 A,d | 76.7 ± 1.4 A,d | 3.8 ± 0.6 A,a | 3.8 ± 0.6 A,a | 20.4 ± 1.6 A,a | 20.7 ± 1.8 A,a |
Storage Temperature (°C) | Storage Time (d) | TBARS | TVBN | Tenderness | |||
---|---|---|---|---|---|---|---|
Untreated | ADCP-Treated | Untreated | ADCP-Treated | Untreated | ADCP-Treated | ||
4 | 0 | 4.9 ± 0.3 A,b | 4.9 ± 0.3 A,b | 4.4 ± 1.4 A,e | 4.4 ± 1.6 A,e | 2466.9 ± 776.2 A,a | 2545.3 ± 879.6 A,a |
3 | 4.8 ± 0.3 A,b | 4.8 ± 0.3 A,b | 6.7 ± 1.1 A,d | 6.8 ± 1.4 A,d | 2584.4 ± 528.7 A,a | 2417.3 ± 802.5 A,a | |
5 | 4.8 ± 0.3 A,b | 4.8 ± 0.3 A,b | 7.5 ± 1.8 A,cd | 7.5 ± 1.8 A,cd | 2509.2 ± 454.7 A,a | 2803.1 ± 785.5 A,a | |
7 | 4.9 ± 0.3 A,b | 4.9 ± 0.5 A,b | 10.9 ± 1.6 A,c | 10.2 ± 2.9 A,c | 2789.8 ± 584.4 A,a | 2834.9 ± 792.0 A,a | |
10 | 4.9 ± 0.5 A,b | 4.9 ± 0.3 A,b | 8.6 ± 1.9 A,b | 8.6 ± 1.5 A,b | 2955.1 ± 794.7 A,a | 2911.9 ± 607.3 A,a | |
14 | 4.8 ± 0.4 A,b | 4.9 ± 0.4 A,b | 10.9 ± 1.7 A,b | 10.7 ± 1.9 A,a | 2972.2 ± 628.2 A,a | 2951.5 ± 521.1 A,a | |
21 | 5.5 ± 0.2 A,a | 5.5 ± 0.2 A,a | 13.6 ± 1.7 A,a | 13.3 ± 1.4 A,a | 2884.0 ± 386.7 A,a | 2942.4 ± 526.4 A,a | |
24 | 0 | 4.9 ± 0.3 A,c | 4.9 ± 0.3 A,c | 4.4 ± 1.4 A,c | 4.4 ± 1.6 A,c | 2466.9 ± 776.2 A,a | 2545.3 ± 879.6 A,a |
1 | 5.8 ± 0.4 A,c | 5.7 ± 0.4 A,c | 7.7 ± 0.7 A,b | 7.8 ± 0.8 A,b | 2513.4 ± 781.8 A,a | 2549.4 ± 650.2 A,a | |
2 | 9.4 ± 1.6 A,b | 9.9 ± 1.7 A,b | 9.2 ± 1.5 A,b | 9.2 ± 1.4 A,b | 2013.9 ± 595.4 A,ab | 2067.5 ± 475.1 A,a,b | |
3 | 10.2 ± 1.3 A,b | 10.2 ± 0.9 A,b | 11.6 ± 1.3 A,a | 11.3 ± 0.9 A,a | 1572.6 ± 624.2 A,bc | 1575.7 ± 580.1 A,b,c | |
5 | 14.1 ± 2.2 A,a | 14.2 ± 2.8 A,a | 11.3 ± 3 A,a | 11.5 ± 2.7 A,a | 1265.5 ± 438.7 A,c | 1215.5 ± 477.7 A,c |
Samples | Sensory Attributes | |||
---|---|---|---|---|
Color | Flavor | Appearance | ||
Un-stored | Untreated | 6.0 ± 1.3 a | 6.3 ± 1.4 a | 6.2 ± 1.4 a |
ADCP-treated | 5.8 ± 1.6 a | 5.4 ± 1.5 b | 6.1 ± 1.8 a | |
3-day storage at 4 °C | Untreated | 5.9 ± 1.7 a | 5.3 ± 1.2 a | 6.2 ± 1.7 a |
ADCP-treated | 5.4 ± 1.6 a | 5.6 ± 1.3 a | 5.7 ± 1.7 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.S.; Cheigh, C.-I.; Kang, J.H.; Lee, S.Y.; Min, S.C. Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. Appl. Sci. 2020, 10, 6301. https://doi.org/10.3390/app10186301
Lee ES, Cheigh C-I, Kang JH, Lee SY, Min SC. Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. Applied Sciences. 2020; 10(18):6301. https://doi.org/10.3390/app10186301
Chicago/Turabian StyleLee, Eun Song, Chan-Ick Cheigh, Joo Hyun Kang, Seung Young Lee, and Sea C. Min. 2020. "Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers" Applied Sciences 10, no. 18: 6301. https://doi.org/10.3390/app10186301
APA StyleLee, E. S., Cheigh, C. -I., Kang, J. H., Lee, S. Y., & Min, S. C. (2020). Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-To-Eat Chicken Breast Cubes in Plastic Containers. Applied Sciences, 10(18), 6301. https://doi.org/10.3390/app10186301