Robust Chromatic Adaptation Based Color Correction Technology for Underwater Images
Abstract
:Featured Application
Abstract
1. Introduction
2. Related Work
3. Method
3.1. Chromatic Adaptation Theory
3.2. Transform from sRGB to XYZ
3.3. Color Correction
4. Results
4.1. Evaluation on UIEB Dataset
4.2. Evaluation on Haze-line Dataset
4.3. Evaluation on Sea-Thru Dataset
5. Discussion
5.1. Artifacts Caused by Over-Enhancement
5.2. Linearization of RGB Images
5.3. Underwater Image Enhancement
5.4. Evaluation of Restored Images
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Song, W.; Fortino, G.; Qi, L.-Z.; Zhang, W.; Liotta, A. An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging. IEEE Access 2019, 7, 140233–140251. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Serikawa, S. Underwater image enhancement using guided trigonometric bilateral filter and fast automatic color correction. In Proceedings of the 20th IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 3412–3416. [Google Scholar]
- Wang, K.; Hu, Y.; Chen, J.; Wu, X.; Zhao, X.; Li, Y. Underwater image restoration based on a parallel convolutional neural network. Remote Sens. 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Corchs, S.; Schettini, R. Underwater image processing: State of the art of restoration and image enhancement methods. EURASIP J. Adv. Sign. Process. 2010, 2010, 746052. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J.; Ttang, X. Single image haze removal using dark channel prior. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [Google Scholar]
- Drews, P., Jr.; Do Nascimento, E.; Moraes, F.; Botelho, S.; Campos, M. Transmission estimation in underwater single images. In Proceedings of the 14th IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 1–8 December 2013; pp. 825–830. [Google Scholar]
- Akkaynak, D.; Treibitz, T. Sea-THRU: A method for removing water from underwater images. In Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 1682–1691. [Google Scholar]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and beyond. IEEE Trans. Image Process. 2020, 29, 4376–4389. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Liu, R.; Fan, X.; Luo, Z. Joint Residual Learning for Underwater Image Enhancement. In Proceedings of the 25th IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 4043–4047. [Google Scholar]
- Lu, J.; Li, N.; Zhang, S.; Yu, Z.; Zheng, H.; Zheng, B. Multi-scale adversarial network for underwater image restoration. Opt. Laser Technol. 2019, 110, 105–113. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. 2018, 3, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Anwar, S.; Porikli, F. Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, K.; Parks, T.W. Chromatic adaptation and white-balance problem. In Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 11–14 September 2005; pp. 984–987. [Google Scholar]
- Gasparini, F.; Schettini, R. Color balancing of digital photos using simple image statistics. Pattern Recognit. 2004, 37, 1201–1217. [Google Scholar] [CrossRef]
- Kerouh, F.; Ziou, D.; Lahmar, K.N. Content-based computational chromatic adaptation. Pattern Anal. Appl. 2018, 21, 1109–1120. [Google Scholar] [CrossRef]
- Wilkie, A.; Weidlich, A. A Robust Illumination Estimate for Chromatic Adaptation in Rendered Images. Comput. Graph. Forum 2009, 28, 1101–1109. [Google Scholar] [CrossRef]
- Gijsenij, A.; Gevers, T.; Van De Weijer, J. Computational color constancy: Survey and experiments. IEEE Trans. Image Process. 2011, 20, 2475–2489. [Google Scholar] [CrossRef] [PubMed]
- Buchsbaum, G. Spatial processor model for object color perception. J. Franklin Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Weng, C.-C.; Chen, H.; Fuh, C.-S. A novel automatic white balance method for digital still cameras. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 3801–3804. [Google Scholar]
- Fu, X.; Zhuang, P.; Huang, Y.; Liao, Y.; Zhang, X.-P.; Ding, X. A retinex-based enhancing approach for single underwater image. In Proceedings of the IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 4572–4576. [Google Scholar]
- Funt, B.; Barnard, K.; Martin, L. Is machine colour constancy good enough? In Proceedings of the 5th European Conference on Computer Vision, Freiburg, Germany, 2–6 June 1998; pp. 445–459. [Google Scholar]
- Van de Weijer, J.; Gevers, T.; Gijsenij, A. Edge-based color constancy. IEEE Trans. Image Process. 2007, 16, 2207–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1977, 237, 108–128. [Google Scholar] [CrossRef]
- Li, C.; Guo, J. Underwater image enhancement by dehazing and color correction. J. Electron. Imaging 2015, 24, 033023. [Google Scholar] [CrossRef]
- Chambah, M.; Semani, D.; Renouf, A.; Courtellemont, P.; Rizzi, A. Underwater color constancy: Enhancement of automatic live fish recognition. In Proceedings of the Color Imaging IX: Processing, Hardcopy, and Applications, San Jose, CA, USA, 20–22 January 2004; pp. 157–168. [Google Scholar]
- Wong, S.-L.; Paramesran, R.; Yoshida, I.; Taguchi, A. An Integrated Method to Remove Color Cast and Contrast Enhancement for Underwater Image. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 2019, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ding, X.; Wang, R.; Zhang, J.; Fu, X. Fusion-based underwater image enhancement by wavelet decomposition. In Proceedings of the IEEE International Conference on Industrial Technology, Toronto, ON, Canada, 23–25 March 2017; pp. 1013–1018. [Google Scholar]
- Ding, X.; Wang, Y.; Zhang, J.; Fu, X. Underwater image dehaze using scene depth estimation with adaptive color correction. Proceedings of OCEANS, Aberdeen, UK, 19–22 June 2017; pp. 1–5. [Google Scholar]
- Henke, B.; Vahl, M.; Zhou, Z. Removing color cast of underwater images through non-constant color constancy hypothesis. In Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, Trieste, Italy, 4–6 September 2013; pp. 20–24. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Garcia, R. A semi-global color correction for underwater image restoration. In Proceedings of the 44th International Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 30 July–3 August 2017; p. a66. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Vleeschouwer, C.D.; Garcia, R. Locally Adaptive Color Correction for Underwater Image Dehazing and Matching. In Proceedings of the 30th Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 997–1005. [Google Scholar]
- Li, C.; Guo, J.; Guo, C. Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer. IEEE Signal. Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, H.; Shang, D.; Li, C.; Quan, X. An underwater image enhancement method for different illumination conditions based on color tone correction and fusion-based descattering. Sensors 2019, 19, 5567. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chau, L.-P. Underwater image color correction based on surface reflectance statistics. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Hong Kong, China, 16–19 December 2015; pp. 996–999. [Google Scholar]
- Zhang, W.; Li, G.; Ying, Z. A new underwater image enhancing method via color correction and illumination adjustment. Proceedings of IEEE Visual Communications and Images Processing, St Petersburg, FL, USA, 10–13 December 2017. [Google Scholar]
- Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L. A new color correction method for underwater imaging. In Proceedings of the 2015 Underwater 3D Recording and Modelling, Piano di Sorrento, Italy, 16–17 April 2015; pp. 25–32. [Google Scholar]
- Emberton, S.; Chittka, L.; Cavallaro, A. Underwater image and video dehazing with pure haze region segmentation. Comput. Vision Image Underst. 2018, 168, 145–156. [Google Scholar] [CrossRef]
- Von Kries, J. Chromatic adaptation. In Sources of Color Science, 1st ed.; MacAdam, D.L., Ed.; MIT Press: Cambridge, MA, USA, 1970; pp. 120–127. [Google Scholar]
- Lam, K.M. Metamerism and Colour Constancy; University of Bradford: Bradford, UK, 1985. [Google Scholar]
- Hunt, R.W.G. Reversing the Bradford chromatic adaptation transform. Color. Res. Appl. 1997, 22, 355–356. [Google Scholar] [CrossRef]
- Lindbloom, B.J. RGB to XYZ. Available online: http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html (accessed on 22 April 2020).
- Li, H.; Kot, A.C.; Li, L. Color space identification from single images. In Proceedings of the IEEE International Circuit and System Symposium, Montreal, QC, Canada, 22–25 May 2016; pp. 1774–1777. [Google Scholar]
- Anderson, M.; Motta, R.; Chandrasekar, S.; Stokes, M. Proposal for a standard default color space for the Internet—sRGB. In Proceedings of the 4th IS and T/SID Color Imaging Conference: Color Science, Systems, and Applications, Scottsdale, AR, USA, 19–22 November 1996; pp. 238–246. [Google Scholar]
- Judd, D.B.; Yonemura, G.T. CIE 1960 UCS diagram and the Müller theory of color vision. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1970, 74A, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, D.; Treibitz, T.; Avidan, S. Diving into haze-lines: Color restoration of underwater images. In Proceedings of the 28th British Machine Vision Conference, London, UK, 4–7 September 2017. [Google Scholar]
- Karaimer, H.C.; Brown, M.S. A software platform for manipulating the camera imaging pipeline. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 429–444. [Google Scholar]
- Pisano, E.D.; Zong, S.; Hemminger, B.M.; DeLuca, M.; Johnston, R.E.; Muller, K.; Braeuning, M.P.; Pizer, S.M. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 1998, 11, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Image No. | Raw | GW | WP | SB | GWLαβ | Ours | Haze-Lines |
---|---|---|---|---|---|---|---|
3008#1 | 31.41 | 26.87 | 27.51 | 9.85 | 7.42 | 4.67 | 2.55 |
3008#2 | 35.27 | 35.26 | 35.30 | 10.93 | 8.04 | 5.10 | 3.43 |
3008#3 | 35.27 | 35.26 | 35.31 | 11.41 | 8.04 | 5.14 | 3.07 |
3008#4 | 35.28 | 35.27 | 35.33 | 10.53 | 8.53 | 5.60 | 0.79 |
3008#5 | 35.28 | 35.27 | 35.34 | 11.74 | 8.36 | 5.56 | 0.71 |
3204#1 | 30.41 | 27.20 | 26.67 | 9.10 | 5.43 | 5.65 | 8.44 |
3204#2 | 28.61 | 21.09 | 23.25 | 9.24 | 5.04 | 5.30 | 12.46 |
3204#3 | 35.29 | 35.27 | 35.36 | 9.74 | 6.51 | 7.24 | 4.22 |
3204#4 | 35.30 | 35.27 | 35.37 | 11.58 | 6.25 | 7.30 | 7.65 |
3204#5 | 35.31 | 35.28 | 35.40 | 9.48 | 6.70 | 7.55 | 3.73 |
4485#1 | 33.49 | 31.15 | 29.44 | 8.67 | 6.56 | 2.54 | 5.84 |
4485#2 | 35.58 | 35.27 | 35.45 | 3.66 | 8.50 | 4.01 | 1.90 |
4485#3 | 35.59 | 35.27 | 35.43 | 9.75 | 7.42 | 4.06 | 2.12 |
4491#1 | 35.19 | 29.79 | 30.98 | 9.54 | 7.58 | 3.27 | 7.67 |
4491#2 | 35.49 | 35.28 | 35.39 | 5.68 | 8.12 | 3.24 | 5.06 |
4491#3 | 35.60 | 35.32 | 35.47 | 9.74 | 8.23 | 4.25 | 5.19 |
5450#1 | 29.68 | 27.30 | 23.99 | 13.58 | 5.90 | 4.27 | 6.12 |
5450#2 | 28.72 | 21.90 | 22.20 | 7.69 | 4.72 | 3.52 | 7.30 |
5450#3 | 32.65 | 31.28 | 29.44 | 10.16 | 5.16 | 3.90 | 5.46 |
5450#4 | 34.24 | 31.45 | 31.34 | 10.76 | 5.45 | 4.60 | 4.49 |
5450#5 | 35.58 | 35.37 | 35.48 | 7.42 | 6.89 | 6.23 | 4.78 |
5469#1 | 32.41 | 30.50 | 29.47 | 9.56 | 4.74 | 3.37 | 6.95 |
5469#2 | 35.56 | 35.33 | 35.48 | 8.03 | 5.49 | 4.81 | 3.32 |
5469#3 | 35.43 | 35.28 | 35.37 | 11.16 | 4.68 | 3.67 | 7.50 |
5469#4 | 35.59 | 35.33 | 35.52 | 6.97 | 5.51 | 5.23 | 3.06 |
5478#1 | 33.25 | 30.30 | 29.43 | 9.54 | 3.90 | 2.40 | 8.35 |
5478#2 | 33.27 | 30.30 | 29.43 | 9.58 | 3.89 | 2.41 | 8.33 |
5478#3 | 35.55 | 35.29 | 35.40 | 9.26 | 4.40 | 3.77 | 4.68 |
5478#4 | 35.74 | 35.34 | 35.57 | 7.00 | 4.97 | 5.23 | 4.95 |
Average | 34.00 | 32.38 | 32.25 | 9.36 | 6.29 | 4.62 | 5.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yin, C.; Zhang, Z.; Li, Y.; Liang, W.; Wang, D.; Tang, Y.; Fan, H. Robust Chromatic Adaptation Based Color Correction Technology for Underwater Images. Appl. Sci. 2020, 10, 6392. https://doi.org/10.3390/app10186392
Yang X, Yin C, Zhang Z, Li Y, Liang W, Wang D, Tang Y, Fan H. Robust Chromatic Adaptation Based Color Correction Technology for Underwater Images. Applied Sciences. 2020; 10(18):6392. https://doi.org/10.3390/app10186392
Chicago/Turabian StyleYang, Xieliu, Chenyu Yin, Ziyu Zhang, Yupeng Li, Wenfeng Liang, Dan Wang, Yandong Tang, and Huijie Fan. 2020. "Robust Chromatic Adaptation Based Color Correction Technology for Underwater Images" Applied Sciences 10, no. 18: 6392. https://doi.org/10.3390/app10186392
APA StyleYang, X., Yin, C., Zhang, Z., Li, Y., Liang, W., Wang, D., Tang, Y., & Fan, H. (2020). Robust Chromatic Adaptation Based Color Correction Technology for Underwater Images. Applied Sciences, 10(18), 6392. https://doi.org/10.3390/app10186392